ebook img

Representations of SL2(R) PDF

51 Pages·2014·0.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representations of SL2(R)

Lastrevised9:24p.m. November1,2020 Representationsof SL (R) 2 BillCasselman UniversityofBritishColumbia [email protected] InthisessayIhopetoexplainwhatisneededaboutrepresentationsofSL2(R)intheelementarypartsofthe theoryofautomorphicforms. Onthewhole,Ihavetakenthemoststraightforwardapproach,eventhough thetechniquesusedaredefinitelynotvalidforothergroups. Thisessayisaboutrepresentations. Inthecurrentversionitsaysalmostnothingaboutwhatisusuallycalled invariantanalysis,whichistosayharmonicanalysisofdistributionsinvariantunderconjugationinSL2(R). Itsaysverylittleaboutorbitalintegrals, andequallylittleaboutcharactersofrepresentations. Nordoesit prove anything deep about the relationship between representations of G and those of its Lie algebra, or aboutversionsofFouriertransforms. Thesetopicsinvolvetoomuchanalysistobedealtwithinthislargely algebraicessay. Ishalldealwiththosematterselsewhere,ifnotinasubsequentversionofthisessay. Fromnowon,unlessspecifiedotherwise: G=SL (R) 2 K = themaximalcompactsubgroupSO2ofG A = thesubgroupofdiagonalmatrices N = subgroupofunipotentuppertriangularmatrices P = subgroupofuppertriangularmatrices =AN gR=Liealgebrasl2(R) gC=C RgR. ⊗ Mostofthetime,itwon’tmatterwhetherIamreferringtotherealorcomplexLiealgebra,andI’llskipthe subscript. Muchofthisessayisunfinished. Theremightwellbesomeannoyingerrors,forwhichIapologizeinadvance. Constructivecomplaintswillbewelcome. Therearealsoplaceswheremuchhasyettobefilledin,andthese willbemarkedbyoneoftwofamiliarsigns: DETOUR Thefirstshouldbeself explanatory. Thesecondmeansthatatthemomentthemostconvenientreferenceis elsewhere. RepresentationsofSL(2,R) 2 Contents Introduction I.Bargmann’sclassification 1. RepresentationsofthegroupandofitsLiealgebra ................................... 5 2. TheLiealgebra .................................................................... 9 3. DifferentialoperatorsandtheLiealgebra ............................................ 12 4. Admissibility ...................................................................... 14 5. Classificationofirreduciblerepresentations .......................................... 17 6. Thealgebraicconstruction .......................................................... 19 7. Duals ............................................................................. 20 8. Unitarity .......................................................................... 21 II.Theprincipalseries 9. Vectorbundles..................................................................... 22 10. Theprincipalseries ................................................................ 24 11. Frobeniusreciprocityanditsconsequences .......................................... 27 12. Intertwiningoperatorsandthesmoothprincipalseries ............................... 32 13. Thecomplementaryseries .......................................................... 33 14. Normalization ..................................................................... 33 15. Appendix.Charactersasdistributions............................................... 34 16. Appendix.TheGammafunction .................................................... 35 17. Appendix.CharactersandtheFouriertransform..................................... 38 18. Appendix.Invariantintegralsonquotients .......................................... 40 III.Thediscreteseries 19. Projectivespacesandrepresentations................................................ 42 20. RestrictiontoK ................................................................... 43 21. Inclassicalterms................................................................... 44 22. Relationwithfunctionsonthegroup ................................................ 