ebook img

Representations of Lie Algebras and Partial Differential Equations PDF

642 Pages·2017·7.755 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representations of Lie Algebras and Partial Differential Equations

Xiaoping Xu Representations of Lie Algebras and Partial Differential Equations Representations of Lie Algebras and Partial Differential Equations Xiaoping Xu Representations of Lie Algebras and Partial Differential Equations 123 XiaopingXu Institute of Mathematics Academy of Mathematics andSystemsSciences, ChineseAcademy of Sciences Beijing P.R.China and Schoolof Mathematics University of Chinese Academyof Sciences Beijing P.R.China ISBN978-981-10-6390-9 ISBN978-981-10-6391-6 (eBook) DOI 10.1007/978-981-10-6391-6 LibraryofCongressControlNumber:2017950037 MathematicsSubjectClassification(2010):17B10,35C05,17B20,33C67,94B05 ©SpringerNatureSingaporePteLtd.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,Singapore To My Former Ph.D Thesis Advisors: Profs. James Lepowsky and Robert Lee Wilson Preface Symmetry is an important phenomenon in the natural world. Lie algebra is not purelyanabstractmathematicsbutafundamentaltoolofstudyingsymmetry.Infact, Norwegian mathematician Sorphus Lie introduced Lie group and Lie algebra in 1874 in order to study the symmetry of differential equations. Lie algebras are the infinitesimal structures (bones) of Lie groups, which are symmetric manifolds. Lie theoryhasextensiveandimportantapplicationsinmanyotherfieldsofmathematics, such as geometry, topology, number theory, control theory, integrable systems, operator theory, and stochastic process. Representations of finite-dimensional semisimple Lie algebras play fundamental roles in quantum mechanics. The con- trollability property of the unitary propagator of an N-level quantum mechanical system subject to a single control field can be described in terms of the structure theoryofsemisimpleLiealgebras.Moreover,Liealgebraswereusedtoexplainthe degeneraciesencounteredingeneticcodesastheresultofasequenceofsymmetry breakingsthathaveoccurredduringitsevolution.Thestructuresandrepresentations of simple Lie algebras are connected with solvable quantum many-body system in one-dimension. Our research also showed that the representation theory of Lie algebrasis connected with algebraic coding theory. Theexistingclassicalbooksonfinite-dimensionalLiealgebras,suchastheones by Jacobson and by Humphreys, purely focus on the algebraic structures of semi simpleLiealgebrasandtheirfinite-dimensionalrepresentations.Explicitirreducible representations of simple Lie algebras had not been addressed extensively. Moreover,therelationsofLiealgebraswiththeothersubjectshadnotbeennarrated that much. It seems to us that a book on Lie algebras with more extensive view is needed in coupling with modern development of mathematics, sciences, and technology. Thisbookismainlyanexpositionoftheauthor’sworksandhisjointworkswith his former students on explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics, and algebraic varieties. Various oscillator generalizations of the classical representation theorem on harmonic polynomials are presented. New functorsfromtherepresentationcategoryofasimpleLiealgebratothatofanother vii viii Preface simpleLiealgebraaregiven.Partialdifferentialequationsplaykeyrolesinsolving certain representation problems. The weight matrices of the minimal and adjoint representationsoverthesimpleLiealgebrasoftypesEandFareprovedtogenerate ternary orthogonal linear codes with large minimal distances. New multivariable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body system in one-dimension. Certain equivalent combinatorial properties on representation formulas are found. Irreducibility of representations is proved directly related to algebraic varieties. This book is self-contained with the minimal prerequisite of calculus and linear algebra. It is our wish that the results this book can also be easily understood by nonalgebraists andappliedto theother mathematical fields and physics. It consists of three parts. The first part is mainly the classical structure and finite-dimensional representation theory of finite-dimensional semisimple Lie algebras, written with Humphreys’book“IntroductiontoLieAlgebrasandRepresentationTheory”asthe main reference, where we give more examples and direct constructions of simple Lie algebras of exceptional types, revise some arguments, and prove some new statements.Thispartservesasthepreparationforthemaincontext.Thesecondpart isourexplicitrepresentationtheoryoffinite-dimensionalsimpleLiealgebras.Many of the irreducible representations in this part are infinite-dimensional, and some of them are even not of highest-weight type. Certain important natural represen- tation problems are solved by means of solving partial differential equations. In particular, some of our irreducible presentations are completely characterized by invariant partial differential equations. Newrepresentation functors are constructed from inhomogeneous oscillator representations of simple Lie algebras, which give fractional representations of the corresponding Lie groups, such as the projective representations of special linear Lie groups and the conformal representations of complexorthogonal groups.Thethirdpartisanextensionofthesecond part. First we give supersymmetric