ebook img

Repulsion in low temperature $\beta$-ensembles PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Repulsion in low temperature $\beta$-ensembles

REPULSION IN LOW TEMPERATURE β-ENSEMBLES YACINAMEUR 7 1 0 Abstract. We prove a result on non-clustering of particles in a two- 2 dimensional Coulomb plasma, which holds provided that the inverse b temperature β satisfies β > 1. As a consequence we obtain a resulton e crystallizationasβ :theparticleswill,onamicroscopicscale,appear F →∞ at acertaindistance fromeachother. Theestimationofthis distanceis 8 connected to Abrikosov’sconjecture that the particlesshouldfreezeup accordingtoahoneycomblatticewhenβ . →∞ ] R P Consider a large but finite system of identical point-charges ζ n in the h. plane C, in the presence of an external field nQ, such that Q(ζ){ iis}1"large” t a near ζ = . The system is picked randomly from the Boltzmann-Gibbs m ∞ distributionatinversetemperatureβ > 1, [ 1 2 dP(β)(ζ) = e βHn(ζ)dA n(ζ), ζ = (ζ ,...,ζ ) Cn. v n (β) − ⊗ 1 n ∈ Z 6 n 9 7 HereHn isthetotalenergy 4 0 n 1 1. Hn(ζ1,...,ζn) = log +n Q(ζj), ζ ζ 0 Xj,k | j− k| Xj=1 7 1 : dA = dxdy/π is Lebesguemeasure on C divided by π. The constantZ(β) = v n Xi e−βHndA⊗n istheso-calledpartitionfunctionoftheensemble. R Arandomsample ζ nmightbetermed"Coulombgas”,"one-component r { j}1 a plasma”,or"β-ensemble”. Forbrevity,weuse"system”asasynonym. Itiswell-knownthatthesystemtends,onaverage,tofollowFrostman’s equilibriummeasureinexternalpotentialQ. Thesupportoftheequilibrium measureisacompactsetwhichwecallthedroplet. The rough approximation afforded by the equilibrium measure is too crude to reveal details on a microscopic scale. However, it is believed on physical grounds that the particles should be evenly spread out in the interiorofthedroplet,withanon-trivialbehaviourneartheboundary-the Halleffect. Everythingofimportancegoesoninthevicinityofthedroplet. In this note, we prove that the distance betweenneighbouring particles at a given location in the plane is large with high probability. Further, the distance tends to increase with β, and as β , we recover formally the → ∞ separationtheoremforFeketesetsfromthepapers[1,6]. 1 2 YACINAMEUR Formulationofresults Let Q : C R + be a suitable function of sufficient increase near → ∪{ ∞} ;preciseconditionsaregivenbelow. WecallQtheexternalpotential. ∞Let µ be a compactly supported Borel probability measure on C. The weightedlogarithmicenergyofµisdefinedby 1 IQ[µ] = x log dµ(ζ)dµ(η)+ Qdµ. ζ η ZC C2 | − | Assuming that Q obeys some natural conditions recalled below there is a unique compactly supported probability measure σ which minimizes I . Q This is Frostman’s equilibrium measure in external field Q. The support S = suppσisknownasthedroplet,andtheequilibriummeasuretakesthe form(see[25]) dσ(ζ) = χ (ζ)∆Q(ζ)dA(ζ), S where we write ∆ = ∂∂¯ for 1/4 times the standard Laplacian; χ is the S