Representations of reductive normal algebraic monoids StephenDoty 4 1 0 2 n a J 7 DedicatedtoLexRennerandMohanPutcha ] T AbstractTherationalrepresentationtheoryofareductivenormalalgebraicmonoid R (withone-dimensionalcenter)formsahighestweightcategory,inthesenseofCline, . Parshall, and Scott. This is a fundamental fact about the representation theory of h reductivenormalalgebraicmonoids.We surveyhow this resultwas obtained,and t a treatsomenaturalexamplescomingfromclassicalgroups. m [ 1 Introduction v 7 0 LetM beanaffinealgebraicmonoidoveranalgebraicallyclosedfieldK.See[10, 4 1 13, 12] for generalsurveysand backgroundon algebraic monoids.Assuming that . Misreductive(itsgroupGofunitsisareductivegroup)whatcanbesaidaboutthe 1 representationtheoryofMoverK? 0 4 Recallthatanyaffinealgebraicgroupissmoothandhencenormal(asavariety). 1 The normality of the algebraic group plays a significant role in its representation : v theory,forinstanceintheproofofChevalley’stheoremclassifyingtheirreducible i representations.Thusitseemsreasonableintryingtoextend(rational)representa- X tiontheoryfromreductivegroupstoreductivemonoidstolookfirstatthecasewhen r a themonoidM isnormal.Furthermore,evenincaseswhereagivenreductivealge- braicmonoidisnotnormal,onemayalwayspasstoitsnormalization,whichshould becloselyrelatedtotheoriginalobject. Renner[11]hasobtainedaclassificationtheoremforreductivenormalalgebraic monoids under the additional assumptions that the center Z(M) is 1-dimensional andthatMhasazeroelement.Renner’sclassificationtheoremdependsonanalge- LoyolaUniversityChicago,DepartmentofMathematicsandStatistics,ChicagoIL60660USA, e-mail:[email protected] 1 2 StephenDoty braic monoidversionof Chevalley’sbig cell, whichholdsforany reductiveaffine algebraicmonoid(withnoassumptionsaboutitscenterorazero).Asacorollaryof itsconstruction,Rennerderivesaveryusefulextensionprinciple[11,(4.5)]which isakeyingredientintheanalysis. 1 Reductive normal algebraicmonoids Let M be a linear algebraicmonoid overan algebraicallyclosed field K. In other words,M is a monoid(with unitelement1∈M) whichisalso anaffine algebraic varietyoverK,suchthatthemultiplicationmapm :M×M→M isamorphismof varieties.WeassumethatMisirreducibleasavariety.HencetheunitgroupG=M× (thesubgroupofinvertibleelementsofM)isaconnectedlinearalgebraicgroupover K andGisZariskidenseinM. 1.1. Associated with M is its affine coordinate algebra K[M], the ring of regular functionsonM.ThereexistK-algebrahomomorphisms D :K[M]→K[M]⊗ K[M], e :K[M]→K K called comultiplication and counit, respectively. For a given f ∈K[M], we have e (f)= f(1);furthermore,ifD (f)=(cid:229) r f ⊗f′then f(m m )=(cid:229) r f(m )f′(m ), i=1 i i 1 2 i=1 i 1 i 2 forallm ,m ∈M.ThemapsD ,e makeK[M]intoabialgebraoverK.Thismeans 1 2 thattheysatisfythebialgebraaxioms: (1) (id⊗D )◦D =(D ⊗id)◦D , (2) (e ⊗id)◦D =id=(id ⊗e )◦D wherej ⊗j ′denotesthemapa⊗a′7→j (a)j ′(a′). We note that the commutative bialgebra (K[M],D ,e ) determines M, as the set Hom (K[M],K) of K-algebra homomorphismsfrom K[M] into K. The multi- K−alg plication on this set is defined by j ·j ′ =(j ⊗ j ′)◦D and the identity element isjustthecounite .OneeasilyverifiesthatthisreconstructsM fromitscoordinate bialgebraK[M]. Moregenerally,givenanycommutativebialgebra(A,D ,e )overK,onedefineson thesetM(A)=Hom (A,K)analgebraicmonoidstructurewithmultiplication K−alg m (j ,j ′)=j ·j ′=(j ⊗j ′)◦D .Thisgivesafunctor {commutativebialgebrasoverK}→{algebraicmonoidsoverK} which is quasi-inverse to the functor M 7→ K[M]. Thus the two categories are antiequivalent. 