ebook img

Research Article Studies of Two-Phase Flow at a Chute Aerator with Experiments and CFD Modelling PDF

12 Pages·2016·2.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Research Article Studies of Two-Phase Flow at a Chute Aerator with Experiments and CFD Modelling

Hindawi Publishing Corporation Modelling and Simulation in Engineering Volume 2016, Article ID 4729128, 11 pages http://dx.doi.org/10.1155/2016/4729128 Research Article Studies of Two-Phase Flow at a Chute Aerator with Experiments and CFD Modelling PenghuaTeng,1JamesYang,1,2andMichaelPfister3,4 1HydraulicEngineering,RoyalInstituteofTechnology(KTH),10044Stockholm,Sweden 2FluidMechanics,VattenfallR&D,81470A¨lvkarleby,Sweden 3CivilEngineering,HauteEcoled’Inge´nierieetd’ArchitecturedeFribourg(HEIA-FR),1705Fribourg,Switzerland 4LaboratoryofHydraulicConstructions,EcolePolytechniqueFe´de´raledeLausanne(EPFL),1015Lausanne,Switzerland CorrespondenceshouldbeaddressedtoPenghuaTeng;[email protected] Received17May2016;Accepted25July2016 AcademicEditor:ShengKaiYu Copyright©2016PenghuaTengetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Thechuteaeratorofaspillwayisastructureinsuchasensethatairis,intheintenseemulsification,entrainedintothehigh- velocitywaterflow.Correctlypredictingtheairentrainmentandtwo-phaseflowpatternattheaeratorwouldcontributetoreliable spillwayoperation.Basedonexperimentaldata,2Dnumericalsimulationsarepreformedtopredictstreamwiseairconcentrations intheaeratedflow,inwhichatwo-fluidmodelisused.Dependingontheairbubblesize,relativelygoodagreementisseenwith theexperimentsintheaircavityzone.Thesimulationsgiverisetohigherairconcentrationdownstreamofthecavity,whichis presumablyduetounderestimationoftheinterfacialforcesinthetwo-fluidmodel. 1.Introduction Formanyyears,physicalmodelshavebeenthemajortool to study the characteristics of the aerated flow. Computa- Spillwaysareimportanthydraulicstructuresfordamsafety. tionalFluidDynamics(CFD)hasemergedasanimportant If the water flow velocity exceeds, for example, 20m/s and alternativeinmultiphaseflowmodelling.Bothmethodsare thecavitationindexdropsbelowacertainlimit,damagemay undoubtedly complementary to each other. With CFD, it is occur due to cavitation in the chute bottom, which affects possibletoobtain,indetail,air-waterflowfieldsoftheaerated the safety of the spillway [1]. Hence, protecting spillways flowsoastounderstandtheeffectsofgoverningparameters from cavitation damage is a primary goal of engineering necessaryforaprojectinquestion. design. The use of aerators is probably the only economic The Volume of Fluid (VOF) method is an interface countermeasureforthepurpose.Anaeratorentrainsairinto tracking scheme addressing the topological changes of the high-speed flow, alleviates the negative pressure near the air-water interface in free-surface flows [10]. To describe chutebottom,andthusavoidstheriskofcavitation. its hydraulic performance, the VOF model is often used to Drivenbyengineeringpractice,researchershaveinvesti- simulatetheaeratedflowofaspillway[11–14]. gatedaeratorsbothinthelaboratoryandthroughprototype In an air-water flow, exchange behaviors between the observations[2–8].KramerandHager[9]examined,through dispersedairphaseandcontinuouswaterphaseaffectforces experiments,flowvelocity,airconcentration,andairbubble between the phases. Hence, the correct modelling of forces sizedistributions;theyconcludedthatthebubblerisevelocity and turbulence is of prime importance for capturing the in chute flows depends on the Froude number. Pfister and physics. The two-fluid model differs from the VOF model Hager[7,8]analyzedtheeffectsofgeometricalparameterson insuchawaythatthemomentumandcontinuityequations streamwisedistributionsofairconcentrationdownstreamof aresolvedforeachphase.Furthermore,theinteractionforce aerators. between phases, the drag force, the virtual mass force, and 2 ModellingandSimulationinEngineering 1 2 3 5 9 6 8 4 7 10 Figure1:Chutemodelconfiguration[7](withpermissionfromASCE).