characteristicfunctionofthesetS. Remark. Let ζ n bearandomsamplewithrespecttoP(β). WriteE(β)forthe { j}1 n n expectation with respect to P(β). It is well-known that E(β)[1 n f(ζ )] n n n j=1 j → σ(f)asn foreachcontinuousboundedfunction f onC.PSee[18,21]. →∞ The preceding remark shows that, in a sense, the equilibrium measure givesafirstapproximationtothemacroscopicbehaviourofthesystem. We here want to study microscopic properties. For this, we could fix a point p C, which might depend on n, and zoom on it at an appropriate rate. ∈ However,for technical reasonsit is easierto choosethe coordinatesystem so that p = 0. In other words, 0 will in the following denote the origin of ann-dependentcoordinatesystemwhichcanbeobtainedfromsomestatic referencesystembyrigidmotion. LetD = D (0) denotethediskcenter0radiusr. Bythemicroscopic scale r r r at0wemeantheradiussuchthat n n ∆QdA = 1. ZD rn We allow for any situation such that r is well-defined. This is a mild n restriction. Indeed, we always have ∆Q 0 on S, since σ is a probability ≥ measure. By our assumptions below, this implies that r is always well- n definedif0isintheinteriorofS. Also,ifwehave∆Q> 0onsomeportionof ∂S,thenr iswell-definedwhen0isinsomeneighbourhoodofthatportion. n Sincethebehaviourofthegasisofinterestonlyinaneighbourhoodofthe droplet,wecanthusessentiallytreatallcasesofinterest. Given a sample ζ n, we rescale about 0 and consider the process z n { j}1 { j}1 where (1) z = r 1ζ . j −n j LOWTEMPERATUREβ-ENSEMBLES 3 WedenotebyP(β)theimageofP(β) underthemap(1)andwriteE(β)forthe n n n correspondingexpectation. AlsoletD = D betheunitdisk. 1 Let F be the event that at least one of the z falls in D. Denote η = n j n P(β)(F ). Passing to a subsequence, we can assume that the sequence η n n n is convergent. It is perfectly possible that η 0, meaning that nothing n → of interest goes on in the vicinity of 0. (Cf. concluding remarks.) A more interestingpossibilityisthatη isboundedbelowbysomepositiveconstant n η. Givenarandomsample z n F wedefinewedefineanumbers by { j}1 ∈ n 0 s = minmin z z , ( z n F ). 0 zj∈D k,j | j− k| { j}1 ∈ n Thus s is the largest rescaled distance from a particle in D to its nearest 0 neighbour. Werefertos asthespacingofthesample,inthevicinity ofthe 0 point0. Wearenowpreparedtoformulateourmainresults. Thefollowingresult showsthatthestrengthofrepulsiontendstoincreasewithβ. Theorem. Suppose that β > 1 and fix n 1. Then there is a constant c = 0 ≥ c(n ,β)> 0suchthatifn n ,η η> 0,and0 < ǫ < 1,then 0 0 n ≥ ≥ (2) P(β)( s c (ǫη)2(β11) F ) 1 m ǫ, n { 0 ≥ · − }| n ≥ − 0 1 wherem0 = 16c−2(ǫη)−β−1. Moreover, givenanyβ0 > 1,ccanbechosenindepen- dentofβwhenβ β . 0 ≥ Thelefthandsidein(2)shouldbeunderstoodasaconditionalprobability giventhatF hasoccurred. n Thenextresultgivesakindofcrystallizationasβ . →∞ Corollary. Supposethatinfη > 0and∆Q(0) const.> 0. Letcbeanynumber n ≥ withc< 1/(8√e). Then lim liminfP(β)( s > c F )= 1. n 0 n β n { } | →∞ →∞ WeobtainCorollarybyestimatingthebestconstantcin(2)asn ,β . 