Hindawi International Journal of Antennas and Propagation Volume 2017, Article ID 3687293, 11 pages https://doi.org/10.1155/2017/3687293 Research Article A Time Modulated Printed Dipole Antenna Array for Beam Steering Application RuchiGahley1andBananiBasu2 1DepartmentofElectronicsandCommunicationEngineering,ThaparUniversity,Patiala147004,India 2DepartmentofElectronicsandTelecommunicationEngineering,NationalInstituteofTechnology,Silchar788010,India CorrespondenceshouldbeaddressedtoBananiBasu;basu [email protected] Received5October2016;Revised18December2016;Accepted4January2017;Published16February2017 AcademicEditor:SotiriosK.Goudos Copyright©2017RuchiGahleyandBananiBasu. This is an open access article distributed under the Creative Commons AttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkis properlycited. Thispaperpresentstimemodulatedbeamsteeredantennaarraywithoutphaseshifters.Thebeamsteeringisanalyzedconsidering a two-element time modulated antenna array (TMAA) of printed dipoles with microstrip via-hole balun. The proposed array resonatesattheIndustrial,Scientific,andMedical(ISM)radiobands,2.45GHzand5.8GHz,andofferswidebandwidthinherited duetomodifiedstructureofgroundplane.Arrayelementsareexcitedbycomplexexponentialexcitationsignalthroughbroadband powerdividerandradiofrequency(RF)switchestoachieveamplitudeandphasevariationwithoutphaseshifters.Differential EvolutionalgorithmisusedtomodifythetimesequencesoftheRFswitchesconnectedtotheantennastogenerateradiationpattern withoptimumdynamicefficiencybysuppressingsidebandradiations.Alsoswitch-ontimeinstantofRFswitchconnectedtothe subsequentelementismodulatedtosteerthebeamtowardsdifferentdirections.Theproposedprototypeisfabricatedfollowedby parametricoptimization.Thefabricationresultsagreesignificantlywellwithsimulatedresults. 1.Introduction Differenttimesequences[4–7]wereusedtocontroltheRF switching. Different optimization strategies have been used Antennaarraysarewidelyusedincommunicationsystemsto in TMAA to synthesize its radiated power pattern [8, 9] obtain desired radiation characteristics. Various techniques to realize beam steering [10], beam forming [11–14], null forsynthesizingarraysareavailableinliterature[1].Phased synthesis [15, 16], and direction finding [17] without using arrayantennasarewidelyusedforconventionalbeamscan- conventionalphaseshifters.ApplicationofTMAAincogni- ning,beamsteering,andadaptivebeamformingapplications tiveradiohasbeenanalyzedin[14].In[18],TMAAshasbeen byadaptingtheexcitationamplitudeandphasedistribution applied to achieve directional modulation for secure com- [2].Thelimitationsassociatedwiththephasedarrayantenna munication. Printed antenna owing to variety of beneficial togenerateradiationpatternswithvariousstringentdesign- propertiesincludinglightweight,lowprofile,andlowcosthas ingconstraintsarecost,size,powerconsumption,andhigh