ebook img

Reproducing kernels and symmetric operators PDF

148 Pages·2013·0.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reproducing kernels and symmetric operators

Reproducing kernels and symmetric operators A. Aleman, R. Martin, and W. Ross * Lille 2013 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 1/35 Main question When are two densely defined unbounded symmetric operators on a Hilbert space unitarily equivalent? Aleman,Martin,Ross (*) SymmetricOperators Lille2013 2/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Note about the examples Usually when one talks about unbounded symmetric operators, one talks about Tf = −(pf(cid:48))(cid:48)+qf (Sturm-Liouville) Tf = −f(cid:48)(cid:48)+Vf (Schr¨odinger) We want unbounded symmetric Toeplitz operators T on H2. ϕ Aleman,Martin,Ross (*) SymmetricOperators Lille2013 3/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35 Bounded Toeplitz operators H2 Hardy space of the open unit disk D H∞ bounded analytic functions on D For ϕ ∈ H∞, T : H2 → H2, T f = ϕf. ϕ ϕ ∼ When is T = T ? ϕ1 ϕ2 When is T ∼ T ? ϕ1 ϕ2 Aleman,Martin,Ross (*) SymmetricOperators Lille2013 4/35

Description:
Reproducing kernels and symmetric operators A. Aleman, R. Martin, and W. Ross * Lille 2013 Aleman, Martin, Ross (*) Symmetric Operators Lille 2013 1 / 35
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.