46 23. Holomorphicautomorphicforms ................................................... 49 24. Square integrability ................................................................ 50 IV.Matrixcoefficientsanddifferentialequations 25. Matrixcoefficients ................................................................. 52 26. Differentialequations .............................................................. 53 27. Thenon EuclideanLaplacian ....................................................... 56 28. Realizationsofadmissiblemodules.................................................. 59 V.Langlands’classification 29. TheWeilgroup .................................................................... 59 30. Langlands’classificationfortori..................................................... 62 31. Langlands’classificationforSL2 .................................................... 64 VI.VermamodulesandrepresentationsofG 32. Vermamodules .................................................................... 65 33. Vermamodulesandintertwiningoperators .......................................... 66 34. TheBruhatfiltration................................................................ 67 35. TheJacquetmodule ................................................................ 68 36. ThePaley Wienertheoremforsphericalfunctions .................................... 68 37. Thecanonicalpairing .............................................................. 68 38. Whittakermodels.................................................................. 69 39. Themodule ....................................................................... 74 40. WhittakermodelsforSL(2) ......................................................... 75 VII.References RepresentationsofSL(2,R) 3 Introduction SupposeGforthemomenttobeanarbitrarysemi simplegroupdefinedoverQ. Itwillhavegoodreduction atallbutafinitenumberofprimesp,whichmeansthatGdefinesasmoothgroupschemeoverZp. Suppose thatforeachprimepthegroupKpisacompactopensubgroupofG(Qp),andthatforallbutafinitenumber ofpitisG(Zp). LetΓbethesubgroupofγinG(Q)suchthatγliesinKpforallp. ThenΓisdiscreteinG(R) andΓ G(R)hasfinitevolume. ThegroupΓiscalledacongruencesubgroupofG(Q). \ ThegroupG(R)actsontherightonΓ G(R),andthisgivesrisetorepresentationsonseveraldifferentspaces \ of functions and distributions, among them L2 Γ G(R) . Among the most interesting questions in this \ businessisthis:Whatirreduciblerepresentations(cid:0)ofG(R)o(cid:1)ccurinthedecompositionofL2(Γ G(R))?There \ isasimpleconjectureconcerningnecessaryconditionsforthis,analogoustoRamanujan’sconjectureforthe coefficients of certain modular forms. This might also be considered in some sense a problem in number theory, since it is known not to be true for some discrete subgroups that are not congruence subgroups, anda resolutionoftheconjecturewill follow fromconjecturesofLanglands regarding certainL functions associated to automorphic forms. A commutative ring of certain algebraic correspondences called Hecke operatorsalsoactsonthisquotientandalsointerestingisthis:WhataretheeigenvaluesofHeckeoperators onthese?AssociatedtothegroupGisitsade`legroupG(A). ItcontainsthediscretesubgroupG(Q)andthe quotientG(Q) G(A)alsohasfinitevolume. Thequestionsaboveisaresubsumedinthemorecomprehensive \ one: Whatirreduciblerepresentationsoftheade`legroupG(A)occurintherightregularrepresentationof G(A)onL2(G(Q) G(A))?Thesequestionsarerelated,sinceifKf isacompactopensubgroupofthefinite \ ade`legroupG(Af)thenG(Q) G(A)/Kf isaunionofquotientsoftheformΓ G(R). \ \ The problems raised by these questions are extremely difficult, even perhaps beyond answering in any complete fashion. They have motivated much investigation into harmonic analysis of reductive groups definedoverlocalfields. Representationsofsemi simple(andreductive)groupsoverRhavebeenstudied since about 1945, and muchhas beenlearned