Tutorials, Schools, and Workshops in the Mathematical Sciences Kaïs Ammari Editor Research in PDEs and Related Fields The 2019 Spring School, Sidi Bel Abbès, Algeria Tutorials, Schools, and Workshops in the Mathematical Sciences Thisserieswillserveasaresourceforthepublicationofresultsanddevelopments presentedatsummerorwinterschools,workshops,tutorials,andseminars.Written in an accessible style, they present important and emerging topics in scientific researchforPhDstudentsandresearchers.Fillingagapbetweentraditionallecture notes,proceedings,andstandardtextbooks,thetitlesincludedinthisseriespresent materialfromtheforefrontofresearch. Manuscripts are solicited by the editorial boards of each volume and then reviewed by a minimum of three peer reviewers to ensure the highest standards ofscientificliterature. Kaïs Ammari Editor Research in PDEs and Related Fields The 2019 Spring School, Sidi Bel Abbès, Algeria Editor KaïsAmmari DepartmentofMathematics UniversityofMonastir Monastir,Tunisia ISSN2522-0969 ISSN2522-0977 (electronic) Tutorials,Schools,andWorkshopsintheMathematicalSciences ISBN978-3-031-14267-3 ISBN978-3-031-14268-0 (eBook) https://doi.org/10.1007/978-3-031-14268-0 MathematicsSubjectClassification:35R30,35Q41,35K65,35P20,35R02 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisvolumeconstitutestheproceedingsofthespringschool:“TrendsinPDE’sand RelatedFields”. ThisspringschoolwasheldattheUniversityofSidiBelAbbès,Algeria,inthe period08–10April2019(seehttp://conf-sidi-bel-abbes.ur-acedp.org/fordetails). The spring school consisted of two mini-courses, seven invited talks on the theme, and some short talks. This volume gathered the mini-course and the five contributions. Theinvitedspeakersagreedtowritereviewpapersrelatedtotheircontributions to the spring school, while others have written more traditional research papers, whichconstitutethelastpartofthisvolume.Theyrepresentrecentandnewworks onthetopicofmathematicalcontroltheoryandrelatedfields. Webelievethatthisvolumethereforeprovidesanaccessiblesummaryofawide rangeofactiveresearchtopics,alongwithsomeexcitingnewresults,andwehope that it will prove a useful resource for both graduate students new to the area and moreestablishedresearchers. Thespringschoolbroughttogetherinternationallyleadingresearchersandyoung researcherswhocamefromallaroundtheworld.Theorganizers’intentionwasto provideawideanglesnapshotofthisexcitingandfast-movingareaandfacilitatethe exchangeofideasonrecentadvancesinitsvariousaspects.Thenumerousformal, informal,andsometimeslivelydiscussionsthatresultedfromthisinteractionwere forusasignthatweachievedsomethinginthedirectionoffulfillingthisaim. Our second aim was to ensure that the diffusion of these recent results was not limited to established researchers in the area and those present at the spring school but also available to newcomers and more junior members of the research community. This was reflected by the presence of many unfamiliar and/or young faces in the audience. The present proceedings should hopefully complete the fulfillmentofoursecondaim. Thisspringschoolwouldnothavematerializedwithoutthehelpandsupportof thefollowinginstitutions. We are very grateful to Laboratoire d’Analyse et de Contrôle des EDP at the UniversityofSidiBelAbbèsandtotheResearchLabACPDE,AnalysisandControl v vi Preface of Partial Differential Equations, at the University of Monastir for their financial supportswithoutwhomthisspringschoolwouldnotbeaccessiblewithoutfees. We would also like to thank all the participants of the spring school who have madethiseventasuccess,thecontributorstotheseproceedings. Monastir,Tunisia KaïsAmmari May2022 Contents SobolevSpacesandEllipticBoundaryValueProblems ..................... 