0 →∞ Corollary should be compared with the asymptotic lower bound 1/√e for thedistance betweenFeketepointsobtained in [1, Theorem1]. In fact, our method of proof is somewhat related to the approach in [1, 6], see concludingremarksbelow. Inthepresentcontext,Abrikosov’sconjecturestatesthat underthecon- ditions in Corollary, the system z n should more and more resemble a { j}1 honeycomblattice as n,β . Thedistancebetweenneighbouringparti- → ∞ clesinthislatticecanbecomputed,leadingnaturallytotheconjecturethat the"right”boundforcinCorollaryshouldbec< 21/23 1/4. Cf. [1]. − Herearepreciseassumptionstobeusedintheproofsbelow: (i)Q : C R + isl.s.c.;(ii)theinteriorofthesetΣ := Q < isnon-empty;(i→ii) ∪{ ∞} { ∞} Qisreal-analyticonIntΣ;(iv)liminf Q(ζ)/log ζ2 > 1;(v)S IntΣ. ζ →∞ | | ⊂ 4 YACINAMEUR In addition, we freely use the following notation: The dA-measure of a subsetω Cisdenoted ω. ByW wemeanthesetofweightedpolynomials n ⊂ | | f = pe nQ/2 where p is a holomorphic polynomial of degree at most n 1. − − We denote averages by g = 1 gdA. D (ζ) denotes the disc center ζ ω ω ω r radiusrandwewriteD>= D (0|).|R r r Proofsofthemainresults SupposethattheTaylorexpansionof∆Qabout0takestheform ∆Q= P+"higherorder terms” where P 0, P . 0, and P is homogeneous of some degree 2k 2. The ≥ − existenceofsuchaPisofcourseaconsequenceofthereal-analyticityofQ. Following[8]wewriteτ forthepositiveconstantsuchthat 0 2π 1 τ 2k = P(eiθ)dθ. −0 2πk Z 0 Notethatτ canbecastintheform 0 ∆kQ(0) τ 2k = . −0 k[(k 1)!]2 − ThisfollowseasilybyexpressingPasapolynomialinζandζ¯. Using τ , we conveniently express the microscopic scale to a negligible 0 error,asfollows r = τ n 1/2k(1+O(n 1/2k)), (n ). n 0 − − →∞ Notethatifk = 1thenτ = 1/ ∆Q(0). 0 Asin[8]wedefineaholomporphicpolynomialH by 2 (3) H(ζ):= Q(0)+2∂Q(0)ζ+ + ∂2kQ(0)ζ2k. ··· (2k)! WewillalsousethedominanthomogeneouspartofQat0,i.e.,thefunction ∂i∂¯jQ(0) Q (ζ) = ζiζ¯j. 0 i!j! i+j=X2k,i,j 1 ≥ Thepointisthatwehavethecanonicaldecomposition(cf. [8]) Q(ζ)= ReH(ζ)+Q (ζ)+O(ζ2k+1), (ζ 0). 0 | | → Below we fix a large integer n . The following Bernstein-typelemma is 0 anelaborationof[1,Lemma2.1]. Lemma1. Suppose that n n . If f W and f(0) , 0thenthere isaconstant 0 n ≥ ∈ K = K(n )suchthat 0 f (0) Kr 1 f . |∇| | | ≤ −n ?D | | rn If∆Q(0) const.> 0thenwecantakeK(n )= 4√e(1+o(1)),(n ). 0 0 ≥ → ∞ LOWTEMPERATUREβ-ENSEMBLES 5 Proof. Denoteh = ReHwhereHisthepolynomialin(3). Alsowrite ∂i∂¯jQ(0) q = | |. 