becomeexplosivelypopularandwidelyinvestigatedinarti- complexity.Asubstantialamountofeffortshasbeendevoted cles[19–22].Widebandprintedantennasutilizedinmodern to develop low cost highly reliable phased array antenna wireless communication systems are presented in [23–27]. sinceearly1960s.Timemodulationappliedtolinearantenna TMAAasaversatileadequateradiationsystemformodern array is a technique to adapt its radiated power pattern by wireless applications has increased significantly over recent periodically enabling and disabling the excitations of the past. individual array elements [3]. Since early 2000s there has ThepresentedarticleproposesTMAAofprinteddipoles beenrenewedinterestintakinguptheinvestigationsonthis for beam steering without using phase shifters. The tra- fieldduetothearrivalofthehighperformanceRFswitches. ditional printed dipoles using novel U-shaped ground 2 InternationalJournalofAntennasandPropagation Control signal from Control signal from CPLD test board (fp) RF RF CPLD test board (fp) switch switch Complex exponential signal RF IN Figure1:SimplifiedblockdiagramoftheproposedTMAA. planeandquarterwavelengthmicrostripvia-holebalunare Here𝑓0 ≫𝑓𝑝(𝑓𝑝 =1/𝑇𝑝,𝑇𝑝istheTMperiod).𝛽=2𝜋/𝜆 designed at 2.45GHz and 5.8GHz inspired by [20]. Intro- isthefreespacewavenumber,𝜆=𝑐/𝑓0isthewavelength,and duction of the U-shaped ground plane reflects the electro- 𝑐isthespeedoflightinfreespace. magneticwavestowardsthefeedingdirection.Itimprovesthe {𝑈 (𝑡), rtievfleelycttihonancotheffieVci-esnhtaapneddbsrtoruadcteunrsethuesebdanindw[2i0d]t.hThmoerdeiepffoelecs- 𝐼𝑛(𝑡)={{𝑈𝑛𝑛(𝑡)𝑒−𝑗2𝜋𝑓𝑝𝑡, for 𝑛=1,2. (2) are connected through a broadband power divider ranging from 2.1GHz to 7GHz and PIN diode single pole single 𝑈𝑛(𝑡) is the time switching function of the RF switches throwRFswitches.DEisappliedtoobtainthetimesequence modellingtheperiodicon-offtimeoftheswitches.Thus to suppress the side band power level (SBL). Applicationof {1, 𝑘𝑇 +𝑡 ≤𝑡≤𝑘𝑇 +𝑡 +𝜏 , complexexponentialsignalsteersthebeamtowardsdifferent 𝑈𝑛(𝑡)={ 𝑝 on 𝑝 on 𝑛 (3) directions as the switching time sequences of RF switches {0, otherwise. are modulated. Article [12] has simulated a beamforming network for TMLA using Artificial Bees Colony algorithm. 𝜏𝑛 are the switch-on duration of the RF switches con- Howeverthepresentarticlehassuccessfullyimplementedthe nected to 𝑛th element and 𝑘 is an integer. Due to the designstructureofdualbandTMbeamsteeredarrayusing periodicity of the modulating pulse functions 𝐼𝑛(𝑡) can be DE. decomposed into Fourier series with different frequency components,givenby The antenna structure is rigorously optimized through simulation using CST microwave studio to realize wide ∞ bandwidthresponsesatthetwoproposedresonances.Exper- 𝐼𝑛(𝑡)= ∑ Γ𝑛(𝑚)𝑒𝑗2𝜋𝑚𝑓𝑝𝑡, (4) 𝑚=−∞ imental testing of the fabricated antenna array shows good agreThemeernetstwoifththtehepaspimeruilsatoerdgarnesizueltds.asfollows.Theproblem