aboutthem, butmuchremainstobe done. The literatureis vast,anditisdifficulttoknowwheretobegininordertogetanyideaofwhatitisallabout. For p adic groups, the problemsarising that are the most difficult—andthe most intriguing—are those of numbertheoryandalgebraicgeometry. Butforrealgroupsthereareinadditionproblemsofanalysisthat donotoccurforp adicgroups. Thesehavecausedmuchannoyanceandsomeseriousdifficulties. For one thing, there are a number of somewhat technical issues that complicate things. Perhaps the first is that one does not usually deal with representations of a real reductive group, but rather with certain representationsofitsLiealgebra. Thishasbeentrueeversincetheoriginsofthesubject,althoughnotreally understooduntilafewyearslater. Thisisjustifiedbysomerelativelydeeptheoremsinanalysis,andafteran initialperiodthisshiftinattentioniseasilyabsorbed. TherepresentationsoftheLiealgebra,whicharecalled Harish-Chandramodules,arerepresentationssimultaneouslyofgandamaximalcompactsubgroupKofG. TheseareassumedtobecompatibleinthatthetworepresentationsthusassociatedtotheLiealgebrakarethe same. Inmakingthisshift,onehastomakeachoiceofmaximalcompactsubgroupK,butthedependence onK isweak,sinceallchoicesareconjugateinG. Theimportantconditionontheserepresentationsisthat therestrictiontoKbeadirectsumofirreduciblerepresentations,eachwithfinitemultiplicity. Inviewofthe originalquestionsposedabove,itisgoodtoknowthattheclassificationofirreducibleunitaryrepresentations ofGisequivalenttothatofirreducibleunitarizable,Harish Chandramodules. Onedoesnotlosemuchby lookingatrepresentationsoftheLiealgebra. The classification of unitarizable Harish Chandra modules has not yet been carried out for all G, and the classificationthatdoesexistissomewhatmessy. Thebasicideafortheclassificationgoesbacktotheorigins ofthesubject—firstclassifyallirreducibleHarish Chandramodules,andthendecidewhichareunitarizable. TheclassificationofallirreducibleHarish Chandramodulesaskedforherehasbeenknownforalongtime. OneusefulfactisthateveryirreducibleHarish Chandramodulemaybeembeddedinoneinducedfroma finite dimensionalrepresentationsofaminimalparabolicsubgroup. Thisgivesagreatdealofinformation, andinparticularoftenallowsonetodetectunitarizability. RepresentationsofSL(2,R) 4 This technique gives a great deal of information, but some important matters require another approach. The notable exceptions are those representations of G that occur discretely in L2(G), which make up the discreteseries. Thesearegenerallydealtwithontheirown,andthenonecanlookalsoatrepresentations inducedfromdiscreteseriesrepresentationsofparabolicsubgroups. Alongwithsometechnicaladjustments, thesearethecomponentsofLanglands’classificationofallirreducibleHarish Chandramodules. Oneofthe adjustmentsis thatone mustsay somethingaboutembeddingsofarbitrary Harish Chandra modulesinto C∞(G),andsaysomethingabouttheasymptoticbehaviourofcertainfunctionsintheimage. Thisrequires examiningsolutionsofdifferentialequations. This essay is mostly just about the group G = SL2(R). Although this is a relatively simple group, it is instructivetoseethatnearlyallinterestingphenomenamentionedalreadyappear. Ishalltouch,eventually, onallthemesmentionedabove,butinthepresentversionafewareleftout. Representationsofcompactgroupshavebeenexaminedforalongtime,butthestudyofunitaryrepresenta tionsofnon compactsemi simplegroupsbeginwiththeclassic[Bargmann:1947]. Bargmann’sinitialclassi ficationofirreduciblerepresentationsofSL2(R)alreadymadethestepfromGto(g,K),ifnotrigourously. EvennowitisworthwhiletoincludeanexpositionofBargmann’spaper,andIshalldoso,becauseitisalmost theonlycasewhereresultscanbeobtainedwithoutintroducingsophisticatedtools. Butanotherreasonfor lookingatSL2(R)closelyisthatthesophisticatedtoolsonedoesneedeventuallyareforSL2(R)relatively simple,anditisvaluabletoseetheminthatsimpleform. Thatismyprimarygoalinthisessay. InPartIIshallessentiallyfollowBargmann’scalculationstoclassifyallirreducibleHarish Chandramodules over(sl2,SO(2)). Theunitarizableonesamongthesewillbefound. Thetechniquesusedherewilljustbe relativelysimplecalculationsintheLiealgebrasl2. Bargmann’stechniquesbecomeimpossiblydifficultforgroupsotherthanSL2(R). Oneneedsingenerala waytoclassifyrepresentationsthatdoesnotrequiresuchexplicitcomputation. Thereareseveralwaystodo this. OneisbymeansofinductionfromparabolicsubgroupsofG,andthisiswhatI’lldiscussinPartII(but justforSL2(R)). Theserepresentationsarenowcalledprincipalseries. (ThisisatermusedbyBargmann, butforonlyasubsetofthem.) It happens, even for arbitrary reductive groups, that every irreducible Harish Chandra module can be embeddedinoneinducedfromafinite dimensionalrepresentationofaminimalparabolicsubgroup. Thisis important,butdoesnotanswermanyinterestingquestions. Somegroups,includingSL2(R)possesscertain irreducibleunitaryrepresentationssaidtolieinthediscreteseries. Theyoccurdiscretelyintherepresentation ofGonL2(G),andtheyrequirenewmethodstounderstandthem. ThisisdoneforSL2(R)inPartIII. For SL2(R) the discrete series representations can be realized in a particularly simple way in terms of holomorphic functions. This is not true for all semi simple groups, and it is necessary sooner or later to understandhowarbitraryrepresentationscanbeembeddedinthespaceofsmoothfunctionsonthegroup. Thisisintermsofmatrixcoefficients,explainedlaterinPartIII.Onecorollaryofthisinvestigationwillbe that any admissible representation of (sl2,SO(2)) can be extended to a smooth representation of G, thus extendingaresultaboutirreduciblerepresentationsduetoHarish Chandra. In order to understand the role of representations in the theory of automorphic forms, it is necessary to understandLanglands’classificationofrepresentations,andthisisexplainedinPartIV. EventuallyI’llincludeinthisessayanaccountofhowD modulesonthecomplexprojectivelinecanbeused toexplain many phenomenathat appear otherwisemysterious. Othertopics I’venot yetincludedare the relationshipbetweentheasymptoticbehaviourofmatrixcoefficientsandembeddingsintoprincipalseries, andtherelationshipbetweenrepresentationsofSL2(R)andWhittakerfunctions. The best standard reference for this material seems to be [Knapp:1986] (particularly Chapter II, but also scattered references throughout), although many have found enlightenment elsewhere. A very different approachisChapterIof[Vogan:1981]. ManybooksgiveanaccountofBargmann’sresults,butformostof therestIbelievetheaccountherehasmanynewfeatures. RepresentationsofSL(2,R) 5 PartI.Bargmann’sclassification 1. RepresentationsofthegroupandofitsLiealgebra What strikes many on first sight of the theory of representations of G = SL2(R) is that it is very rarely concernedwithrepresentationsofG! Instead,oneworksalmostexclusivelywithcertainrepresentationsof itsLiealgebra. Andyet... thetheoryisultimatelyaboutrepresentationsofG. InthisfirstsectionI’lltryto explainthisparadox,andsummarizetheconsequencesofthesubstitutionofLiealgebraforLiegroup. I want first to say something first about why one is really interested in representations of G, or at least somethingclosely relatedtothem. The main applications of representationtheoryofgroupslikeGare to thetheoryofautomorphicforms. ThesearefunctionsofacertainkindonarithmeticquotientsΓ Goffinite \ volume,forexamplewhenΓ=SL2(Z). ThegroupGactsonthisquotientontheright,andthecorresponding representationofGonL2(Γ G)isunitary. WhichunitaryrepresentationsofGoccurasdiscretesummands \ ofthisrepresentation?AsIhavealreadymentioned,thereisaconjecturalifpartialanswertothisquestion, atleastforcongruencegroups,whichisananaloguefortherealprimeoftheRamanujanconjectureabout the Fourier coefficients of holomorphic forms. It was Deligne’s proof of the Weil conjectures that gave at the same time a proof of the Ramanujan conjecture, and from this relationship the real analogue acquires immediatelyacertaincachet. Asforwhyonewindsuplookingatrepresentationsofg,thisshouldnotbeunexpected. Afterall,eventhe classificationoffinite dimensionalrepresentationsofGcomesdowntotheclassificationofrepresentations ofg,whicharefareasiertoworkwith. Forexample,onemightcontrasttheactionoftheunipotentupper triangularmatricesofGonthesymmetricpowerSn(C2)withthatofitsLiealgebra. The representations one winds up looking at are infinite dimensional. What might be surprising is that, unlikewhathappensforfinite dimensionalrepresentations,theserepresentationsofgarenotusuallyatthe sametimerepresentationsofG. ItisthisthatIwanttoexplain. I’llbeginwithanexamplethatshouldatleastmotivatethesomewhattechnicalaspectsoftheshiftfromG tog. TheprojectivespaceP=P1(R)isbydefinitionthespaceofalllinesinR2. ThegroupGactsonR2by lineartransformations, andittakeslinestolines,soitactsonPaswell. Thereisastandardwaytoassign coordinates on P by thinking of this space as R togetherwith a point at . Formally, every line but one ∞ passes through a unique point (x,1) in R2, and this is assigned coordinate x. The exceptional line is the x axis,andisassignedcoordinate . ∞ x= =0 = 2 x −1 x x= ∞ IntermsofthiscoordinatesystemSL2(R)actsbyfractionallineartransformations: a b : x (ax+b)/(cx+d), (cid:20)c d(cid:21) 7−→ aslongasweinterpretx/0as . Thisisbecause ∞ az+b a b z az+b cz+d = =(cz+d)  . (cid:20)c d(cid:21)(cid:20)1(cid:21) (cid:20)cz+d(cid:21) 1   RepresentationsofSL(2,R) 6 Theisotropysubgroupfixing isP,andPmaybeidentifiedwiththequotientG/P. SinceK P = I ∞ ∩ {± } andK actstransitivelyonP,asaK spacePmaybeidentifiedwithK/ 1 . {± } TheactionofGonPgivesrisetoarepresentationofGonfunctionsonP: Lgf(x)=f(g−1x). (Theinverse isnecessaryhereinordertohaveLg1g2 = Lg1Lg2,asyoucancheck.) Butthereareinfactseveralspacesof functionsavailable—forexamplerealanalyticfunctions,smoothfunctions,continuousfunctions,functions that are locally square integrable, or the continuousduals of any of these infinite dimensional topological vectorspaces. Whichofthesedowereallywanttolookat? Wecanmakelifealittlesimplerbyrestricting ourselvestosmooth representations(onesthat are stablewithrespect toderivation byelementsoftheLie algebrag),inwhichcasethespacesofcontinuousandlocallysquare integrablefunctions,forexample,are ruledout. Butevenwiththisrestrictionthereareseveralspacesathand. Hereisthemainpoint:AlloftheserepresentationsofGshouldbeconsideredmoreorlessthesame,atleast formostpurposes. TherepresentationofK onPisasmultiplicationonK/ 1 . Amongthefunctionson {± } thisspacearethosewhichtransformbythecharactersε2nofK where c s ε: − c+is. (cid:20)s c(cid:21)7−→ Thewaytomaketheessentialequivalenceofallthesespacespreciseistoreplaceallofthembythesubspace offunctionswhichwhenrestrictedtoK areafinitesumofeigenfunctions. This subspace is the same for allofthesedifferentfunctionspaces,andinsomesenseshouldbeconsideredthe‘essential’representation. However, it has what seems to be at first one disability—it is nota representation of G, since g takes eigenvectorsforK toeigenvectorsfortheconjugategKg−1, whichisnotgenerallythesame. Tomakeup forthis,itisstablewithrespecttotheLiealgebragR =sl2(R),whichactsbydifferentiation. TherepresentationofSL2(R)onspacesoffunctionsonPisamodelforotherrepresentationsandevenother reductivegroupsG. Bydefinition,acontinuousrepresentation(π,V)ofaLiegroupGonatopologicalvector spaceV isahomomorphismπfromGtoAut(V)suchthattheassociatedmapG V V iscontinuous. × → TheTVSVisalwaysassumedinthisessaytobelocallyconvex,Hausdorff, andquasi complete. Thislast, somewhattechnical,conditionguaranteesthatifF isacontinuousfunctionofcompactsupportonGwith valuesinV thentheintegral F(g)dg Z G iswelldefined. Onebasicfact aboutthisintegralisthatit containedintheconvexhulloftheimageoff, scaledbythemeasureofitssupport. Iff isinC∞(G),onecanhencedefinetheoperator valuedintegral c π(f): v f(g)π(g)vdg 7−→Z G (i.e.takingF(g)=f(g)π(g)v). If(π,V)isacontinuousrepresentationofamaximalcompactsubgroupK,letV bethesubspaceofvectors (K) that are contained in a K stable subspace of finite dimension. These are called the K-finite vectorsof the representation. IfGisSL2(R),itisknownthatanyfinite dimensionalspaceonwhichK actscontinuously will be a direct sum of one dimensional subspaces on each of which K acts by a character, so V is (K) particularlysimple. SometechnicalproblemsarisebecauseK mightnotbeconnected,butasidefromthat theirreduciblerepresentationsofK arewellunderstood(andmoreorlesscompletelyclassified). (1)If(π,V)isanycontinuousrepresentationofK,thesubspaceV isdenseinV. (K) Thisisabasicfactaboutrepresentationsofacompactgroup,andaconsequenceoftheStone Weierstrass Theorem. RepresentationsofSL(2,R) 7 AvectorvinthespaceV ofacontinuousrepresentationofGiscalleddifferentiableifthelimit π(exp(tX))v v π(X)v = lim − t→0 t existsinV foreveryXing. TherepresentationiscalledsmoothifallvectorsinV aredifferentiable,inwhich caseπ(X)isanoperatoronV foreveryX inU(g). (2)Smoothvectorsaredenseinanycontinuousrepresentation. IffliesinC∞(G)andvinV,thenπ(f)vissmooth. ThespaceofsuchvectorsiscalledtheGa˚rdingsubspace. c In some circumstances, it is the same as the subspace of smooth vectors. Applying a Dirac sequence, any vectormaybeapproximatedbysuchvectors. AcontinuousrepresentationofGonacomplexvectorspaceV iscalledadmissibleifV isadirectsumof (K) charactersofK,eachoccurringwithfinitemultiplicity. (3)If(π,V)isasmoothrepresentationofg,thesubspaceV isstableunderg. (K) Ifπissmooth,thenthereisacanonicalmapfromg V toV: X v π(X)v. IfU isK stablethensois ⊗ ⊗ 7→ theimageofg U,whichcontainsallπ(X)uforuinU. ⊗ AcontinuousrepresentationofGonacomplexvectorspaceV iscalledadmissibleifV isadirectsumof (K) charactersofK,eachoccurringwithfinitemultiplicity. (4)If(π,V)isanadmissiblerepresentationofG,thevectorsinV aresmooth. (K) Suppose (σ,U) to be an irreducible representation of K, ξ the corresponding projection operator in C∞(K). For example, if K = SO2 and σ is a character, then ξ amounts to integration against σ−1 over K. The σ component Vσ of V is the subspace of vectors fixed by π(ξ). If (fn) is chosen to be a Dirac sequence of smooth functionson G (i.e. non negative, having limit the Dirac distribution δ1), then π(fn)v v for all v in V. The operators π(ξ)π(f)π(ξ) = π(ξ f ξ) are therefore dense in the → ∗ ∗ finite dimensional space End(Vσ), hence make up the whole of it. But ξ f ξ is also smooth and of ∗ ∗ compactsupport. AnyvectorvinVσ maythereforebeexpressedasπ(f)vforsomef inCc∞(G). Asforthesecondassertion,ifvliesinVσ thenπ(g)vliesinthedirectsumofspacesVτ asτ rangesover theirreduciblecomponentsofthefinite dimensionalK stablespaceg Vσ. ⊗ A unitary representation of G is one on a Hilbert space whose norm is G invariant. One of the principal goals of representation theory is toclassify representations that occuras discrete summands of arithmetic quotients. Thisisanextremelydifficulttask. Buttheserepresentationsareunitary,andclassifyingunitary representationsofGisafirststeptowardscarryingitout. (5)AnyirreducibleunitaryrepresentationofGisadmissible. This is the most difficult of these claims, requiring serious analysis. It is usually skipped over in expositions of representation theory, probably because it is difficult and also because it is not often needed in practice. One accessible reference is 4.5 (on ‘large’ compact subgroups) of [Warner:1970]. § Otherreferencesare[Atiyah:1988]andmyownnotes[Casselman:2014]onunitaryrepresentations. ForG = SL2(R),everyirreducibleunitaryrepresentationofGrestrictstoadirectsumofcharactersof SO2,eachoccurringatmostonce. Weshallseeaproofofthislateron. Infact,admissiblerepresentationsareubiquitous. Atanyrate,weobtainfromanadmissiblerepresentation ofGarepresentationofgandK satisfyingthefollowingconditions: (a) asarepresentationofK itisadirectsumofsmoothirreduciblerepresentations(offinitedimension), eachwithfinitemultiplicity; (b) therepresentationofkassociatedtothatassubalgebraofgandthatasLiealgebraofK arethesame; RepresentationsofSL(2,R) 8 (c) forkinK,X ing π(k)π(X)π−1(k)=π(Ad(k)X). Anyrepresentationofthepair(g,K)satisfyingtheseiscalledadmissible. MostofthetimeIshallbemost interestedinthosewhicharefinitelygeneratedasmodulesovertheenvelopingalgebraU(g). Theseareof finitelength,inthesensethattheypossessafinitefiltrationbyirreduciblerepresentations. Letmemakesomemoreremarksonthisdefinition. Itisplainlynaturalthatwerequirethatgact. Butwhy K? Thereareseveralreasons. WhatwearereallyinterestedinarerepresentationsofG,ormoreprecisely • representationsofgthatcomefromrepresentationsofG. Butarepresentationofgcanonlydeterminethe representationoftheconnectedcomponentofG. ThegroupK meetsallcomponentsofG,sothatrequiring K toactfixesthisproblem. ForgroupslikeSL2(R),whichareconnected,thisproblemdoesnotoccur,but forthegroupPGL2(R),withtwocomponents,itdoes. OnepointofhavingKactistodistinguishSL2(R) • fromothergroupswiththesameLiealgebra. Forexample,PGL2(R)hasthesameLiealgebraasSL2(R), butthestandardrepresentationofitsLiealgebraonR2doesnotcomefromoneofPGL2(R). Requiringthat K act picks out a unique group in the isogeny class, since K contains the centre of G. Any continuous • representationofK,suchastherestrictiontoK ofacontinuousrepresentationofG,decomposesinsome senseintoadirectsumofirreduciblefinite dimensionalrepresentations. ThisisnottrueoftheLiealgebra k, which is after all the same as the Lie algebra of R or R×. So this requirement picks out from several possibilitiestheclassofrepresentationswewant. Admissible representations of (g,K) are not generally semi simple. For example, the space V of smooth functionsonPcontainstheconstantfunctions,buttheyarenotaG stablesummandofV. If(π,V)isasmoothrepresentationofGassignedaG invariantHermitianinnerproduct,thecorresponding equationsofinvariancefortheLiealgebraarethat Xu•v = u•Xv − forX ingR,or Xu•v = u•Xv − for X in the complex Lie algebra gC. An admissible (gC,K) module is said to be unitary if there exists a positive definite Hermitian metricsatisfying thiscondition. In some sense, unitary representationsare by far themostimportant. At present, themajor justification ofrepresentationtheoryisin itsapplications to automorphicforms,andthemostinterestingonesencounteredareunitary. Hereissomemoreevidencethatthedefinitionofanadmissiblerepresentationof(gC,K)isreasonable: (a) admissiblerepresentationsof(g,K)thatarefinite dimensionalareinfactrepresentationsofG; (b) ifthecontinuousrepresentation(π,V)ofGisadmissible,themaptakingeach(g,K) stablesubspace U V(K)toitsclosureinV isabijectionbetween(gC,K) stablesubspacesofV(K)andclosedG stable ⊆ subspacesofV; (c) everyadmissiblerepresentationof(g,K)isV forsomecontinuousrepresentation(π,V)ofG; (K) (d) everyunitaryadmissiblerepresentationof(gC,K)isV(K)forsomeunitaryrepresentationofG; (e) thereisanexactfunctorfromadmissiblerepresentationsof(g,K)tosmoothrepresentationsofG. Item(a)isclassical. For(b),refertoThe´ore`me3.17of[Borel:1972]. Iamnotsurewhatagoodreferencefor(c)is. Forirreduciblerepresentations,itisaconsequenceofatheorem of Harish Chandra that every irreducible admissible (g,L) module is a subquotient of a principal series representation. Thisalsofollowsfromthemainresultof[Beilinson Bernstein:1982]. Thefirstproofof(d)wasprobablybyHarish Chandra,butIamnotsureexactlywhere. For(e),referto[Casselman:1989]or[Bernstein Kro¨tz:2010]. RepresentationsofSL(2,R) 9 Mostoftherestofthisessaywillbeconcernedonlywithadmissiblerepresentations(π,V)of(g,K),although itwillbegoodtokeepinmindthatthemotivationforstudyingthemisthattheyarisefromrepresentations ofG. Curiously,althoughnowadaysrepresentationsofSL2(R)areseenmostlyinthetheoryofautomorphicforms, thesubjectwasintroducedbythephysicistValentineBargmann,inprettymuchtheformweseehere. Ido notknowwhatphysicsproblemledtohisinvestigation. 2. TheLiealgebra The Lie algebra of G is the vector space sl2(R) of all matrices in M2(R) with trace 0. Its Lie bracket is [X,Y] = XY YX. There are twouseful bases of the complexifiedalgebra gC, mirroring a duality that − existsthroughoutrepresentationtheory. THE SPLIT BASIS. Thesimplestbasisisthis: 1 0 h = (cid:20)0 1(cid:21) − 0 1 ν = + (cid:20)0 0(cid:21) 0 0 ν = − (cid:20)1 0(cid:21) withdefiningrelations [h,ν ] = 2ν ± ± ± [ν ,ν ]= h. + − ThegroupGpossessesaninvolutoryautomorphismθ,takinggtotg−1. TheinvolutioninducedontheLie algebratakesXto tX. Thisfixeselementsofkandactsasmultiplicationby 1onthesymmetricmatrices. − − Thus ν+θ = −ν−. It is sometimesmore convenient to have the basis stable with respect to θ and, for this reason,sometimesintheliterature ν−isusedaspartofastandardbasisinsteadofν−. − THE COMPACT BASIS. Thisisabasisthat’susefulwhenwewanttodocalculationsinvolvingK. Thefirst elementofthenewbasisis 0 1 κ= − , (cid:20)1 0(cid:21) whichspanstherealLiealgebrakofK. TherestofthenewbasisistobemadeupofeigenvectorsofK. The groupK iscompact. Itscharactersareallcomplex,notreal,soinordertodecomposetheadjointactionofk ongwesowemustextendtherealLiealgebratothecomplexone. ThekR stablespacecomplementarytokR ingRisthatofsymmetricmatrices a b . (cid:20)b a(cid:21) − anditscomplexificationdecomposesintothesumoftwoconjugateeigenspacesforκspannedby 1 1 i x+ = 2·(cid:20) i −1(cid:21) − − 1 1 i x = − 2·(cid:20) i 1(cid:21) − withrelations [κ,x ] = 2ix ± ± ± [x ,x ]= iκ. + − − RepresentationsofSL(2,R) 10 By definition, the space of an admissible representation of (g,K) is spanned by eigenvectors for K. The followingisanelementaryconsequenceoftheformulasabove: 2.1. Lemma.SupposeV tobeanyrepresentationof(g,K),andsupposevtobeaneigenvectorforKwith eigencharacterεn.Thenπ(κ)v =nivandπ(κ)π(x±)v =(n 2)iπ(x±)v. ± Proof. Since d π(κ)v = eintv =niv dt(cid:12) (cid:12)t=0 (cid:12) and (cid:12) π(κ)π(x )v =π(x )π(κ)v+π([κ,x ])v. ± ± ± THE CAYLEY TRANSFORM. ThegroupGpossessestwomaximaltori,thesubgroupAofdiagonalmatrices andthecompactsubgroupK. TheyarecertainlynotconjugateinG,buttheybecomeconjugateinG(C)= SL2(C). Thiscanbeseengeometrically. ThegroupG(C)actsbyfractionallineartransformationsonP1(C). Thediagonalmatricesfixtheorigin,andthecomplexmatrices c s − (cid:20)s c(cid:21) fixi. TheCayleytransform C: z (z i)/(z+i) 7−→ − takesito0,andtherefore 1 i CK(C)C−1 =A(C) C = − . (cid:18) (cid:20)1 i(cid:21)(cid:19) IntheLiealgebra Ad κ= hi, Ad x =iν . C C ± ∓ − Inclassifying algebraictoriinarbitrarysemi simplegroupsdefinedoverR, copiesoftheCayleymatrixC arecrucial. THE CASIMIR. letZ(g)bethecentreofU(g). Suppose(π,V)tobeanirreducibleadmissiblerepresentation of(g,K). ThenanyelementX ofthecentreofU(g)willactasascalarmultiplication,saybyζ(X),onallof V. ThehomomorphismfromZ(g)takingX toζ(X)isanimportantcharacteristicofπ,called(forreasons thatescapeme)itsinfinitesimalcharacter. WhatisthecentreofU(g)? 2.2. Proposition.ThecentreofU(g)isthepolynomialalgebrageneratedbytheCasimiroperator h2 ν ν ν ν + − − + Ω= + + . 4 2 2 Ithasalternateexpressions h2 h Ω= +ν ν + − 4 − 2 h2 h = + +ν ν − + 4 2 h2 h = +ν2 ν κ 4 − 2 +− + κ2 x x x x − + + − = + + − 4 2 2 κ2 κi = +x x − + − 4 − 2 κ2 κi = + +x x . + − − 4 2

Description:
P = subgroup of upper triangular matrices. = AN. gR = Lie algebra sl2(R). gC = C ⊗R gR . Most of the time, it won't matter whether I am referring to the real or complex Lie algebra, and I'll skip the subscript. Much of this essay is unfinished. There might well be some annoying errors, for which
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.