1.2. SinceGisdenseinM,therestrictionmapK[M]→K[G](givenby f 7→ f )is |G injective,sowemayidentifyK[M]withasubbialgebraoftheHopfalgebraK[G]of regularfunctionsonG. Representationsofreductivenormalalgebraicmonoids 3 1.3. AssumethatM isreductive;i.e.,itsunitgroupG=M× isreductiveasanal- gebraic group. Fix a maximal torus T in G. (Up to conjugationT is unique.) Let X(T)=Hom(T,K×)bethecharactergroupofT;thisistheabeliangroupofmor- phismsfromT intothemultiplicativegroupK×ofK.LetX∨(T)=Hom(K×,T)be theabeliangroupofcocharactersinto T. LetR⊂X(T)betherootsystem forthe pair(G,T)andR∨⊂X∨(T)thesystemofcoroots.Accordingtotheclassification of reductivealgebraicgroups,the reductivegroupG is uniquelydeterminedup to isomorphismbyitsrootdatum(X(T),R,X∨(T),R∨). 1.4. We now add the assumptionthat M is normalas a variety.LetD=T be the ZariskiclosureofT in M. ThenT ⊂D is anaffine torusembedding.LetX(D)= Hom(D,K) be the monoid of algebraic monoid homomorphisms from D into K. The restriction c of any c ∈X(D) is an element of X(T), so restriction defines |T a homomorphismX(D)→X(T).Since T isdenseinD,thismapisinjective,and thuswemayidentifyX(D)withasubmonoidofX(T).Rennerhasshownthatthe additionaldatumX(D)isallthatisneededtodetermineMuptoisomorphism,under theadditionalhypotheses(probablyunnecessary)thatthecenter Z(M)={z∈M:zm=mz, forallm∈M} is 1-dimensionaland that M has a zero element. (One can always add a zero for- mally,sothelastrequirementisinsubstantial.) Itturnsoutthattheset X(D)also determinesthe rationalrepresentationtheory ofthereductivenormalalgebraicmonoidM,inasensemadepreciseinSection3. 1.5. Notethatitiseasytoconstructreductivealgebraicmonoids.Startwitharatio- nal representationr :G→End (V) of a reductivegroupG in some vectorspace K V with dim V =n<¥ . Theimager (G)isa reductiveaffinealgebraicsubgroup K ofEnd (V)≃M (K),themonoidofalln×nmatricesunderordinarymatrixmul- K n tiplication. Desiring our monoid to have a center of at least dimension 1, we in- cludethescalarsK×asscalarmatrices,definingG tobethesubgroupofEnd (V) 0 K generated by r (G) and K×. Now we set M = G , the Zariski closure of G in 0 0 End (V)≃M (K).Thisisareductivealgebraicmonoid. K n Forexample,ifG=SL (K)andV isitsnaturalrepresentationthenG ≃GL (K) n 0 n and M=M (K). (In general,to obtaina monoidM closely related to the starting n groupG, oneshouldpickV to bea faithfulrepresentation.)Thereisnoguarantee thatthisprocedurewillalwaysproduceanormalreductivemonoid,butifnotthen onecanalwayspasstoitsnormalization. 