generalizations of the classical representation theorem on harmonic polynomials. They can also be viewed as certain supersymmetric Howe dualities.Thenwepresentourtheoryofrepresentationtheoreticcodes.Finally,we talk about root-related integrable systems and our new multivariable hypergeo- metric functions, which are natural multivariable analogues of the classical Gauss hypergeometric functions. The corresponding hypergeometric partial differential equations are found. Part of this book has been taught for many times at the University of Chinese Academy of Sciences. The book can serve as a research reference book for mathematiciansandscientists.Itcanalsobetreatedasatextbookforstudentsafter a proper selection of materials. Beijing, P.R. China Xiaoping Xu 2017 Acknowledgements The research in this book was partly supported by NSFC Grants 11671381, 11321101andHuaLoo-KengKeyMathematicalLaboratory,ChineseAcademyof Sciences. We thank the reviewers and Dr. Ramond Peng for their helpful comments. ix Contents Part I Fundament of Lie Algebras 1 Preliminary of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Basic Definitions and Examples. . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Lie Subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Homomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Nilpotent and Solvable Lie Algebras . . . . . . . . . . . . . . . . . . . . 21 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Semisimple Lie Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Killing Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Real and Complex Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Weyl’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5 Root Space Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Properties of Roots and Root Subspaces. . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Root Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1 Definitions, Examples and Properties . . . . . . . . . . . . . . . . . . . . 61 3.2 Weyl Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4 Automorphisms, Constructions and Weights. . . . . . . . . . . . . . . 86 4 Isomorphisms, Conjugacy and Exceptional Types . . . . . . . . . . . . . 95 4.1 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Cartan Subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3 Conjugacy Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 Simple Lie Algebra of Exceptional Types . . . . . . . . . . . . . . . . 114 xi xii Contents 5 Highest-Weight Representation Theory. . . . . . . . . . . . . . . . . . . . . . 125 5.1 Universal Enveloping Algebras . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2 Highest-Weight Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Formal Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4 Weyl’s Character Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.5 Dimensional Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Part II Explicit Representations 6 Representations of Special Linear Algebras . . . . . . . . . . . . . . . . . . 155 6.1 Fundamental Lemma on Polynomial Solutions . . . . . . . . . . . . . 156 6.2 Canonical Oscillator Representations . . . . . . . . . . . . . . . . . . . . 162 6.3 Noncanonical Representations I: General . . . . . . . . . . . . . . . . . 169 6.4 Noncanonical Representations II: n þ1\n . . . . . . . . . . . . . . 176 1 2 6.5 Noncanonical Representations III: n þ1¼n . . . . . . . . . . . . . 184 1 2 6.6 Noncanonical Representations VI: n ¼n . . . . . . . . . . . . . . . . 193 1 2 6.7 Extensions of the Projective Representations . . . . . . . . . . . . . . 200 6.8 Projective Oscillator Representations . . . . . . . . . . . . . . . . . . . . 211 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7 Representations of Even Orthogonal Lie Algebras . . . . . . . . . . . . . 217 7.1 Canonical Oscillator Representations . . . . . . . . . . . . . . . . . . . . 218 7.2 Noncanonical Oscillator Representations . . . . . . . . . . . . . . . . . 223 7.3 Extensions of the Conformal Representation. . . . . . . . . . . . . . . 231 7.4 Conformal Oscillator Representations. . . . . . . . . . . . . . . . . . . . 242 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8 Representations of Odd Orthogonal Lie Algebras. . . . . . . . . . . . . . 253 8.1 Canonical Oscillator Representations . . . . . . . . . . . . . . . . . . . . 254 8.2 Noncanonical Oscillator Representations . . . . . . . . . . . . . . . . . 258 8.3 Extensions of the Conformal Representation. . . . . . . . . . . . . . . 272 8.4 Conformal Oscillator Representations. . . . . . . . . . . . . . . . . . . . 283 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 9 Representations of Symplectic Lie Algebras . . . . . . . . . . . . . . . . . . 293 9.1 Canonical Oscillator Representations . . . . . . . . . . . . . . . . . . . . 293 9.2 Noncanonical Oscillator Representations . . . . . . . . . . . . . . . . . 297 9.2.1 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.2.2 Proof of the Theorem When n ¼n . . . . . . . . . . . . . . 299 2 9.2.3 Proof of the Theorem When n \n \n. . . . . . . . . . . . 302 1 2 9.2.4 Proof of the Theorem When n ¼n \n . . . . . . . . . . . 308 1 2 9.3 Projective Oscillator Representations . . . . . . . . . . . . . . . . . . . . 317 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.