0 i!j! i+j=X2k,i,j 1 ≥ Sincer = τ n 1/2k(1+O(n 1/2k))wehave n 0 − − (4) ζ r nQ(ζ) h(ζ) q nζ2k+O(n 1/2k) C , n 0 − n | |≤ ⇒ | − | ≤ | | ≤ whereC = τ2kq +Cn 1/2k. n 0 0 − Nownotethat f (ζ) = p (ζ) n∂Q(ζ)p(ζ)e nQ(ζ)/2 ′ − |∇| | | | − | and d pe nh/2 (ζ) = pe nH/2 (ζ) . − − Insertingζ = 0itisn(cid:12)(cid:12)(cid:12)(cid:12)∇ow(cid:16)| s|eenth(cid:17)at (cid:12)(cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)dζ (cid:16) (cid:17) (cid:12)(cid:12)(cid:12)(cid:12)(cid:12) d f (0) = pe nH/2 (0) . − |∇| | | (cid:12)dζ (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) (cid:12) WenowapplyaCauchyestimate(cid:12)todeducethati(cid:12)fr /2 r r then (cid:12) (cid:12) n n ≤ ≤ d pe H/2 (0) = 1 p(ζ)e−nH(ζ)/2 dζ 2 pe nh/2 dζ. − − By(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)d(ζ4)(cid:16)thelas(cid:17)tin(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)tegr2aπli(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)sZd|ζ|o=mr inateζd2by (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) ≤ πr2n Z|ζ|=r| | | | eCn/2 pe nQ/2 dζ = eCn/2 f dζ. − Zζ=r| | | | Zζ=r| || | | | | | Itfollowsthat 4eCn/2 rn f (0) dr f dζ Kr 1 f , |∇| | | ≤ πr3n Zrn/2 Z|ζ|=r| || | ≤ −n ?Drn | | where K = 4sup eCn/2 . If ∆Q(0) const. > 0 then k = 1 and τ2q = 1, whichgivesK n4≥en10/2{+C/√}n0. ≥ 0 0 (cid:3) ≤ TheweightedLagrangeinterpolationpolynomialsassociatedwithacon- figuration ζ n ofdistinctpointsaredefinedby { j}1 ℓj(ζ) =  (ζ ζi)/ (ζj ζi) e−n(Q(ζ)−Q(ζj))/2, (j = 1,...,n). − − · Notethatℓ Yi,Wj andℓ (Yζi,)j = δ .  j n j k jk ∈ Now let ζ n be a random sample from P(β). Then ℓ (ζ) is a random { j}1 n j variable which dependson the sample and on ζ. In the next few lemmas, wefixanindex j,1 j n. ≤ ≤ 6 YACINAMEUR Lemma2. SupposethatUisameasurablesubsetofCoffinitemeasure U. Then | | (5) E(β) χ (ζ ) ℓ (ζ)2βdA(ζ) = U. n U j j " ·ZC| | # | | Proof. We shall use the following identity, whose verification is left to the reader ℓj(ζ)2βe−βHn(ζ1,...,ζj,...,ζn) = e−βHn(ζ1,...,ζ,...,ζn). | | BythisandFubini’stheorem,integratingfirstinζ ,weimmediatelyget j dA(ζ)E(β) ℓ (ζ)2β χ (ζ ) n j U j ZC | | · h i = dA(ζ ) dP(β)(ζ ,...,ζ,...,ζ )= U, j n 1 n ZU ZCn | | (cid:3) proving(5). In the sequel, we assume that n n and recall the constant K = K(n ) 0 0 ≥ provided by Lemma 1. We will write K(n ,ζ) the same constant with 0 0 replaced by ζ and let r (ζ) be the microscopic scale at ζ. Finally, we fix a n suitable,largeenough,constantM;wemaytakeM = 3forexample. ItiseasytoseethatthereisaconstantT = T(M) 1suchthatifζ D ≥ ∈ Mrn then T 1r (ζ) r (0) Tr (ζ). If ∆Q(0) const. > 0 we might take − n n n ≤ ≤ ≥ T = 1+o(1)asn . →∞ Lemma3. Supposethatβ 1/2. Then ≥ 1 (6) r2E(nβ)"χDrn(ζj)·ZC|ℓj(ζ)|2βdA(ζ)# = 1. n Moreover, ifn n ,K = sup K(ζ),andr = r (0),then ≥ 0 ζ∈DMrn n n 1 (7) r2E(nβ)"χDrn(ζj)·ZD |∇|ℓj|(ζ)|2βdA(ζ)# ≤ T2β+4K2βr−n2β. n Mrn Proof. Theidentity(6)followsfromLemma2withU = D . rn To prove (7) we fix a non-zero f W and assume that f(ζ) , 0 where n ζ D . ByLemma1andJensen’s∈inequality,wehaveforallβ 1/2that ∈ Mrn ≥ f (ζ)2β K2βr (ζ) 2β f 2β. |∇| | | ≤ n − ?Drn(ζ)(ζ)| | LOWTEMPERATUREβ-ENSEMBLES 7 Applyingthiswith f = ℓ andtakingexpectations,weget j E(nβ)"ZD |∇|ℓj|(ζ)|2βdA(ζ)·χDrn(ζj)# Mrn ≤ K2βZDMrn dA(ζ)rn(ζ)−2β−2ZDrn(ζ)(ζ) dA(η)E(nβ)hχDrn(ζj)|ℓj(η)|2βi ≤ T2β+2K2βr−n2β−2ZCdA(η)E(nβ) hχDrn(ζj)|ℓj(η)|2βiZDTrn(η) dA(ζ) = T2β+4K2βr−n2β+2, (cid:3) whereweused(6)inthelaststep. Inthefollowing,weletzandζdenotecomplexvariablesrelatedvia z = r 1ζ. −n Weshallusetherandomfunctions̺ definedby j ̺ (z) = ℓ (ζ) = ℓ (r z). j j j n | | | | Thus̺ (z )= δ where z n istherescaledprocess. j k jk { k}1 Lemma4. Letβ 1/2. Thenwithnotationasabove ≥ (8) E(nβ)(cid:20)χD(zj)k∇̺jkL22ββ(DM)(cid:21) ≤ T4(TK)2β. Proof. Theinequality(7)saysthat 1 r2E(nβ)"χDrn(ζj)ZD (rn|∇|ℓj|(ζ)|)2βdA(ζ)# ≤ T4(TK)2β. n Mrn (cid:3) Rescalingweimmediatelyobtain(8). Supposethat β > 1. We will use Morrey’s inequality, which assertsthat for all real-valued f in the Sobolev space W1,2β(D ), all z,w D , we M ∈ M/√2 have (9) |f(z)− f(w)| ≤ Ck∇fkL2β(DM)|z−w|1−1/β. See[11,Corollary9.12]anditsproof. Infact,theproofin[11,p. 283]shows that(9)holdswithC = C (1 1/β) 1 whereC 2π1/2β. 0 − 0 − ≤ WearenowreadytofinishtheproofofTheorem. Recall that F denotesthe eventthat at least oneparticle hits D and fix n anarbitrary j, 1 j n. AssumingthatP(β)(F ) η > 0, wededucefrom n n ≤ ≤ ≥ Lemma4thefollowinginequalityfortheconditionalexpectation T4(TK)2β (10) E(nβ)(cid:18)χD(zj)k∇̺jkL22ββ(DM) (cid:12) Fn(cid:19)≤ η . Fixǫ > 0andrecallthats denotesthe(cid:12)(cid:12)distancefromapointin z n D to its closestneighbour, wh0erewe assume that z n F . We mu{stj}p1r∩ove { j}1 ∈ n thats c(ǫη)1/2(β 1) with(conditional)probabilityatleast1 ǫ. 0 − ≥ − 8 YACINAMEUR Foreachλ > 0wehavebyChebyshev’sinequalityand(10) 1 P(nβ)(cid:18)(cid:26)χD(zj)k∇̺jkL22ββ(DM) > λ(cid:27) (cid:12) Fn(cid:19) ≤ λE(nβ)(cid:18)χD(zj)k∇̺jkL22ββ(DM) (cid:12) Fn(cid:19) (cid:12)(cid:12) T4(TK)2β (cid:12)(cid:12) . ≤ ηλ Wenowsetλ= T4(TK)2βη 1ǫ 1. Pickasample z n F andsupposethat − − { j}1 ∈ n zj ∈ D. Then k∇̺jkL2β(DM) ≤ λ1/2β = T2/β(TK)(ǫη)−1/2β with probability at least1 ǫ. − Now let z be a closest neighbour to z . In view of (9) there is another k j constantC = C (1 1/β) 1 suchthat,withprobabilityatleast1 ǫ,wehave 0 − − − either z z M/√2or j k | − |≥ (11) 1 = ̺ (z ) ̺ (z ) CT1+2/βK(ǫη) 1/2βz z 1 1/β, j j j k − j k − | − |≤ | − | i.e., z z c(ǫη)1/2(β 1) wherewemaychose j k − | − |≥ (12) c= (CT1+2/βK) β/(β 1) = (1 1/β)β/(β 1)(C T1+2/βK) β/(β 1). − − − 0 − − − Wehaveshownthat (13) min z z c(ǫη)1/2(β 1) j k − k,j | − | ≥ withprobabilityatleast1 ǫ. Theformula(12)showsthatccanbechosen − independentofβwhenβ β > 1. TheproofofTheoremiscomplete. 0 ≥ Lemma 5. Let ND be the number of particles which fall in D. Also define r0 = c(ǫη)1/2(β−1)/2 and m0 = 4/r20. Then ND ≤ m0 and s0 ≥ c(ǫη)1/2(β−1) with probability atleast1 m ǫ. 0 − Proof. Suppose that at least m particles, denoted z ,...,z , fall in D. For 1 m 1 j mlet E betheeventthat thediskD (z )contains nopointz with ≤ ≤ j r0 j k 1 k n,k , j. ThenP(β)(Ec) ǫ,whereEc isthecomplementaryevent. ≤ ≤ n j ≤ j Wehaveshownthat P(β)( m E )= 1 P(β)( m Ec) 1 mǫ. n ∩j=1 j − n ∪j=1 j ≥ − ItfollowsthatifatleastmparticlesfallinDthenwithprobabilityatleast 1 mǫ there are m