ebook img

repulsive-force electrostatic actuated micromirror for vector-based display systems PDF

147 Pages·2011·14.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview repulsive-force electrostatic actuated micromirror for vector-based display systems

REPULSIVE-FORCE ELECTROSTATIC ACTUATED MICROMIRROR FOR VECTOR-BASED DISPLAY SYSTEMS by James Chong A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto © Copyright by James Chong, 2011 REPULSIVE-FORCE ELECTROSTATIC ACTUATED MICROMIRROR FOR VECTOR-BASED DISPLAY SYSTEMS James Chong Masters of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2011 Abstract This thesis presents the design and development of a novel two-axis micromirror utilizing electrostatic, repulsive-force rotational actuators for laser scanned vector display systems. The micromirror consists of a 1.0 mm reflective mirror plate that can be rotated at high speeds to steer a laser beam to generate images. Fabricated using PolyMUMPs, the micromirror is operated in a non-resonant mode between 0 V and 200 V and can achieve a maximum optical scanning angle of ±2.6° in each axis with a settling time as fast as 2.75 ms and a first resonant frequency of 1400 Hz. Open-loop control methods were developed for image correcting and improving image quality. The micromirror was integrated into a portable, handheld vector display device which included designing and developing driving circuits, device firmware, mechanical components and optical components. ii Acknowledgments I would like to extend my acknowledgment to my supervisors Professor Ridha Ben Mrad and Professor Siyuan He for giving me the invaluable knowledge, support, and opportunity to pursue, survive, and succeed in my M.A.Sc. program. Throughout my program, they have consistently pushed my knowledge to the limits with their guidance and encouragement. I would also like to thank Peng Yang and CMC Microsystems for their technical help and support with PolyMUMPs and providing financial support through their Integration, Packaging and Assembly programs. Without offering subsidized PolyMUMPs services and technology programs, none of the work would have been possible. I would also like to thank Ontario Graduate Scholarship Program (OGS), University of Toronto, and Ryerson University for their financial support. I would also like to show my appreciation to my fellow labmates at the Mechatronics and Microsystems Design Laboratory (MMDL), Vainatey Kulkarni, Jalal Ahamed, Paul Chairot, Mike Schertzer, Sergey Gubarenko, and Chakemeh Shafii and labmates at Ryerson Mechatronics Research Facility, Soonho Park, Terry Xu, Chao Fan, and Zewdu Hailu for their expert help when I needed. Finally, I send my greatest gratitude and appreciation to my parents who have continuously supported me through everything I have done in life. iii Table of Contents Chapter 1 Introduction..................................................................................................................1  1.1  Motivation ............................................................................................................................1  1.2  Literature Review.................................................................................................................3  1.2.1  Thermal Actuation ...................................................................................................4  1.2.2  Electromagnetic Actuation .......................................................................................6  1.2.3  Electrostatic Actuation .............................................................................................7  1.3  Literature Review Summary ..............................................................................................13  1.4  Thesis Outline ....................................................................................................................13  1.5  List of Contributions ..........................................................................................................13  Chapter 2 Conceptual Design .....................................................................................................15  2.1  Constant Finger Width Design...........................................................................................16  2.1.1  Designing the repulsive actuator ............................................................................17  2.1.2  Design Considerations ...........................................................................................27  2.1.3  Model Verification .................................................................................................28  2.2  Varying Finger Width Designs ..........................................................................................32  2.2.1  Establishing a Mathematical Procedure .................................................................33  2.2.2  Optimizing using Newton-Raphson Method .........................................................36  2.2.3  Designing the Micromirror ....................................................................................41  2.3  Back-Etching Designs ........................................................................................................42  2.3.1  Introducing the Back-Etching Step ........................................................................42  2.3.2  Designing the Micromirror ....................................................................................44  2.4  Chapter Summary ..............................................................................................................47 iv Chapter 3 Analysis .......................................................................................................................49  3.1  Principle of Operation ........................................................................................................49  3.2  Experimental Analysis .......................................................................................................51  3.2.1  Static Performance .................................................................................................53  3.2.2  Dynamic Performance ...........................................................................................54  3.3  Chapter Summary ..............................................................................................................56  Chapter 4 Control Methods ........................................................................................................57  4.1  Look-up-table .....................................................................................................................57  4.2  Dwelling Method ...............................................................................................................62  4.3  Scan Speed Control Method ..............................................................................................65  4.4  Chapter Summary ..............................................................................................................66  Chapter 5 Integration ..................................................................................................................67  5.1  The First Design .................................................................................................................67  5.1.1  Driving Circuitry ....................................................................................................67  5.1.2  Control Program.....................................................................................................72  5.1.3  Optical Components...............................................................................................73  5.1.4  Fixtures and Enclosure ...........................................................................................76  5.1.5  Assembly................................................................................................................77  5.2  The Second Design ............................................................................................................79  5.2.1  Driving Circuitry ....................................................................................................79  5.2.2  Programming..........................................................................................................83  5.2.3  Optical Components...............................................................................................84  5.2.4  Fixtures and Enclosure ...........................................................................................84  5.3  Chapter Summary ..............................................................................................................88  Chapter 6 Conclusions and Recommendations .........................................................................89  6.1  Conclusions ........................................................................................................................89  v 6.2  Recommendations ..............................................................................................................91  References .....................................................................................................................................93  Appendix A Micromirror Mask Designs ...................................................................................99  Appendix B Repulsive Actuators Optimization Formulas .....................................................107  Appendix C Electrical Schematic of Vector Display System .................................................111  Appendix D Mechanical Drawings of Vector Display System ...............................................117  vi List of Tables Table 2-1. Spring Dimensions. ..................................................................................................... 