Γ1⟨𝑚⟩(𝑡)= 𝑇1 ∫𝑇𝑝𝑈𝑛(𝑡)𝑒−𝑗2𝜋𝑚𝑓𝑝𝑡𝑑𝑡, (5) 𝑝 0 ismathematicallyformulatedinSection2.Section3provides tThMeAoAutlairneedoefscDribEe.dThineSdecetsiiognn4s.pAecsiefitcoatfinounms eorficparlorpeosuseltds Γ2⟨𝑚⟩(𝑡)= 𝑇1 ∫𝑇𝑝𝑈𝑛(𝑡)𝑒−𝑗2𝜋(𝑚+1)𝑓𝑝𝑡𝑑𝑡, (6) 𝑝 0 is reported and discussed in Section 5. Finally the paper is concludedinSection6. Γ⟨𝑚⟩ = 𝜏𝑛 sin(𝜋𝑚𝑓𝑝𝜏𝑛)𝑒−𝑗𝜋(𝑚+𝑛−1)𝑓𝑝(2𝑡on+𝜏𝑛). (7) 𝑛 𝑇 𝜋𝑚𝑓 𝜏 2.TheoreticalBackground 𝑝 𝑝 𝑛 Underthehypothesesthat𝑓𝑝 ≪ 𝑓0andΔ𝑓𝑠 < 𝑓𝑝,where Consider an array of two collinear dipoles with spacing 𝑑 Δ𝑓𝑠 is the maximum bandwidth of the received signals, the positioned along the 𝑧-axis as shown in Figure 1. Both the signalattheworkingfrequency𝑓0 canbethenextractedby arrayelementsareexcitedusingacomplexexcitationsignal filteringouttheSRandeventuallythereceivedsignalturns 𝑒−𝑗2𝜋𝑓𝑝𝑡 and controlled by a high-speed RF switch having outatinfinitenumberofharmonictermsspacedat𝑚𝑓𝑝(𝑚∈ 𝑓𝑝. When a plane wave of frequency 𝑓0 is incident at an 𝑍)from𝑓0.Accordingly,thearrayfactorat𝑓0turnsouttobe angle 𝜃 with respect to the normal of the array, the far 2 𝜏 field pattern of the array considering the element pattern 𝐹⟨0⟩(𝜃)=𝑒𝑗2𝜋𝑓0𝑡∑ 𝑛𝑒−𝑗𝜋(𝑛−1)𝑓𝑝(2𝑡on+𝜏𝑛)𝑒𝑗𝛽𝑛𝑑cos𝜃, 𝑇 is 𝑛=1 𝑝 (8) 𝐹(𝜃)=𝑒𝑗2𝜋𝑓0𝑡∑2 𝐼𝑛(𝑡)𝑒𝑗𝛽𝑑𝑛cos𝜃[cos((𝜋si/n2)𝜃cos𝜃)]. (1) 𝐹⟨𝑚⟩(𝜃)=𝑒𝑗2𝜋𝑓0𝑡∑2 Γ𝑛⟨𝑚⟩(𝑡)𝑒𝑗𝛽𝑛𝑑cos𝜃. 𝑛=1 𝑛=1 InternationalJournalofAntennasandPropagation 3 Via hole L 2 W 1 L p W p g W b L g G ℎ d Microstrip via hole SMA W g (a) L L3 Top L2 W L1 W2 W3 W4 W1 R R R Bottom (b) (c) (d) (e) Figure2:ElementsoftheTMAA:(a)configurationoftheantennaarray;(b)prototypeoftheantennaarray;(c)configurationofthepower divider;(d)prototypeofthepowerdivider;(e)prototypeoftheRFswitchandCPLDtestboard. Theaveragepowerdensityradiatedbythearrayover𝑇𝑝 Thususing(8),weevaluatetheexpressionofthepower radiatedatcentralfrequency(𝑃0)andatthesidebands(𝑃SR) 𝑆(𝜃)= 𝑇1𝑝 ∫−𝑇𝑇𝑝𝑝//22[Re⟨𝐹(𝜃)⟩]2𝑑𝑡. (9) 𝑃0 =2𝜋∑2 (𝑇𝜏𝑛)2, 𝑛=1 𝑝 Sothetotalpowerradiatedcanbecalculatedusing (11) 2𝜋 𝜋 𝑃 =2𝜋∑2 𝜏𝑛 (1− 𝜏𝑛). 𝑃(𝜃)=∫ ∫ 𝑆(𝜃)sin𝜃𝑑𝜃𝑑𝜙. (10) SR 𝑇 𝑇 0 0 𝑛=1 𝑝 𝑝 4 InternationalJournalofAntennasandPropagation 0 −3 −3.5 −5 −4 B) B) d −10 d −4.5 meter ( −15 meters ( −5−.55 -paraS −−2250 -paraS −6−.56 −7 −30 −7.5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Frequency (GHz) Frequency (GHz) S11simulated S11measured S21 S simulated S measured S 21 21 31 S simulated S measured 31 31 (a) (b) 200 ees) 150 gr de 100 n e i 50 has 0 p ers ( −50 et −100 m ara −150 p -S −200 1 2 3 4 5 6 7 8 Frequency (GHz) S21 S 31 (c) Figure3:(a)Simulatedandmeasuredscatteringparametersofpowerdivider.(b)Magnitudeofsimulated𝑆21and𝑆31parameter.