(1)flowmeter,(2)slidevalve,(3)jet-box,(4)approachflowzone, (5)aerator,(6)airduct,(7)measurementrange,(8)automaticpositionsystem,(9)fiber-opticalprobe,and(10)cavitypiezometer. the turbulent dispersion force are modelled in the momen- 𝐹=𝑉0/(𝑔ℎ0)0.5 =7.52,where𝑉0 isthemeanapproachflow tumequations. velocityand𝑔istheaccelerationofgravity. The two-fluid model was used to simulate the complex The air supply to the air cavity below the jet occurs hydrodynamics of air-water flow in industrial applications through a lateral duct on each side of the chute; its mass [15–17].Zhang[18]carriedoutthree-dimensional(3D)mod- fluxismeasuredwithathermoelectricairflowanemometer. elling with the model. He focused on evaluations of such To measure the spatial distribution of air concentration parametersasthediameterofairbubble,wallfunction,and (denotedas𝐶),adual-tipfiber-opticalprobeisadoptedwith interphaseexchangemodels.Zhangetal.[19]performedtwo- asamplingfrequencyof1MHz.Itsmeasurementisbasedon dimensional(2D)simulationsusingthemodel,inwhichthe differentrefractionindicesbetweenthesapphiretipandthe turbulencedispersionforcewasincludedinthemomentum surroundingphase.Ifthetipsareintheairphase,thelight equations. They concluded that the inclusion of the turbu- onthetipsisreflectedanddetected.Otherwise,itis“lost”in lencedispersionforcegavebetterresultsofairconcentration thewaterphase.The𝐶valueateachpointisobtainedfrom intheflow,whichagreedwellwiththeexperimentaldata[20]. a period of typically 20s. The measurement points have a Physical model tests of an aerator were performed at streamwisespacingof0.2m;theintervalperpendiculartothe the Laboratory of Hydraulics, Hydrology, and Glaciology chutebottomis2to5mm. (VAW), ETH, Zurich [7, 8]. Based on its configurations, Fortheapproachflow,theWeberandReynoldsnumber CFD modelling is performed using the two-fluid model. isdefinedasWe=𝑉0/(𝜎/𝑔ℎ0)andRe=(𝑉0ℎ0)/𝜇𝑤,where𝜎 The simulations, time dependent and in 2D, examine the isthesurfacetensionand𝜇𝑤isthekinematicwaterviscosity. transport of air in the flow. Included in the study are Iftheyexceedtheminimumvalues,thatis,We=110andRe evaluationsofaircavitylength,air-entrainmentrate,andair =1.7×105,theeffectsofsurfacetensionandviscousforceare concentrationdistributions.Theeffectofbubblediameter,a negligible[21–25].Inthetests,We=236andRe=1.3×106, dominatingfactorinthetwo-fluidmodel,isalsoconsidered bothexceedingthelimits. on the momentum exchange between air and water. With regardtotheexperimentalresults,thepurposeofthestudyis 3.NumericalModel toevaluatethesuitabilityofthetwo-fluidmodelinsolution of the two-phase flow at the aerator and to learn about the Anumericalmodelwassetuptosimulatethewater-airflow air-waterfeaturesoftheflow. attheaerator.Thecomputationsarebasedonthetwo-fluid modelinANASYS15[26–28]. 2.PhysicalModel 3.1. Two-Fluid Model. The two-fluid model is based on the Euler-Euler approach. Both separate and interacting phases Theexperimentalsetofdatawasobtainedfromahydraulic areallowedtobemodelled.Inthemodel,thecontinuityand modeltestofanaeratorconductedinaflume0.3mwideand momentumequationsareformulatedforeachphase. 