disjoint disks of radius r inside D . Comparing areas 0 2 w−eseethatmr2 4,i.e.,m m . (cid:3) 0 ≤ ≤ 0 1 Thelemmasaysthatifm0 = m0(β,ǫ,η) = 16c−2(ǫη)−β−1 then (14) P(β)( s c(ǫη)1/2(β 1) F ) 1 ǫm . n 0 − n 0 { ≥ }| ≥ − ThisprovesTheorem. LOWTEMPERATUREβ-ENSEMBLES 9 Nowassumethat∆Q(0) const. > 0. ThenbyLemma1,theconstantK ≥ theremightbetakenasK = 4√e(1+o(1))whilewemaytakeT = 1+o(1)as n . HenceC T1+2/βK 8√e(πT4)1/2β(1+o(1)),andso,ifc(β)denotesthe 0 → ∞ ≤ largestconstantsuchthattheestimate(13)holdsasymptotically,asn , 0 →∞ then liminf c(β) 1/(8√e) and limsup m (β,ǫ,η) 210e. It is now β→∞ ≥ β→∞ 0 ≤ clearfrom(14)thatCorollaryisaconsequenceofTheorem. q.e.d. Concludingremarks Consider the quantities η = P(β)(F ). It is of interestto know when η n n n n is boundedbelow. For this, weformthe quantitiesα = r 2D S. That is, α isthefraction ofthearea ofthemicro-disc D nwhic−nh f|allrsn ∩insi|dethe n rn dropletS. Weconjecturethatη isboundedbelowifα isboundedbelow. n n More generally, if we fix a positive R and put αR = (Rr ) 2D S. It n n − | Rrn ∩ | seemsplausible thatη is boundedbelowif and onlyif thesequenceαR is n n boundedbelowforsomeR 1. Thishasbeenverifiedinthedeterminantal ≥ situation β = 1 in many cases. See the papers [4, 5, 8]. See also [1] for the caseβ = . Wewillreturntothesematterslater[2]. ∞ A configuration ζ n is said to be a Fekete configuration in external { j}1 potentialQiftheenergyH (ζ ,...,ζ )isminimal. Wethinkofsuchconfig- n 1 n urationsasfrozenparticlesystems,attemperature1/β = 0;theyarewholly contained in the droplet, see [25]. To our knowledge, uniform separation betweenFeketepointswasfirstshownin[6]. TheanalysisofFeketeconfigurationsin[1,6]dependsontheinequality ℓ 1 for the associated weighted Lagrange polynomials ℓ . This bound j j | | ≤ playsasimilarrolewhenβ = astheL2β-estimateinLemma2doesinthe ∞ presentcase. TheideaofusinganL2β-boundonLagrangesectionsoccursin[15]. The contextthereisdifferent,butinaway,wehaveelaboratedonthisideahere. It is possible to extend Corollary to the "bulk singular case” where ∆Q(0) = 0. However, the constant c must be modified, depending on the dominant termsin the Taylorexpansionof∆Q about 0. This is so because theconstantsT,Kdependonthoseterms. In the determinantal case β = 1, limiting point fields z have been { j}∞1 identified in many cases. The study of universality in this setting was initiated in the paper [4]. When β > 1, the determinantal structure is lost, andtheproblemofcalculatinglimitingpointfieldsremainsachallenge. The question is perhaps especially intriguing when we rescale about a regular boundarypointofS,oraboutsomeotherkindofspecialpoint,cf. [5,7,24]. At a regular boundary point, it seems plausible that the distribution should be translation invariant in the direction tangent to the boundary, i.e., in a suitable coordinate system, the distribution depends only on x = Rez. The Hall effect is believed to give