(c)Phase ofsimulated𝑆21and𝑆31parameter. Sothedynamicefficiencyofthearrayis 3.DifferentialEvolution 𝜏2+𝜏2 Differential Evolution (DE) proposed by Storn and Price 𝜂= 𝑇 (𝜏 +1𝜏 )−2𝜏2−𝜏2. (12) [28,29]iswellknownpopulationbasedsimpleandefficient 𝑝 1 2 1 2 method for global optimization. DE algorithm consists of thefollowingbasicsteps:initialization,mutation,crossover, In order to suppress the SLL and enhance the dynamic selection,andtermination. efficiency,theDEalgorithmisappliedastheglobaloptimiza- tionmethod.Toachievethedesigngoalthefollowingfitness (1) Initialization of Population. DE searches for a global functionisformulatedforminimizationoveriterationsusing optimumwithinacontinuoussearchspaceofdimension𝐷. DE Generate𝐾 𝐷–dimensionalpopulationoftargetvectorsfor 1 eachgeneration𝐺. Fitness(𝑡on,𝜏𝑛)=𝑘1SLL+𝑘2(𝜂), (13) 𝐴⃗ =[𝑎1 ,𝑎2 ,𝑎3 ,...,𝑎𝐷], 𝑖,𝐺 𝑖,𝐺 𝑖,𝐺 𝑖,𝐺 𝑖,𝐺 (14) where 𝑖=1,2,3,...,𝐾. while SBL at the first sideband is not allowed to rise beyond −25dB. The constants 𝑘1 and 𝑘2 are the corre- Targetvectorswithbetterresultsmaybefoundinadefinite sponding weighing factors of SLL and dynamic efficiency, regionofsearchspacewithmaximumandminimumbounds respectively.Inthedesigningproblem,equalweightage(𝑘1 = ineachdimensionas 𝑘2 = 1) of both the parameters is considered. The switch- 𝐴⃗ =[𝑎1 ,𝑎2 ,...,𝑎𝐷 ], on time (𝑡on) and switch-on duration (𝜏𝑛) of each element max max max max (15) areconsideredaspopulationvectorsandvariedinorderto 𝐴⃗ =[𝑎1 ,𝑎2 ,...,𝑎𝐷 ]. minimizethefitnessfunction. min min min min InternationalJournalofAntennasandPropagation 5 0 0 −5 −5 meter (dB) −10 meter (dB) −−1150 -paraS −−2105 -paraS −−2250 −25 −30 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Frequency (GHz) Frequency (GHz) d=2mm d=5mm Gℎ=6mm Gℎ=12mm d=3mm d=6mm Gℎ=8mm Gℎ=14mm d=4mm Gℎ=10mm (a) (b) 0 −5 −10 B) −15 d er ( −20 et −25 m a −30 par −35 -S −40 −45 −50 0 1 2 3 4 5 6 7 8 Frequency (GHz) g=1mm g=2.5mm g=1.5mm g=3mm g=2mm (c) Figure4:Optimizedreturnlossofantennaarray:(a)𝑆11fordifferent𝑑;(b)𝑆11fordifferent𝐺ℎ;(c)𝑆11fordifferent𝑔. 0 −5 B) d −10 er ( et −15 m a ar −20 p -S −25 −30 0 1 2 3 4 5 6 7 8 Frequency (GHz) Measured Simulated Figure5:Simulatedandmeasuredreturnlossofantennaarray. The𝑗thcomponentofthe𝑖thvectorisinitializedas (2)Mutation.Afterinitialization,adonorvector𝑀⃗𝑖,𝐺corre- 𝑎𝑗 =𝑎𝑗 +rand𝑗(0,1)⋅(𝑎𝑗 −𝑎𝑗 ), sponding to best population member 𝐴⃗best,𝐺 in the current 𝑖,0 min 𝑖 max min generationiscreatedthroughmutation. (16) 𝑗∈{1,2,3,...,𝐷}, 𝑀⃗𝑖,𝐺=𝐴⃗best,𝐺+𝐹⋅(𝐴⃗𝑟𝑖,𝐺−𝐴⃗𝑟𝑖,𝐺). (17) 1 2 whererand𝑗(0,1)isauniformlydistributedrandomnumber Theindices𝑟𝑖 and𝑟𝑖 aremutuallyexclusiveintegersandran- 𝑖 1 2 lyingbetween0and1. domlychosenfromtherange(1,2,...,𝐾).𝐹iscalledscaling 6 InternationalJournalofAntennasandPropagation (dBV/m2) −56.4 3 −62.6 2 10 −66.4 8 6 n −70.1 1 er 4 n patt 2 −73.9 o 0 0 diati −2 −81.4 a R −4 −6 −88.9 −1 −8 3 −96.4 2 3 −2 1 2 0 1 Y −1 0 −1 −2 −2 X −3 −3 −3 −3 −2 −1 0 1 2 3 (a) 3Dradiationpatternplot (b) Contourplot Figure6:Optimizedradiationpatternatcentrefrequency2.45Ghz. (dBV/m2) −37.7 10 −44 8 −47.7 6 n 3 er 4 patt 2 −51.5 n 2 atio 0 −59 di −2 Ra −4 −62.7 1 −6 −8 −70.3 0 3 2 −77.7 3 −1 1 2 0 1 Y −2 −1 0 −1 −2 X −2 −3 −3 −3 −3 −2 −1 0 1 2 3 (a) 3Dradiationpatternplot (b) Contourplot Figure7:Optimizedradiationpatternatcentrefrequency5.8Ghz. factorwhichwillbetunedaccordingtothefitnessfunction the trial vector of the same index denoted as 𝑇𝑖⃗,𝐺 = generatedbyeachvector.