2 Examples: symplecticandorthogonal monoids The paper [4] considered some more substantial examples of reductive algebraic monoids coming from other classical groups. LetV =Kn with its standard basis {e ,...,e }.Puti′=n+1−iforanyi=1,...,n. 1 n 4 StephenDoty 2.1. The orthogonal monoid. Assume the characteristic of K is not 2. Define a symmetricnondegeneratebilinearformh, ionV byputting (a) hei,eji=d i,j′ forany1≤i,j≤n. Hered isKronecker’sdeltafunction.LetJbethematrixofh, iwithrespecttothe basis{e ,...,e }.ThentheorthogonalgroupO(V)isthegroupoflinearoperators 1 n f ∈End (V)preservingtheform: K (b) O(V)={f ∈End (V):hf(v),f(v′)i=hv,v′i, allv,v′∈V}. K LetAbethematrixof f withrespecttothebasis{e ,...,e }.Thenwemayidentify 1 n O(V)withthematrixgroup T (c) O (K)={A∈M (K):A JA=J}. n n Thisis containedin thelargergroupGO (K), thegroupoforthogonalsimilitudes n (seee.g.,[9])definedby (d) GO (K)={A∈M (K):ATJA=cJ, somec∈K×}. n n NotethatGO (K)isgeneratedbyO (K)andK×.Wedefinetheorthogonalmonoid n n OM (K)tobe n (e) OM (K)=GO (K), n n theZariskiclosureinM (K).Thesemonoids(fornodd)werestudiedbyGrigor’ev n [8].In[4]thefollowingresultwasproved. 2.2Proposition. TheorthogonalmonoidOM (K)isthesetofallA∈M (K)such n n T T thatA JA=cJ=AJA ,forsomec∈K. Note that the scalar c∈K in the above is allowed to be zero, and the “extra” T T condition cJ =AJA is necessary. If c6=0 then it is easy to see that A JA=cJ T isequivalenttocJ=AJA ,butwhenc=0thisequivalencefails.Theequivalence meansthatwecouldjustaswellhavedefinedGO (K)by n GO (K)={A∈M (K):ATJA=cJ=AJAT, somec∈K×} n n whichisperhapsmoresuggestiveforthedescriptionofOM (K)givenabove. n 2.3. Thesymplecticmonoid.Assumethatn=dim V iseven,sayn=2m.Define K anantisymmetricnondegeneratebilinearformh, ionV byputting (a) hei,eji=eid i,j′ forany1≤i,j≤n. where e is 1 if i≤m and −1 otherwise. Let J be the matrix of h , i with respect i to the basis {e ,...,e }. Then the symplectic group Sp(V) is the group of linear 1 n operators f ∈End (V)preservingthebilinearform: K Representationsofreductivenormalalgebraicmonoids 5 (b) Sp(V)={f ∈End (V):hf(v),f(v′)i=hv,v′i, allv,v′∈V}. K LetAbethematrixof f withrespecttothebasis{e ,...,e }.Thenwemayidentify 1 n Sp(V)withthematrixgroup T (c) Sp (K)={A∈M (K):A JA=J}. n n ThisiscontainedinthelargergroupGSp (K),thegroupofsymplecticsimilitudes, n definedby (d) GSp (K)={A∈M (K):ATJA=cJ, somec∈K×}. n n NotethatGSp (K)isgeneratedbySp (K)andK×.Asintheorthogonalcase,we n n couldjustaswellhavedefinedGSp (K)by n GSp (K)={A∈M (K):ATJA=cJ=AJAT, somec∈K×} n n T T thankstotheequivalenceoftheconditionsA JA=cJandcJ=AJA incasec6=0. WedefinethesymplecticmonoidSpM (K)tobe n (e) SpM (K)=GSp (K), n n theZariskiclosureinM (K).In[4]thefollowingwasproved. n 2.4Proposition. ThesymplecticmonoidSpM (K)isthesetofallA∈M (K)such n n T T thatA JA=cJ=AJA ,forsomec∈K. Notethatthescalarc∈K in theaboveisallowedtobezero,andthecondition T cJ=AJA isnecessary,justasitwasintheorthogonalcase. 2.5. Sketch of proof. I want to briefly sketch the ideas involved in the proof of Propositions2.2and2.4.Fulldetailsareavailablein[4].Themethodofproofworks for any infinite field K (except that characteristic 2 is excluded in the orthogonal case).Wecontinuetoassumethatn=2miseveninthesymplecticcase. LetG=GO (K) or GSp (K) andlet M=OM (K) or SpM (K), respectively. n n n n LetT bethemaximaltorusofdiagonalelementsofG.Thenwehaveinclusions (a) T ⊂G⊂M andwedesiretoprovethatthelatterinclusionisactuallyanequality.Toaccomplish this, we consider the action of G×G on M given by (g,h)·m=gmh−1. Suppose thatwecanshowthateveryG×GorbitisoftheformGaG,forsomea∈T.Then itfollowsthat (b) M= GaG⊂G a∈T S and this givesthe opposite inclusion that provesPropositions2.2 and 2.4. In fact, as it turned out, the distinct a∈T in the above decompositioncan be taken to be certainidempotentsinT. 6 StephenDoty Thissuggeststheprogramthatwascarriedoutin[4],whichintheendleadsto additionalstructuralinformationonM: (i)ClassifyallidempotentsinT. (ii)ObtainanexplicitdescriptionofT. (iii)DeterminetheG×GorbitsinM. Part(i)iseasy.Forpart(ii)oneexploitstheactionofT onT byleftmultiplication and determines the orbits of that action. Part (iii) involves developing orthogonal andsymplecticversionsofclassicalGaussianelimination. 2.6. The normality question. It is clear from the equalities in Propositions 2.2 and2.4thatOM (K)andSpM (K)bothhaveone-dimensionalcentersandcontain n n zero.Whatisnotclear,andnotaddressedin[4],iswhetherornottheyarenormal asalgebraicvarieties. This question was recently settled in [6], where it is shown that SpM (K) is n alwaysnormal,whileOM (K)isnormalonlyin caseniseven.Moreprecisely,it n isshownin[6]thatwhenn=2miseven,OM+(K)andOM−(K)arebothnormal n n varieties.Here (a) OM (K)=OM+(K)∪OM−(K) n n n isthedecompositionintoirreduciblecomponents,whereOM+(K)isthecomponent n containingtheunitelement1. 3 Representation theory FromnowonweassumethatMisanarbitraryreductivenormalalgebraicmonoid, withunitgroupG=M×.Wewishtodescribesomeresultsof[5].Themainresult isthatthecategoryofrationalM-modulesisahighestweightcategoryinthesense ofCline–Parshall–Scott[1]. 3.1. We work with a fixed maximaltorusT ⊂G, and setD=T. We assume that dimZ(M)=1and0∈M.RecallthatrestrictioninducesaninjectionX(D)→X(T), sowemayidentifyX(D)withasubmonoidofX(T).WefixaBorelsubgroupBwith T ⊂B⊂GandletthesetR−ofnegativerootsbedefinedbythepair(B,T).Weset R+=−(R−),thesetofpositiveroots.WehaveR=R+∪R−.Let X(T)+={l ∈X(T):(a ∨,l )≥0, foralla ∈R+} betheusualsetofdominantweights.Wedefine X(D)+=X(T)+∩X(D). 3.2. By a (left) rationalM-modulewe meana linearaction M×V →V suchthat the coefficientfunctionsM→K of the actionare allin K[M]. Thisis the same as Representationsofreductivenormalalgebraicmonoids 7 havinga(right)K[M]-comodulestructureonV.Thismeansthatwehaveacomodule structuremap (a) D :V →V⊗ K[M]. V K SinceK[M]⊂K[G]themapD inducesacorrespondingmapV →V⊗ K[G]mak- V K ingV into a K[G]-comodule;i.e., a rational G-module. Thus, rationalM-modules mayalsoberegardedasrationalG-modules.AnyrationalM-moduleissemisimple whenregardedasarationalD-module,withcorrespondingweightspacedecompo- sition (b) V = l ∈X(D)Vl whereVl ={v∈V :d·v=l (d)v, allLd∈D}. RecallthatanyrationalG-moduleV is semisimplewhenregardedasa rational T-module,withcorrespondingweightspacedecomposition (c) V = l ∈X(T)Vl whereVl ={v∈V :t·v=l (t)v, allLt ∈T}.IfV isarationalM-modulethenthe weight spaces relative to T are the same as the weight spaces relative to D. So the weights of a rational M-module all belong to X(D). Conversely, we have the following. 