rise to certain irregularities in the 10 YACINAMEUR distribution,which aretobelocatedslightlytotheinsideoftheboundary. See [13] and the references there for a discussion of this fascinating topic. While our results provide more and more information when β gets very large, the results in [13], by contrast, seem to be more accurate when β is close to 1. A corresponding analysis was performed earlier in the bulk in theprogenitorpaper[19];see[14,16,20,23]formorerecentdevelopments. In the case of"moderatelysized” β, 1 β , neitherof themethods ≪ ≪ ∞ seem to give very clear pictures of the situation. However, the paper [12] suggeststhataphase-transition("freezing”)shouldtakeplaceafteracertain finite value β = β . The study of existence and possible size of melting 0 temperature1/β iscurrentlyanactiveareaofresearch. 0 It is sometimes useful to consider n-dependentpotentials V = Q+h/n n where Q is as before and h is a fixed smooth function. See e.g. [3, 9, 21]. Our theorygeneralizeswithoutdifficultytothissituation. Onecan obtain furthergeneralizationsbyrelaxingtheassumptionofreal-analyticityofthe underlyingpotentialQ. Weleavedetailstotheinterestedreader By the "hard edge β-ensemble” in external potential Q, we mean the ensemble obtained by redefining Q to be + outside of the droplet. Cf. ∞ [4, 5, 26]for thecaseβ = 1. The questionofspacingsin thissettingwill be takenupelsewhere. WefinallywanttogiveafewremarkspertainingtoWard’sidentity. This is a relation connecting the one- and two-point functions of a β-ensemble which has been part of the physical mainstream for quite some time. In thepresentcontext,itwasusedsystematicallybyWiegmannandZabrodin andtheirschool,anditisanimportanttoolinconformalfieldtheory[22]. Inthepaper[3],Ward’sidentitywasusedtogivearelativelysimpleproof of Gaussian field convergence of linear statistics of a β = 1 ensemble. Re- centlyin[9]themethodwas,asitseems,extendedtogeneralβ-ensembles. The one-dimensional counterpart to Ward’s identity is called the loop equation. Itisconvenienttousedifferentnamesdependingondimension; whilethetwoidentitiesarederivedinsimilarways,theyhavequitedifferent analytical properties. The loop equation (or "fundamental relation”) was usedin[19]tostudyfluctuationsinone-dimensionalβ-ensembles. See[10] andthereferencesformorerecentdevelopmentsinthearea. ThemicroscopicversionofWard’sidentitywasintroducedfairlyrecently in[4]. ItiscalledWard’sequation. See[4,Section7.7]forthegeneralcaseof β-ensembles. It is natural to ask how Ward’s equation fits into thepresent context. Wehopetocomebacktothislateron. References [1] Ameur,Y.,AdensitytheoremforweightedFeketesets,Int.Math.Res.Notices2016,doi: 10.1093/imrn/rnw161. [2] Ameur,Y.,Inpreparation. [3] Ameur,Y.,Hedenmalm,H.,Makarov,N.,Wardidentitiesandrandomnormalmatrices, Ann.Probab.43(2015),1157–1201.Cf.arXiv:1109.5941v3foradifferentversion.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.