𝐴⃗best,𝐺isthebestindividualvector [𝑡𝑖1,𝐺,𝑡𝑖2,𝐺,𝑡𝑖3,𝐺,...,𝑡𝑖𝐷,𝐺].Thetrialvectorcreatedis withminimumfitnessvalueinthepopulationatgeneration 𝐺(3.) Crossover. In crossover operation the donor vector 𝑡𝑖𝑗,𝐺={{𝑚𝑖𝑗,𝐺, if (rand𝑗𝑖 (0,1)≤CR or 𝑗=𝑗rand), (18) mixes its components with the target vector 𝐴⃗𝑖,𝐺 to obtain {𝑎𝑖𝑗,𝐺, otherwise, InternationalJournalofAntennasandPropagation 7 B) 0 d n ( −10 atter −20 n p −30 o ati −40 di a −50 d r e −60 z mali −70 Nor −80 −200 −150 −100 −50 0 50 100 150 200 Theta (degree) 2.45GHz (f) 2.45GHz−1f 0 p 2.45GHz+1f p Figure8:Radiationpatternatcentrefrequency2.45Ghzandsidebands. B) 0 d n ( −10 er att −20 p on −30 ati di −40 a d r −50 e z ali −60 m Nor −70 −200 −150 −100 −50 0 50 100 150 200 Theta (degree) 5.8GHz (f) 5.8GHz−1f 0 p 5.8GHz+1f p Figure9:Radiationpatternatcentrefrequency5.8Ghzandsidebands. where CR is the crossover rate belongs the interval (0,1). ontheFR4dielectricmaterialofdielectricconstant4.4and 𝑗rand ∈ [1,2,...,𝐷] is a randomly chosen index which thickness 1.6mm. The configurations and prototype of the differentiate trial vector 𝑇𝑖⃗,𝐺 from its corresponding target antenna array and power divider are shown in Figure 2 vector𝐴⃗𝑖,𝐺. adnimdetnhseiodnimofenthsieonasntaernenparaerseranyteids i1n36Tmabmle×1.3Th7memov.eThralel (4) Selection. Selection is introducedto determine which of RF switch is realized by connecting a series capacitor, 10nf thetargetortrialvectorssurvivestothenextgeneration.If before and after the pin diode, BAR63-02. Capacitors are the fitness value of the trial vector is equal to or less than connectedtoprovidetheRFconnectivityandtopreventthe thatofthecorrespondingtargetvectorthenthetrialvector dc.TheprototypeoftheRFswitchisshown inFigure2(e). isselectedfornextgeneration;otherwisethetargetvectoris A rectangular pulse train of 3V at a repetition frequency selectedfornextgeneration. of 1MHz is applied to bias the PIN diode. The CPLD test board (Figure 2(e)) is programmed to generate the (5)Termination.Ifterminationconditionisnotsatisfiedthe desiredrectangularpulseandcanbetunedfordifferenttime executionisreturnedtoStep(2);otherwiseitisterminated. sequences.Theantennaarray,RFswitches,andpowerdivider are connected through 50Ω SMA male/female connectors. ThecomplexexponentialsignalandRFsignalsareprovided 4.PrototypeDesign throughthesignalgeneratorandRFsource. A prototype of the overall system is implemented and presented in this section. The overall system consists of 2- 5.ResultsandDiscussion element printed dipole antenna array, RF switches, pulse generator, power divider, and an analog multiplier. The The proposed steering technique is experimented with an antenna array, power