6.0mlongatVAW,ETH,Zurich(Figure1)[7].Oneaerator Thecontinuityequationforeachphaseis configuration,withoutoffsetbutwithadeflector,isselected for the numerical modelling (Figure2). The chute bottom 𝜕 ⇀󳨀 angleisset hereinto𝛼=30∘ withthehorizontalplane;the 𝜕𝑡(𝛼𝑖𝜌𝑖)+∇⋅(𝛼𝑖𝜌𝑖V𝑖)=0, (1) defectorangleis𝜑=8.13∘ withthechutebottom.Thechute lengthupstreamoftheaeratoris2.0m.Theheightofdefector wheresubscript𝑖 = 𝑎and𝑤,referringtotheairandwater (𝑠) is 0.0133m. The water depth of the approach flow is ℎ0 ⇀p󳨀hase,𝛼𝑖isthephasevolumefraction,𝜌𝑖isthephasedensity, = 0.084m. The approach flow Froude number is defined as V𝑖isthephasevelocity,and𝑡isthetime. ModellingandSimulationinEngineering 3 Ahppzroonaech flow z 0 V 0 Jet zone o z u S Fzaorn-fieeld 𝜑 R 𝛼 x Figure2:Aeratorconfiguration. Themomentumbalanceequationforeachphaseis If bubbles accelerate relative to the water, virtual mass effects occur. 𝑀V𝑚,𝑤 is due to the inertia of the water mass 𝜕 (𝛼𝜌⇀󳨀V )+∇⋅(𝛼𝜌⇀󳨀V⇀󳨀V ) encounteredbytheacceleratingbubbles[30],definedas 𝜕𝑡 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 (2) ⇀󳨀 ⇀󳨀 𝑑V 𝑑V =−𝛼∇𝑝+∇⋅⇀󳨀𝜏 +𝛼𝜌𝑔+𝐺+𝑀, 𝑀 =0.5𝛼 𝜌 ( 𝑤 − 𝑎). (8) 𝑖 𝑖 𝑖 𝑖 V𝑚,𝑤 𝑎 𝑤 𝑑𝑡 𝑑𝑡 where𝑝isthewaterpressure,𝜏𝑖 istheshearstress,𝐺isthe The virtual mass effect is significant when the secondary- interphase force, and 𝑀 is the interfacial force between air phasedensityismuchsmallerthantheprimary-phaseden- andwaterphase. sity. 𝐺dependsonwater-airfriction,pressure,cohesion,and 𝑀𝑡𝑑,𝑤actsasaturbulentdiffusionindispersedflowsand othereffectsandiswrittenasasimpleinteractiontermofthe isbasedondeBertodano[31]: followingform: ⇀󳨀 ⇀󳨀 𝑀𝑡𝑑,𝑤 =−𝑀𝑡𝑑,𝑎 =𝐾𝑡𝑑𝜌𝑤𝑘𝑤∇𝛼𝑎, (9) 𝐺𝑎𝑤 =𝐾𝑎𝑤(V𝑎− V𝑤), (3) where 𝑘𝑤 is the water turbulent kinetic energy per unit of where𝐾𝑎𝑤 =𝐾𝑤𝑎 =interphasemomentumexchangecoeffi- massand𝐾𝑡𝑑istheturbulencedispersioncoefficient. cientbetweenthewaterandtheairphase. 𝑀𝑙,𝑤actsonairbubblesmainlyduetovelocitygradients 𝑀consistsofseveralindependentforces: inthewaterflowfield.FromDrewandLahey[30],itiswritten as 𝑀=𝑀𝑑,𝑤+𝑀𝑙,𝑤+𝑀V𝑚,𝑤+𝑀𝑡𝑑,𝑤, (4) ⇀󳨀 ⇀󳨀 ⇀󳨀 𝑀𝑙,𝑤 =−𝐾𝑙𝜌𝑤𝛼𝑎(V𝑤− V𝑎)×(∇× V𝑤), (10) where𝑀𝑑,𝑤 isthedragforce,𝑀𝑙,𝑤 istheliftforce,𝑀V𝑚,𝑤 is thevirtualmassforce,and𝑀𝑡𝑑,𝑤istheturbulencedispersion where𝐾𝑙istheliftcoefficient. force. In the two-fluid model, the air phase is assumed to form bubbles. The viscous stress creates bubble skin drag; 3.2. Grid, Boundary Conditions, and Grid Independence. the pressure distribution around the bubble creates form The chute included in the simulations comprised 2.0 and drag.Thelatterbecomessignificantwhentherelativebubble 5.06mupstreamanddownstreamoftheaerator.Theupper Reynoldsnumber(Re𝑟)increases.𝑀𝑑,𝑤iswrittenas boundaryofthedomainisparalleltothechutebottomandat adistanceof1.2mfromit.Theheightofthetransversalgroove 𝑀 = 𝐾𝐷Re𝑟, (5) is𝐻=0.03m;theductwidthis𝐵=0.06m.Thebottomofthe 𝑑,𝑤 24 ductisopentoatmosphere,allowingairtobesuckedintothe jetcavity. where𝐾𝐷isthedragcoefficient.Re𝑟isobtainedfrom AquadrilateralmeshisgeneratedintheGambitsoftware. 𝜌𝑤󵄨󵄨󵄨󵄨󵄨⇀󳨀V𝑎−⇀󳨀V𝑤󵄨󵄨󵄨󵄨󵄨𝐷 ThFigeurgee3o.mThetericbaolunsidzaeryancdonnduitmioenrsicaarlegdreidfisneadreinshFoigwunrei4n. Re𝑟 = 𝜇 , (6) The upstream boundary consists of both water and air in 𝑤 height.Avelocityboundaryissettothewaterphasebelow; whereDisthebubblediameter.𝐾𝐷 isbasedontheSchiller apressureinlet(theatmosphericpressure)isgiventotheair andNaumannmodel[29]: phaseabovethewater.Boththetopandtheductbottomare specifiedaspressureinlet;thedownstreamboundaryissetas {{24(1+0.15Re𝑟0.687) pressureoutlet.Theotherboundariesaretreatedaswall. 𝐾𝐷 ={{ Re𝑟 Re𝑟 ≤1000 (7) usinSgimthuelasotiftownsaraereFlpueernfotrinmAedNiSnYS2D15.aZndhatnimg[e18d]epcoemndpeanrteldy {0.44 Re𝑟 >1000. the Standard 𝑘-𝜀 and Realizable 𝑘-𝜀 models for aerated 4 ModellingandSimulationinEngineering m 2 1. 2 m 5.06m B H (a) Entiredomain (b) Localrefinementattheaerator Figure3:Numericalgrid. Pressure inlet 1.5 Velocity inlet S1 S2 1.0 S3 S4 S5 Z S6 S7 0.5 Pressure inlet Pressure outlet Figure4:Numericalboundaryconditions. 0 0 0.5 1.0 flow.Theresultshaveshownthattherearesmalldifferences between them. However, the Realizable k-𝜀 model is more C suitable to represent features of turbulent free-surface flow Medium grid [32].Hence,itischoseninthesimulations.Theparameters Fine grid chosen for use in the two-fluid model are summarized in Coarse grid Table1. Figure5:Checkofgridindependence(atlocation𝑥=0.211m). To guarantee the numerical quality, a check of grid independence is necessary. Three quadrilateral grids are examined, with the number of cells being about 9900 (coarse),33000(medium),and66000(fine),respectively.The thechutebottom.Themainissuesofconcernformodelling, minimumcellsizeis1mmattheaerator.Thevariable𝑧𝑢refers eitherphysicalornumerical,includetheairdemand,cavity to the position corresponding to 𝐶 = 0.9 in the upper edge length,andairconcentrationinthecavityzone,attheendof of the nappe (Figure2). For the grid independence check, thecavityandinthefarfieldofthejet. the 𝐶 values are compared as a function of 𝑍 = 𝑧/𝑧𝑢. The Acoordinatesystem(𝑥,𝑧)isdefined.The𝑥-directionis comparison for location 𝑥 = 0.211m is shown in Figure5. onthechutebottom,whilethe𝑧-direction,perpendicularto Theresultsindicatethatthemediumsizegridissufficientto thechutebottom,isonthedownstreamfaceofthedeflector modeltheaeratorflow. (Figure2). Several cross sections, denoted as S1–S7 and all perpendicular to the chute bottom, are used to describe the flow (Table2). The distance between two neighboring 4.ResultsandDiscussions locationsis0.2m. The flow field is usually divided into three zones, that is, approach flow zone, air cavity zone, and far-field zone 4.1. Selection of Bubble Diameter. The air phase exists pre- (Figure2).Thelattertwozonesaredividedbythereattach- sumptively in the form of bubbles. The air-water exchange ment point (R), defined as the intersection of 𝐶 = 0.9 with behavior is a dominating issue in modelling aerator flow ModellingandSimulationinEngineering 5 Table1:Summaryofparametersinthetwo-fluidmodel. Turbulencedispersion Dragforcemodel Turbulencemodel Virtualmassforcemodel Liftforcemodel forcemodel SchillerandNaumann Realizable𝑘-𝜀 DrewandLahey deBertodano DrewandLahey Table2:Locationsofcrosssections. Table3:Comparisonof𝐿’sbetweenexperimentsandsimulations. S1 S2 S3 S4 S5 S6 S7 Simulations Experiments 𝑥(m) 0.211 0.411 0.611 0.811 1.011 1.211 1.411 𝐷=1mm 𝐷=2mm 𝐷=3mm 𝐷=4mm 𝐿(m) 1.120 1.175 1.161 1.152 1.155 andisinfluencedbythebubbledimensions.Inthetwo-fluid model,thisbehaviorisdescribedby𝐾𝑎𝑤: agreementwiththeexperimentalone;themaximaldifference 𝜌 𝑀 is5%for𝐷=1mm. 𝐾𝑎𝑤 = 𝑎6𝜏𝑑,𝑤𝐷𝐴, (11) Astheblack-watercorestretchestotheendofthecavity, 𝑎 theairsupplytotheaeratorisequaltotheairentrainedinto where𝐴istheinterfacialarea,𝜏𝑎=(𝜌𝑎𝐷2)/(18𝜇𝑎),and𝜇𝑎is t𝛽hereflsuolwtsfcroormrestphoenldoiwngertonathppeedisffuerrfeancet.𝐷Tavballeu4es.shWowiths tthhee theairkinematicviscosity. increaseof𝐷,the𝛽valuebecomessmaller.𝐷=1mmgives ChansonandToombes[33]carriedoutanexperimentin thelargestdifference;𝐷=4mmisclosertotheexperimental anopenchanneltostudyair-waterflowproperties.Theyindi- result,withanerrorof9%.Allthesimulationsoverestimate cated that the probabilityof air bubble chord sizes between the air demand. 𝐷 is a parameter that does affect the air 0and4mmintheflowregionismorethan65%.Takahashi entrainment. et al. [34] conducted a study of interactions between free- surface and cavity recirculation in a stepped channel. The resultsshowedthatthemajorityofbubblediametersisbelow 4.3.Cavity-ZoneAirConcentration. Airisentrainedintothe 5mm.Chenetal.