1 ChérifAmrouche SurveyontheDecayoftheLocalEnergyfortheSolutionsofthe NonlinearWaveEquation....................................................... 35 AhmedBchatnia ASpectralNumericalMethodtoApproximatetheBoundary ControllabilityoftheWaveEquationwithVariableCoefficients........... 103 CarlosCastro AggregationEquationandCollapsetoSingularMeasure................... 123 TaoufikHmidiandDongLi GeometricControlofEigenfunctionsofSchrödingerOperators........... 151 FabricioMacià StabilityofaGraphofStringswithLocalKelvin–VoigtDamping......... 169 KaïsAmmari,ZhuangyiLiu,andFarhatShel vii Sobolev Spaces and Elliptic Boundary Value Problems ChérifAmrouche 2010MathematicsSubjectClassification 35L05,34K35 1 SobolevSpaces, Inequalities,Dirichlet,and Neumann Problemsforthe Laplacian 1.1 SobolevSpaces LetusintroducethefollowingSobolevspaces:forany1<p <∞ (cid:2) (cid:3) Wm,p((cid:2))= u∈D(cid:4)((cid:2)); ∀|α|≤m, Dαu∈Lp((cid:2)) and (cid:4) (cid:5) (cid:5) (cid:6) |Dαu(x)−Dαu(y)|p Ws,p((cid:2))= u∈Wm,p((cid:2)); <∞, ∀|α|=m , |x−y|N+σp (cid:2) (cid:2) wherem ∈ N,s = m+σ,0 < σ < 1and(cid:2)isanopensetofRN.Equippedwith thegraphnorm,theyareBanachspaces. When(cid:2)=RN,usingtheFouriertransform,wedefineforanyrealnumbersthe space (cid:4) (cid:5) (cid:6) Hs(RN)= u∈S(cid:4)(RN); (1+|ξ|2)s|uˆ(ξ)|2dξ <∞ , RN whichisanHilbertspaceforthenorm: C.Amrouche((cid:2)) LaboratoiredeMathématiquesetLeursApplications,UMRCNRS5142,UniversitédePauetdes Paysdel’Adour,Pau,France e-mail:[email protected] ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 1 K.Ammari(ed.),ResearchinPDEsandRelatedFields,Tutorials,Schools,and WorkshopsintheMathematicalSciences, https://doi.org/10.1007/978-3-031-14268-0_1 2 C.Amrouche (cid:7)(cid:5) (cid:8) 1/2 (cid:7)u(cid:7)Hs(RN) = (1+|ξ|2)s|uˆ|2dx . RN By Plancherel’s theorem we prove that Ws,2(RN) = Hs(RN) for all s ≥ 0 and thisidentityisalgebraicalandtopological.So,inthecasep = 2,wedenotemore simplythespaceWs,2((cid:2))byHs((cid:2)). Definition1.1 Fors >0and1≤p <∞,wedenote Ws,p((cid:2))=D((cid:2))(cid:7)·(cid:7)Ws,p((cid:2)), 0 anditstopologicaldualspace (cid:9) (cid:10) W−s,p(cid:4)((cid:2))= Ws,p((cid:2)) (cid:4), 0 wherep(cid:4) istheconjugateofp:1/p+1/p(cid:4) = 1.Forp = 2,wewillwriteHs((cid:2)) 0 andH−s((cid:2)),respectively. Proposition1.2 SupposeT ∈ D(cid:4)((cid:2)).ThenT ∈ W−m,p(cid:4)((cid:2)),withm ∈ N∗,ifand onlyif (cid:11) T = Dαf , with f ∈Lp(cid:4)((cid:2)). α α |α|≤m 1.2 FirstProperties It will be assumed from now on that (cid:2) is a bounded open subset of RN with a Lipschitzboundary. Letusconsiderthefollowingspace (cid:12) (cid:13) D((cid:2))= v|(cid:2); v ∈D(RN) . Theorem1.3 (i) ThespaceD((cid:2))isdenseinWs,p((cid:2))foranys >0 (evenif(cid:2)isunbounded). (ii) ThespaceD(RN)isdenseinWs,p(RN)foranys ∈R. Asconsequence,wehavethefollowingproperty:foranys >0 (cid:14) (cid:15) (cid:4) Ws,p(RN)=Ws,p(RN) and W−s,p(cid:4)(RN)= Ws,p(RN) . 0 Butingeneral,foranys >0,wehaveWs,p((cid:2))(cid:2)Ws,p((cid:2)). 0