divider, and RF switches are printed array prototype comprising of two microstrip fed printed 8 InternationalJournalofAntennasandPropagation Table1:Structuralparametersofdipoleantennaarrayandpowerdivider. Dipoleantennaarray(136mm×37mm) Powerdivider(41mm×30mm) Partofdipole Parameter Dimension Parameter Dimension Thickness 1.6mm Substratethickness 1.6mm PCBsubstrate 𝜀𝑟 4.4 𝜀𝑟 4.4 tan𝛿 0.0018 tan𝛿 0.0018 𝑑 2mm 𝐿 41mm 𝐺ℎ 6mm 𝑊 30mm Groundplane 𝐿𝑔 10mm 𝐿1 12.56mm 𝑊𝑔 15mm 𝐿2 19mm 𝐿𝑝 13mm 𝐿3 4mm 𝑊𝑝 5mm 𝑊1 4mm 𝐿 16mm 𝑊2 3.057mm Dipolearm 𝑊 6mm 𝑊3 3.83mm Microstripbalun 𝑊𝑏 3mm 𝑊4 2.947mm Via-holeradius 1mm 𝑅 100Ω 90 90 0 120 60 0 120 60 −5 −10 150 30 −10 150 30 B) −20 B) −15 e (d −30 e (d −20 ud 180 0 ud −25 180 0 mplit −30 agnit −20 A −20 M −15 210 330 −10 210 330 −10 −5 0 240 300 0 240 300 270 270 Simulated Simulated Measured Measured (a) (b) 90 90 0 120 60 0 120 60 −5 −5 −10 150 30 −10 150 30 B) −15 B) −15 e (d −20 e (d −20 ud −25 180 0 ud −25 180 0 mplit −20 agnit −20 A −15 M −15 −10 210 330 −10 210 330 −5 −5 0 240 300 0 240 300 270 270 Simulated Simulated Measured Measured (c) (d) Figure10:Simulatedandmeasuredradiationpatternfordifferentvaluesof𝑡02 at2.45GHz.(a)𝑡02 = 0𝜇sec.(b)𝑡02 = 0.125𝜇sec.(c) 𝑡02=0.25𝜇sec.(d)𝑡02=0.375𝜇sec. InternationalJournalofAntennasandPropagation 9 90 90 0 0 120 60 120 60 −5 −5 −10 150 30 150 30 B) −15 B) −10 d d e ( −20 e ( ud 180 0 ud −15 180 0 plit −20 plit m −15 m −10 A A −10 210 330 210 330 −5 −5 0 240 300 0 240 300 270 270 Simulated Simulated Measured Measured (a) (b) 90 0 120 60 −5 −10 150 30 −15 B) e (d −20 ud −25 180 0 plit −20 m A −15 −10 210 330 −5 0 240 300 270 Simulated Measured (c) Figure11:Simulatedandmeasuredradiationpatternfordifferentvaluesof𝑡02at5.8GHz.(a)𝑡02 = 0𝜇sec.(b)𝑡02 = 0.125𝜇sec.(c)𝑡02 = 0.375𝜇sec. dipoles for dual band operation at 2.45GHz and 5.8GHz, layer are rigorously studied in order to obtain optimized as shown in Figure 2. The structure of the printed dipoles designparameters,asshowninFigure4.Theprototypeofthe is designed to provide good impedance matching over the antennaarrayisfabricatedandpresentedinFigure5.Theon operatingfrequencybands.Thefeednetworkoftheproposed stateinsertionlossandoffstateisolationoftheRFswitchare TMAA is composed of an ultra-wideband power divider studiedandfound0.6dBand25dB,respectively.Thereturn covering2.1GHzto7GHz(Figure3(a))andRFswitches.The lossandbandwidthofproposedprototypeTMAAatboththe antenna, power divider, and RF switch are optimized using frequenciesaretabulatedinTable2. EM simulator and CST microwave studio and tested using Firstly,theontimeduration(𝜏𝑛)andswitch-oninstance theNetworkAnalyzerE5071CofAgilentTechnologies.The (𝑡on) of the rectangular pulses applied to RF switches are prototypeofthepowerdividerisfabricatedandthescattering optimizedusingDEinordertoobtainradiationpatternwith parametersarepresentedinFigure3.Figure3(b)showsthat