[35]studiedbubblediameterdistributions waterbystrongemulsificationinthecavityzone,particularly in an aerated flow by means of physical model tests. They atitsendnearthereattachmentzone.Iftheaeratorgeometry showed that the bubble sizes are commonly in the range of isgiven,thestateofairentrainmentgovernstheaircapacity 0.5–3mm in the vicinity of the chute bottom and 3–5mm of the aerator, which forms an initial condition for the closetothefreesurface. streamwisetransportoftheairinthewater.Figure6shows In the VAW laboratory tests, no systematical measure- the𝐶distributionsasafunctionof𝑍forthefourlocations mentsweremadeoftheairbubblesizes.However,fragmen- S1, S2, S3, and S4 (Figure4). Each diagram compares the tarytestsdemonstratedthattheywereusuallybelow4mm. distributions between the experiments and the simulations. Withreferencetotheabovementionedobservations,𝐷=1,2, The𝐷valuesvaryfrom1to4mm. 3,and4mmareselectedtoexaminetheireffectsontheflow Fortheupperedgeofthenappe,thefour𝐷valueslead characteristics. toalmostidenticalresultsatS1anddifferhoweverfromthe experimental result; the range of the so-called black-water zoneisunderestimated.Asthestreamwisedistanceincreases 4.2. Cavity Length and Air Demand. When the water flows from the aerator, the simulated 𝐶 values corresponding to over the aerator, then the deflector separates the flow from the larger diameters decrease and approach gradually the thebottomandacavityregionbeneaththenappeofthejetis experimentalones.AtS4,theresultof𝐷=4mmisingood generated,inwhichairissuckedin.Thecavitylengthandthe agreementwiththeexperimentaldata. airsupplyaretwocharacteristicparametersofinterest.Due Fortheloweredgeofthenappe,thenumericalandtest tothehighvelocityandturbulence,awell-definedinterface results are more close to each other along the cavity. Some betweentheairandwaterdoesnotexistforthelowernappe smalldifferencesareseenfor𝐷=1mminthebeginningofthe surface. The cavity length, denoted as L (m), refers to the distance from the aerator to the reattachment point 𝑅 on cavity(e.g.,atS1)and𝐷=4mmtowardsdownstream(e.g., atS3andS4). thechutebottom(Figure2).Todescribetheair-entrainment capacity of an aerator, an air-entrainment coefficient (𝛽) is definedastheratioofairdischarge(𝑄𝑎,m3/s)towaterflow 4.4.LowerEdgeConcentrationSimilarity. Tofurtherexamine discharge(𝑄𝑤,m3/s). theairconcentrationofthelowernappeedge,acharacteristic Other conditions being given, the bubble diameter 𝐷 is thickness, called the air-entrainment thickness 𝛿, is usually a primary parameter in the two-fluid model. In literature usedtodescribeitsdevelopment[20,36].Foragivencross review,limitedinformationhasbeenfoundofitseffectson section,itreferstothedifferencebetween𝐶=30%and60%; the cavity length and the air demand. Table3 compares the thatis,𝛿=𝑧30−𝑧60.Anormalizedthickness,𝜂,isthendefined averagedresultsof𝐿fromtheexperimentsandthenumerical as𝜂 = (𝑧−𝑧60)/𝛿.Forthefourlocations,Figure7compares simulations. The simulated 𝐿 values are in relatively good thechangesofthe𝐶valuesasafunctionof𝜂. 6 ModellingandSimulationinEngineering Table4:Comparisonof𝛽’sbetweenexperimentsandsimulations. Simulations Experiments 𝐷=1mm 𝐷=2mm 𝐷=3mm 𝐷=4mm 𝑄𝑎(m3/s) 0.0393 0.0629 0.0550 0.0460 0.0430 𝛽 0.228 0.365 0.319 0.267 0.249 1.5 1.5 S1(x=0.211m) S2(x=0.411m) 1.0 1.0 Z Z 0.5 0.5 0 0 0 0.5 1.0 0 0.5 1.0 C C Experiments D=3mm Experiments D=3mm D=1mm D=4mm D=1mm D=4mm D=2mm D=2mm (a) CrosssectionS1 (b) CrosssectionS2 1.5 1.5 S4(x=0.811m) S3(x=0.611m) 1.0 1.0 Z Z 0.5 0.5 0 0 0 0.5 1.0 0 0.5 1.0 C C Experiments D=3mm Experiments D=3mm D=1mm D=4mm D=1mm D=4mm D=2mm D=2mm (c) CrosssectionS3 (d) CrosssectionS4 Figure6:𝐶distributions. ModellingandSimulationinEngineering 7 4 4 S1(x=0.211m) S2(x=0.411m) 2 2 𝜂 0 𝜂 0 −2 −2 −4 −4 0 0.5 1.0 0 0.5 1.0 C C Experiments D=3mm Experiments D=3mm D=1mm D=4mm D=1mm D=4mm D=2mm D=2mm (a) CrosssectionS1 (b) CrosssectionS2 4 4 S4(x=0.811m) S3(x=0.611m) 2 2 𝜂 𝜂 0 0 −2 −2 −4 −4 0 0.5 1.0 0 0.5 1.0 C C Experiments D=3mm Experiments D=3mm D=1mm D=4mm D=1mm D=4mm D=2mm D=2mm (c) CrosssectionS3 (d) CrosssectionS4 Figure7:Similarityof𝐶distributions. Figure8 is a plot of all the experimental 𝐶 values for 4.5.CavityEnd. Theaircontentatendofthecavityevolves the lower edge. The 𝐶 distributionsare similar for different from the air entrainment along the lower edge of the jet; locationsandcanbeassembledintotheexpressionsuggested at the same time, it reflects also the air contribution from byHager[37]: the backflow upstream of the reattachment point 𝑅 and its 𝐶(𝜂)=𝑚1exp(−𝑚2(𝜂+𝑚3)2), (12) inteSraeccttiioonnwSi5thisthloecjeatt’esdloawtetrheedgene.d of the cavity. Figure9 where𝑚1,𝑚2,and𝑚3areconstants,𝑚1=1.04,𝑚2=0.16,and compares,alongthewholecrosssection,the𝐶distributions 𝑚3=1.87. betweentheexperimentsandthemodelling.Figure10shows 8 ModellingandSimulationinEngineering 4 4 S5(x=1.011m) 2 2 𝜂 0 𝜂 0 −2 −2 −4 0 0.5 1.0 −4 C 0 0.5 1.0 C Experiments D=3mm D=1mm D=4mm S1 S4 D=2mm S2 Equation (12) S3 Figure10:Similarityof𝐶distributionatS5. Figure8:Similarityof𝐶distributionsforexperiments. thehighairconcentrationregionclosetothechutebottom 1.5 edgeisoverestimatedinthesimulations. S5(x=1.011m) 4.6. Far-Field Evolution. It is the aerated air bubbles close tothebottomthatprotectthechutebottomfromcavitation damage. It is therefore of practical significance to examine thestreamwisedevelopmentdownstreamofthereattachment 1.0 point𝑅.Itprovidesinformationwithrespecttotheeffective lengthofthechuteprovidedbytheaeratorinquestion. Z Figure11showsthe𝐶profilesattwotypicalcrosssections (S6andS7)inthefarfiled,thatis,thechangeof𝐶with𝑍.The 𝐶distributionsbehaveinasimilarmannerfortheexamined 0.5 𝐷range.Forboththeupperedgeandlowerboundaryofthe flow, 𝐶 is overestimated; all the simulations lead to a much larger𝐶valueclosetothechutebottom.Theaverage𝐶value ateachlocationiswellreproduced. 4.7. Discussions. As seen from (11), 𝐷 is a parameter that 0 0 0.5 1.0 affectsthediffusionbetweentheairandwater;themomen- C tum exchange becomes more intense with augment in 𝐷. In the simulations, 𝐷 is a constant value in the entire Experiments D=3mm computational domain. In actual situations, it may vary in D=1mm D=4mm D=2mm the different flow regions. In the approach flow, with the increaseofthesurfaceturbulence,airstartstobeentrained Figure9:𝐶distributionatS5. from the free surface at a location upstream of the aerator. Compared with the flow in the cavity zone, the turbulence intensityintheflowislow[6].Asaresult,theCdistribution thesimilarityprofileof𝐶,thatis,thechangeof𝐶asafunction oftheapproachflowmightstillbeoverestimatedevenwith of𝜂. thesmallestdiametersimulated(𝐷=1mm). From the experiments, one can see that the black- Previous model tests showed that the roughness of the water zone becomes small at S5 and is about to disappear surfacewaterincreasesalongthecavityzone[9].Thisimplies downstreamofit.Thethicknessoftheblackwaterisrelatively thattheexchangeofmomentumbetweenthewaterandair wellproduced;itspredictedpositionishoweverlower.Again, becomesstronger;alargerbubblediametershouldbeusedto ModellingandSimulationinEngineering 9 1.5 1.5 S7(x=1.411m) S6(x=1.211m) 1.0 1.0 Z Z 0.5 0.5 0 0 0 0.5 1.0 0 0.5 1.0 C C Experiments D=3mm Experiments D=3mm D=1mm D=4mm D=1mm D=4mm D=2mm D=2mm (a) CrosssectionS6 (b) CrosssectionS7 Figure11:𝐶distributionatS6andS7. describetheprocess.Thisisthereasonwhygoodagreement bubblediameteraffectstheamountofairentrainedintothe isobtainedfortheupperedgewith𝐷=4mm.Forthelower flow; the air flow rate from the 4mm simulations is close trajectory, the simulations show only small deviations from to the measured one. Along the cavity zone, the surface- the experiments. The turbulence intensity is high, but not waterroughnessincreases;asomewhatlargerbubblesizeis as high as that for the upper edge. The result is somewhat suitable to describe the exchange between the two phases. insensitiveto𝐷,butsmaller𝐷valuesthan4mmgivebetter Forthelowerjet trajectory,thesimulatedairconcentration resultsforthemajoritypartofthecavity. is relatively nonsensitive to the bubble size. However, sizes Inthefar-fieldzone,the𝐶valuesnearthechutebottom smallerthan4mmleadtoresultsclosertotheexperiments. areoverestimatedinthesimulations.KramerandHager[9] The air concentration in the far field is overestimated; the studiedtheairtransportprocessinchuteflows.Theypointed experiments showed lower air contents. The contributing out that air detrained after the reattachment point 𝑅 and reason is presumably the underestimation of the interfacial the interfacial force between bubbles and water dominated forces in the two-fluid model. Besides, the use of a single theprocessofdetrainmentinthezone.Thisimpliesthatthe bubble diameter is not sufficient to represent the complex effectsoftheinterfacialforcesareunderestimatedinthetwo- water-air exchange in the aerator flow but seems to be fluidmodel. adequateasafirststep. Notations 5.Conclusions 𝐴: Interfacialarea(m2) To model the air-water flow at an aerator is a challenging 𝑎𝑖: Constants(−) issue,especiallyifthewaterflowvelocityishigh,whichisthe 𝐵: Groovewidth(m) caseinmostspillwayinstallations.Basedontheexperimental 𝐶: Localairconcentration(−) data of ETH, Zurich, numerical simulations are performed 𝐷: Bubblediameter(mm) toreproducethecharacteristicsoftheaeratedflow.TheCFD 𝐹: Froudenumber(−) model is the two-fluid model in ANSYS 15; the parameters 𝐺: Interphaseforce(N) of interest include air concentration, cavity length, and air- 𝑔: Accelerationofgravity(m/s2) entrainmentrate.Thebubblediameteraffectsthemomentum 𝐻: Groovedepth(m) exchangebetweenthewaterandairandarangebetween1and ℎ0: Depthofapproachflow(m) 4mmisinvestigated. 𝐾𝑎𝑤: Interphasemomentumexchange Intermsofthecavitylength,theexperimentsandCFD coefficient(−) give similar results irrespective of the bubble size. The 𝐾𝐷: Dragcoefficient(−) 10 ModellingandSimulationinEngineering 𝐾𝑡𝑑: Turbulencedispersioncoefficient (CTH), and Uppsala University (UU) (http://www.svc.nu). (−) The authors are indebted to Ms. Sara Sandberg of SVC for 𝐾𝑙: Liftcoefficient(−) projectcoordinations. 𝑘𝑤: Waterturbulentkineticenergy(−) 𝐿: Cavitylength(m) References 𝑀: Interfacialforce(N) 𝑀𝑑,𝑤: Dragforce(N) [1] H. Falvey, Cavitation in Chutes and Spillways, Engineering 𝑀𝑙,𝑤: Liftforce(N) Monograph 42, United States Department of the Interior, 𝑀𝑡𝑑,𝑤: Turbulencedispersionforce(N) BureauofReclamation,Denver,Colo,USA,1990. 𝑀V𝑚,𝑤: Virtualmassforce(N) [2] P.VolkartandP.Rutschmann,“Rapidflowinspillwaychutes 𝑚1,𝑚2,and𝑚3: Constants(−) with and without deflectors a model-prototype comparison,” 𝑝: Waterpressure(N/m2) in Proceedings of the Symposium on Scale Effects in Modelling 𝑄𝑎: Airdischarge(m3/s) HydraulicResearch,EsslingenamNeckar,Germany,1984. 𝑄𝑤: Waterdischarge(m3/s) [3] H. Chanson, “Flow downstream of an aerator—aerator spac- Re: Reynoldsnumber(−) ing,”JournalofHydraulicResearch,vol.27,no.4,pp.519–536, Re𝑟: RelativeReynoldsnumber(−) 1989. 𝑠: Deflectorheight(m) [4] P.RutschmannandW.H.Hager,“Airentrainmentbyspillway 𝑡: Time(s) aerators,”JournalofHydraulicEngineering,vol.116,no.6,pp. ⇀⇀󳨀󳨀𝑉V0𝑖:: VAeplporcoitaychofflpohwasveel𝑖o(cmit/ys)(m/s) [5] 7[MP6.h5A–.D7..8K2do¨,isk1s9pe9irnt0aa.tri,oAni]r,-eDnetpraairntmmeennttionfhCigihvislpEenedgifnreeeersiunrgfa,cMeifldodwles ⇀󳨀V𝑎: Velocityofairbubble(m/s) EastTechnicalUniversity,Ankara,Turkey,1996. V𝑤: Velocityofwater(m/s) [6] K.Kramer,Developmentofaeratedchuteflow[Ph.D.disserta- We: Webernumber(−) tion],VAW,ETHZurich,Zurich,Switzerland,2004. 𝑥: 𝑥-coordinate(m) [7] M. Pfister and W. H. Hager, “Chute aerators. I: air transport 𝑍: Normalized𝑧-coordinate(−) characteristics,”JournalofHydraulicEngineering,vol.136,no. 𝑧: 𝑧-coordinate(m) 6,pp.352–359,2010. 𝑧30: 𝑧(m)at𝐶=30% [8] M. Pfister and W. H. Hager, “Chute Aerators. II: hydraulic 𝑧60: 𝑧(m)at𝐶=60% design,” Journal of Hydraulic Engineering, vol. 136, no. 6, pp. 𝛼: Chutebottomangle(∘) 360–367,2010. 𝛽: Air-entrainmentcoefficient(−) [9] K. Kramer and W. H. Hager, “Air transport in chute flows,” 𝜑: Deflectorangle(∘) InternationalJournalofMultiphaseFlow,vol.31,no.10-11,pp. 𝜎: Surfacetension(N/m) 1181–1197,2005. 𝛼𝑖: Volumefractionofphase𝑖(−) [10] C.W.HirtandB.D.Nichols,“Volumeoffluid(VOF)method 𝛼𝑎: Airvolumefraction(−) forthedynamicsoffreeboundaries,”JournalofComputational 𝜌𝑖: Densityofphase𝑖(kg/m3) Physics,vol.39,no.1,pp.201–225,1981. 𝜌𝑤: Waterdensity(kg/m3) [11] D. K. H. Ho, K. M. Boyes, and S. M. Donohoo, “Investiga- 𝜌𝑎: Airdensity(kg/m3) tionofspillwaybehaviorunderincreasedmaximumfloodby 𝜇𝑤: Kinematicwaterviscosity(m2/s) computationalfluiddynamicstechnique,”inProceedingsofthe 𝜇𝑎: Kinematicairviscosity(m2/s) Conferenceonthe14thAustralasianFluidMechanics,pp.577– 𝜏𝑖: Shearstressofphase𝑖(Pa) 580,AdelaideUniversity,Adelaide,Australia,December2001. 𝛿: Air-entrainmentthickness(m) [12] M.C.AydinandM.Ozturk,“Verificationandvalidationofa 𝜂: Normalizedair-entrainment computationalfluiddynamics(CFD)modelforairentrainment thickness(−). atspillwayaerators,”CanadianJournalofCivilEngineering,vol. 36,no.5,pp.826–836,2009. [13] J.-M. Zhang, J.-G. Chen, W.-L. Xu, Y.-R. Wang, and G.-J. CompetingInterests Li,“Three-dimensionalnumericalsimulationofaeratedflows downstreamsuddenfallaeratorexpansion-inatunnel,”Journal Nopotentialconflictofinterestswasreportedbytheauthors. ofHydrodynamics,vol.23,no.1,pp.71–80,2011. [14] V. Jothiprakash, V. V. Bhosekar, and P. B. Deolalikar, “Flow characteristics of orifice spillway aerator: numerical model Acknowledgments studies,”ISHJournalofHydraulicEngineering,vol.21,no.2,pp. 216–230,2015. The numerical modelling presented here was carried out [15] R. F. Mudde and O. Simonin, “Two- and three-dimensional as part of a Ph.D. Project “Hydraulic Design of Chute simulations of a bubble plume using a two-fluid model,” Spillway Aerators,” funded by Swedish Hydropower Centre Chemical Engineering Science, vol. 54, no. 21, pp. 5061–5069, (SVC). SVC has been established by the Swedish Energy 1999. Agency, Energiforsk, and Swedish National Grid together [16] S.M.Monahan,V.S.Vitankar,andR.O.Fox,“CFDpredictions with Lulea˚ University of Technology (LTU), Royal Institute forflow-regimetransitionsinbubblecolumns,”AIChEJournal, of Technology (KTH), Chalmers University of Technology vol.51,no.7,pp.1897–1923,2005.

Description:
Academic Editor: ShengKai Yu in the aerated flow, in which a two-fluid model is used. Zhang [18] carried out three-dimensional (3D) mod-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.