3.3Lemma. IfV isarationalG-modulesuchthat {l ∈X(T):Vl 6=0}⊂X(D) thenV extendsuniquelytoarationalM-module. ThisisprovedasanapplicationofRenner’sextensionprinciple,whichisaver- sionofChevalley’sbigcellconstructionforalgebraicmonoids. 3.4Remark. Aspecialcaseofthelemma(forthecaseM=M (K))canbefound n in[7]. 3.5. Nextoneneedsanotionofinductionforalgebraicmonoids,i.e.,aleftadjoint torestriction.Theusualdefinitionofinducedmoduleforalgebraicgroupsdoesnot work for algebraic monoids. Instead, we use the following definition. LetV be a rationalL-modulewhereLisanalgebraicsubmonoidofM.WedefineindMV by L indMV ={f ∈Hom(M,V): f(lm)=l·f(m), alll∈L,m∈M}. L Thisisviewedasa rationalM-moduleviarighttranslation.Onecancheckthatin caseL,Marealgebraicgroupsthenthisisisomorphictotheusualinducedmodule. ItiswellknownthattheBorelsubgroupBhasthedecompositionB=TU,where U isits unipotentradical.Givena characterl ∈X(T)oneregardsK asa rational T-modulevial ;thisisoftendenotedbyKl .OneextendsKl toarationalB-module bylettingU acttrivially.Similarly,wehavethedecompositionB=DU.Ifl ∈X(D) 8 StephenDoty thenwehaveKl asabove,andagainwemayregardthisasarationalB-moduleby lettingU acttrivially. NowwecanformulatetheclassificationofsimplerationalM-modules. 3.6Theorem. LetM be a reductivenormalalgebraicmonoid.Letl ∈X(D)and letKl betherationalB-moduleasabove.Then (a)indMKl 6=0ifandonlyifl ∈X(D)+. B (b)IfindMKl 6=0thenitssocleisasimplerationalM-module(denotedbyL(l )). B (c)ThesetofL(l )withl ∈X(D)+givesacompletesetofisomorphismclasses ofsimplerationalM-modules. Letl ∈X(T).Let(cid:209) (l )=indGBKl .Itiswellknownthat(cid:209) (l )6=0ifandonlyif l ∈X(T)+.Thefollowingisakeyfact. 3.7Lemma. Ifl ∈X(D)+ thenindMBKl =(cid:209) (l )=indGBKl . 3.8. Nowweconsidertruncation.Letp ⊂X(T)+.GivenarationalG-moduleV,let Op V betheuniquelargestrationalsubmoduleofV withthepropertythatthehighest weightsofallitscompositionfactorsbelongtop .The(leftexact)truncationfunctor Op wasdefinedbyDonkin[2]. RecallthatX(T)ispartiallyorderedbyl ≤m ifm −l canbewrittenasasumof positiveroots;thisissometimescalledthedominanceorder.Asubsetp ofX(T)+is saidtobesaturatedifitispredecessorclosedunderthedominanceorderonX(T). Inotherwords,p issaturatedifforanym ∈p andanyl ∈X(T)+,l ≤m implies thatl ∈p . In order to show that the category of rational M-modules is a highest weight category,wearegoingtotakep =X(D)+.Weneedthefollowingobservation. 3.9Lemma. Thesetp =X(D)+isasaturatedsubsetofX(T)+. For l ∈X(T)+, let I(l ) be the injective envelope of L(l ) in the category of rationalG-modules.Forl ∈X(D)+ letQ(l )betheinjectiveenvelopeofL(l )in thecategoryofrationalM-modules.Thefollowingrecordstheeffectoftruncation onvariousclassesofrationalG-modules. 3.10Theorem. Letp =X(D)+.Foranyl ∈X(T)+ wehavethefollowing: (cid:209) (l ) ifl ∈p (a) Op (cid:209) (l )= (0 otherwise. Q(l ) ifl ∈p (b) Op I(l )= (0 otherwise. (c) Op K[G]=K[M]. Note that K[M] is regarded as a rational M-module via right translation. A (cid:209) - filtrationforarationalG-moduleV isanascendingseries 0=V ⊂V ⊂···⊂V ⊂V =V 0 1 r−1 r Representationsofreductivenormalalgebraicmonoids 9 ofrationalsubmodulessuchthatforeach j=1,...,r, thequotientV /V isiso- j j−1 morphictosome(cid:209) (l ).WheneverV isarationalG-modulewitha(cid:209) -filtration,let j (V :(cid:209) (l )) bethe numberofl forwhichl =l . Thisnumberis independentof j j thefiltration. The proof of the above theorem, which relies on results of [3], also shows the followingfacts. 3.11Corollary. (a)Letl ∈p =X(D)+.ThemoduleQ(l )hasa(cid:209) -filtration.Fur- thermore,itsatisfiesthereciprocityproperty (Q(l ):(cid:209) (m ))=[(cid:209) (m ):L(l )] foranym ∈X(D)+,where[V :L]standsforthemultiplicityofasimplemoduleLin acompositionseriesofV. (b)ThemoduleK[M]hasa(cid:209) -filtration.Moreover,(K[M]:(cid:209) (l ))=dim (cid:209) (l ) K foreachl ∈X(D)+. 3.12. Fromtheseresultsoneobtainstheimportantfactthatthecategoryofrational M-modulesisahighestweightcategory,inthesenseof[1].Inparticular,onealso seesthatdim Q(l )isfinite,foranyl ∈X(D)+.(Incontrast,itiswellknownthat K dim I(l )isinfinite.) K 3.13. Itisalsoshownin[5],exploitingtheassumptionthatZ(M)isone-dimensional, thatthecategoryofrationalM-modulessplitsintoadirectsumof‘homogeneous’ subcategories each of which is controlled by a finite saturated subset of X(D)+. Fromtheresultsof[1]itthenfollowsthatthereisafinitedimensionalquasihered- itaryalgebraineachhomogeneousdegree,whosemodulecategoryispreciselythe homogeneoussubcategoryin thatdegree.Details are givenin [5], where it is also shown that the quasihereditary algebras in question are in fact generalized Schur algebrasinthesenseofDonkin[2]. References 1. E.Cline,B.Parshall,andL.Scott:Finitedimensionalalgebrasandhighestweight categories,J.ReineAngew.Math.391(1988),85–99. 2. S.Donkin:OnSchuralgebrasandrelatedalgebrasI,J.Algebra104(1986),310–328. 3. S.Donkin:Goodfiltrationsofrationalmodulesforreductivegroups,Proc.SymposiaPure Math.(PartI)47(1987),69–80. 4. S.Doty:Polynomialrepresentations,algebraicmonoids,andSchuralgebrasofclassical type,J.PureAppliedAlgebra123(1998),165–199. 5. S.Doty:Polynomialrepresentations,algebraicmonoids,andSchuralgebrasofclassical type,J.PureAppl.Algebra123(1998),165–199. 6. S.DotyandJunHu:Schur–Weyldualityfororthogonalgroups,Proc.Lond.Math.Soc.(3) 98(2009),679–713. 7. E.FriedlanderandA.Suslin,Cohomologyoffinitegroupschemesoverafield,Invent. Math.127(1997),209–270. 10 StephenDoty 8. D.Ju.Grigor’ev,AnanalogueoftheBruhatdecompositionfortheclosureoftheconeofa Chevalleygroupoftheclassicalseries(Russian),Dokl.Akad.NaukSSSR257(1981), 1040–1044. 9. M.–A.Knus,A.Merkurjev,M.Rost,andJ.–P.Tignol:Thebookofinvolutions,American MathematicalSocietyColloquiumPublications,44,AmericanMathematicalSociety, Providence,RI,1998. 10. M.Putcha:LinearAlgebraicMonoids,LondonMath.Soc.LectureNotesSeries133, CambridgeUniv.Press,1988. 11. L.Renner:Classificationofsemisimplealgebraicmonoids,Trans.Amer.Math.Soc.292 (1985),193–223. 12. LexE.Renner:Linearalgebraicmonoids,EncyclopaediaofMathematicalSciences,134; InvariantTheoryandAlgebraicTransformationGroups,V.Springer–Verlag,Berlin,2005. 13. L.Solomon:Anintroductiontoreductivemonoids,inSemigroups,formallanguagesand groups(York,1993),pp.295–352,NATOAdv.Sci.Inst.Ser.CMath.Phys.Sci.,466, KluwerAcad.Publ.,Dordrecht,1995.