suppressedSLLandenhanceddynamicefficiencyatboththe the magnitude of 𝑆21 and 𝑆31 is marginally deviated from operating frequencies. To achieve 𝜂 ≥ 98%, the optimized −3dB ensuring almost equal power division at 2.45GHz. timesequencesoftheinputpulsetrainaresetat𝜏1 =0.6035, However itbecomesalmost−4.5dBat 5.8GHz. Figure3(c) 𝜏2 = 0.2548, 𝑡01 = 0, and 𝑡02 = 0.1226 using programmed presentsasmallphasedifferencebetweenport2andport3 CPLDtomodulatetheinputexcitationaccordingto(7).The overthebandwidthandensuresalmostequalpowersplitting. radiation pattern obtainedusing time modulated excitation The structure of front and the back side of the broadband distribution is shown in the corresponding contour and powerdividerisidenticalallowingequalcurrentdistribution CartesianplotgiveninFigures6,7,8,and9at2.45GHzand atbothsides.Thedimensionsofthegroundplane,𝑑and𝐺ℎ, 5.8GHz,respectively.TheDEoptimizedsimulatedradiation and the gap 𝑔 between the two arms of the bottom ground patterns,presentedinFigures8and9,confirmthattheSBL 10 InternationalJournalofAntennasandPropagation Table2:Resultsofproposedprototypeantennaarray. Prototype Frequency Parameter Simulatedvalue Measuredvalue 2.5GHz 𝑆11 −25.28dB −20.2dB Bandwidth 1.21GHz 1.2GHz ProposedarrayoftwoprinteddipoleswithU-shapedground 5.8GHz 𝑆11 −19.33dB −16.99dB Bandwidth 1.11GHz 1.02GHz Table3:DesiredandobtainedSLL. References Designparameter Sidelobelevel(dB) [1] W.L.StutzmanandG.A.Thiele,AntennaTheoryandDesign, Desired Obtained Wiley,Hoboken,NJ,USA,3rdedition,2013. 2.45GHz [2] R.J.Mailloux,PhasedArrayAntennaHandbook,ArtechHouse, 𝑓0(2.45GHz) −8 −7.1 Norwood,Mass,USA,2ndedition,2005. 𝑓0+𝑓𝑝(2.451GHz) ≤−25 −26.28 [3] B. Basu and G. K. Mahanti, “Beam reconfiguration of linear 𝑓0−𝑓𝑝(2.449GHz) NA −68.34 array of parallel dipole antennas through switching with real excitation voltage distribution,” Annales des Telecommunica- 5.8GHz tions/Annals of Telecommunications, vol. 67, no. 5-6, pp. 285– 𝑓0(5.8GHz) −8 −7.68 293,2012. 𝑓0+𝑓𝑝(5.801GHz) ≤−25 −24.53 [4] Q.Zhu,S.Yang,L.Zheng,andZ.Nie,“Designofalowsidelobe 𝑓0−𝑓𝑝(5.799GHz) NA −48.142 timemodulatedlineararraywithuniformamplitudeandsub- sectionaloptimizedtimesteps,”IEEETransactionsonAntennas andPropagation,vol.60,no.9,pp.4436–4439,2012. are lowered significantly at the first two sidebands for both [5] Y.TongandA.Tennant,“Sidebandlevelsuppressionintime- the cases. Table 3 gives the desired and obtained values of modulated linear arrays using modified switching sequences andfixedbandwidthelements,”ElectronicsLetters,vol.48,no. SLL and SBL of the radiation patterns, shown in Figures 8 1,pp.10–11,2012. and9atcentrefrequencyaswellasfirsttwosidebands.The beamsteeredpolarradiationpatterns(𝐸plane)atthecentre [6] E. T. Bekele, L. Poli, P. Rocca, M. D’Urso, and A. Massa, “Pulse-shaping strategy for time modulated arrays—analysis frequencies without considering SLL constraints are shown and design,” Institute of Electrical and Electronics Engineers. in Figures 10 and 11. In this case, the input pulse train are Transactions on Antennas and Propagation, vol. 61, no. 7, pp. set at 𝜏1 = 1, 𝜏2 = (1 − 𝑡02), 𝑡01 = 0, and 𝑡02 is calculated 3525–3537,2013. using(7)tosteerthemainbeamatdifferentdirectionsand [7] A.