23  Table 2-2. Parameters for Back-Etching micromirrors. ................................................................ 47  Table 5-1. Bill of materials for vector display device. ................................................................. 70  Table 5-2. Bill of materials for portable handheld vector display device. .................................... 80  vii List of Figures Figure 1-1. Illustration of a simplified bimorph actuator. .............................................................. 5  Figure 1-2. Illustration of a simplified single bent-beam actuator. ................................................. 5  Figure 1-3. Illustration of a simplified parallel-plate actuator. ....................................................... 7  Figure 1-4. Illustration of a simplified combdrive actuator. ........................................................... 8  Figure 1-5. Illustration of a simplified repulsive-force actuator. .................................................... 9  Figure 1-6. Electric field lines generated from the repulsive-force actuator. ............................... 10  Figure 2-1. Conceptual micromirror design. ................................................................................. 17  Figure 2-2. Conceptual actuator design. ....................................................................................... 18  Figure 2-3. Side view of a finger being repelled. ......................................................................... 18  Figure 2-4. Dimensioning the fingers for N=7 & N=9 using g . ............................................... 21  max Figure 2-5. Typical serpentine spring. .......................................................................................... 23  Figure 2-6. Coventor mesh model of actuator to simulate stiffness. ............................................ 24  Figure 2-7. Simulation results of actuator stiffness at T = 200 μN·μm. ....................................... 25  Figure 2-8. Solutions to finger width optimization problem. ....................................................... 26  Figure 2-9. Strengthened areas of repulsive-force actuator. ......................................................... 27  Figure 2-10. Widths for repulsive-force actuator. ........................................................................ 28  Figure 2-11. Plot of the rotation angle at an applied voltage. ....................................................... 29  Figure 2-12. Mesh model for multi-physics simulation................................................................ 30  viii Figure 2-13. Coventor results at V = 100V. .................................................................................. 31  Figure 2-14. Displacement results from analytical model and Coventor simulation. .................. 32  Figure 2-15. Actuator with varying finger lengths and widths. .................................................... 34  Figure 2-16. PolyMUMPs with two layers and back-etching....................................................... 44  Figure 2-17. Dimensioned serpentine springs. ............................................................................. 44  Figure 3-1. SEM graphic of the two-axis micromirror (a) no voltage is applied (b) rotation is exhibited when voltage is applied. ................................................................................................ 49  Figure 3-2. Two-axis micromirror driven by four repulsive-force actuators. ............................... 50  Figure 3-3. Apparatus setup for performance testing. .................................................................. 51  Figure 3-4. Photograph of micromirror wire bonded in a DIP40 packaged chip. ........................ 52  Figure 3-5. Alignment of main optical components for performance tests. ................................. 53  Figure 3-6. Static performance of the micromirror. ...................................................................... 54  Figure 3-7. Dynamic performance in the time domain. (a) Step input of 200 V to 0 V. (b) Step input of 0 V to 200 V. ................................................................................................................... 55  Figure 3-8. Dynamic performance in the frequency domain. (a) Magnitude response. (b) Phase response......................................................................................................................................... 56  Figure 4-1. Points for the look-up-table. ....................................................................................... 58  Figure 4-2. Vector based display setup for testing control methods. ............................................ 59  Figure 4-3. Alignment of main optical components for displaying images. ................................ 60  Figure 4-4. Voltage waveform patterns for a cross pattern. ......................................................... 61  Figure 4-5. Demonstrated shapes created using the micromirror (a) partial butterfly curve (b) rhodonea curve (c) star pattern ..................................................................................................... 62  ix Figure 4-6. Voltage waveform for cross pattern with dwelling implemented. ............................. 63  Figure 4-7. Test patterns for assessing techniques to reduce ringing. .......................................... 64  Figure 4-8. Result of patterns with different dwell times (35 fps). ............................................... 64  Figure 4-9. Voltage waveform for cross pattern with scan speed control implemented. ............. 65  Figure 4-10. Result of patterns with scan speed controlled (35 fps). ........................................... 66  Figure 5-1. Portable laser scanned vector display device. ............................................................ 67  Figure 5-2. PCB driving control board (left) top side (right) bottom side. ................................... 68  Figure 5-3. Block diagram of control circuitry. ............................................................................ 70  Figure 5-4. Circuit board design of first design (top) component side (bottom) solder side. ....... 71  Figure 5-5. Micromirror wire bonded and mounted on PCB........................................................ 74  Figure 5-6. Estimating maximum laser beam diameter. ............................................................... 75  Figure 5-7. Fixtures supporting the optical components. ............................................................. 76  Figure 5-8. 3D prototyped top and bottom enclosures. ................................................................ 77  Figure 5-9. Solidworks model of handheld vector display device. ............................................... 77  Figure 5-10. Demonstration of handheld vector display device. .................................................. 78  Figure 5-11. Circuit board design of second design (top) component side (bottom) solder side. 81  Figure 5-12. Block diagram of control circuitry. .......................................................................... 83  Figure 5-13. Optical alignment of main components. .................................................................. 84  Figure 5-14. Miniature stage concept. .......................................................................................... 85  Figure 5-15. Exploded assembly and assembly of micromirror adjustable fixture. ..................... 86  x

Description:
REPULSIVE-FORCE ELECTROSTATIC ACTUATED micromirror consists of a 1.0 mm reflective mirror plate that can be rotated at high speeds to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.