-M. Yao, W. Wu, and D.-G. Fang, “Single-sideband time- implemented with the programmed CPLD. To ensure the modulatedphasedarray,”IEEETransactionsonAntennasand flawless radiation pattern, the measurements are taken in a Propagation,vol.63,no.5,pp.1957–1968,2015. shieldedsurrounding. [8] M.A.Mangoud,H.M.Elragal,andM.T.Alshara,“Designof timemodulatedconcentriccircularandconcentrichexagonal 6.Conclusion antennaarrayusinghybridenhancedparticleswarmoptimi- sation and differential evolution algorithm,” IET Microwaves, A prototype TMAA using printed dipoles operating at AntennasandPropagation,vol.8,no.9,pp.657–665,2014. 2.45GHz and 5.8GHz is proposed forbeam steering. Para- [9] J.Euziere,R.Guinvarc’h,B.Uguen,andR.Gillard,“Optimiza- metric optimization of the proposed array utilizing mod- tionofsparsetime-modulatedarraybygeneticalgorithmfor ified ground structure is done to obtain wider impedance radar applications,” IEEE Antennas and Wireless Propagation Letters,vol.13,pp.161–164,2014. bandwidth. A complex exponential signal applied through the power divider and PIN diode RF switches are used to [10] J.Yang,W.Li,andX.Shi,“Phasemodulationtechniqueforfour- dimensionalarrays,”IEEEAntennasandWirelessPropagation excite the phase differences between dipoles. DE has been Letters,vol.13,pp.1393–1396,2014. used to suppress the sideband radiations increasing the [11] Y. Tong and A. Tennant, “A two-channel time modulated dynamicefficiencyoftheradiationpatternsteeredatdifferent lineararraywithadaptivebeamforming,”IEEETransactionson directions. The modulation of the switching sequences of AntennasandPropagation,vol.60,no.1,pp.141–147,2012. the rectangular pulses controls the relative phase difference [12] R. Ruchi, A. Nandi, and B. Basu, “Design of beam forming betweenelementsandsteersthebeamindifferentdirections network for time-modulated linear array with artificial bees withoutphaseshifter.Experimentalvalidationconfirmsthe colony algorithm,” International Journal of Numerical Mod- effectiveness of the proposed technique over conventional elling:ElectronicNetworks,DevicesandFields,vol.28,no.5,pp. phasedarrayantenna. 508–521,2015. [13] C.He,X.Liang,B.Zhou,J.Geng,andR.Jin,“Space-division CompetingInterests multipleaccessbasedontime-modulatedarray,”IEEEAntennas andWirelessPropagationLetters,vol.14,pp.610–613,2015. The authors declare that there is no conflict of interests [14] P. Rocca, Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, “4-D regardingthepublicationofthispaper. arraysasenablingtechnologyforcognitiveradiosystems,”IEEE
Description: