ebook img

REPRESENTATIONS OF KHOVANOV-LAUDA-ROUQUIER ALGEBRAS OF AFFINE LIE TYPE by ... PDF

314 Pages·2016·1.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview REPRESENTATIONS OF KHOVANOV-LAUDA-ROUQUIER ALGEBRAS OF AFFINE LIE TYPE by ...

REPRESENTATIONS OF KHOVANOV-LAUDA-ROUQUIER ALGEBRAS OF AFFINE LIE TYPE by ROBERT W. MUTH A DISSERTATION Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2016 DISSERTATION APPROVAL PAGE Student: Robert W. Muth Title: Representations of Khovanov-Lauda-Rouquier Algebras of Affine Lie Type This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by: Alexander Kleshchev Chair Jonathan Brundan Co-chair Arkady Berenstein Core Member Victor Ostrik Core Member Michael Kellman Institutional Representative and Scott Pratt Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2016 ii (cid:13)c 2016 Robert W. Muth iii DISSERTATION ABSTRACT Robert W. Muth Doctor of Philosophy Department of Mathematics June 2016 Title: Representations of Khovanov-Lauda-Rouquier Algebras of Affine Lie Type We study representations of Khovanov-Lauda-Rouquier (KLR) algebras of affine Lie type. Associated to every convex preorder on the set of positive roots is a system of cuspidal modules for the KLR algebra. For a balanced order, we study imaginary semicuspidal modules by means of ‘imaginary Schur-Weyl duality’. We then generalize this theory from balanced to arbitrary convex preorders for affine ADEtypes. Undertheassumptionthatthecharacteristicofthegroundfieldisgreater than some explicit bound, we prove that KLR algebras are properly stratified. We introduceaffinezigzagalgebrasandprovethattheseareMoritaequivalenttoarbitrary imaginary strata if the characteristic of the ground field is greater than the bound mentioned above. Finally, working in finite or affine affine type A, we show that skew Specht modules may be defined over the KLR algebra, and real cuspidal modules associated to a balanced convex preorder are skew Specht modules for certain explicit hook shapes. This dissertation contains previously published (unpublished) co-authored material. iv CURRICULUM VITAE NAME OF AUTHOR: Robert W. Muth GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene, OR University of Arizona, Tucson, AZ DEGREES AWARDED: Doctor of Philosophy, Mathematics, 2016, University of Oregon Bachelor of Science, Mathematics, 2011, University of Arizona Bachelor of Fine Arts, Visual Arts, 2004, University of Arizona AREAS OF SPECIAL INTEREST: Representation Theory PROFESSIONAL EXPERIENCE: Graduate Teaching Fellow, Department of Mathematics, University of Oregon, Eugene OR, 2011–2016 PUBLICATIONS: Imaginary Schur-Weyl duality (joint with A. Kleshchev), Mem. Amer. Math. Soc. (to appear), 82 pages Graded skew Specht modules and cuspidal modules for Khovanov-Lauda-Rouquier algebras of affine type A, 32 pages (submitted) Stratifying KLR algebras of affine Lie type (joint with A. Kleshchev), 25 pages (submitted) Affine zigzag algebras and imaginary strata for KLR algebras (joint with A. Kleshchev), 33 pages (submitted) v ACKNOWLEDGEMENTS First and foremost, I must thank my advisor, Alexander Kleshchev, for his patient guidance, insight, and support over the past four years. I have also learned much from Jon Brundan, Victor Ostrik, and Arkady Berenstein. Klaus Lux first introduced me to the beauty of representation theory as an undergraduate, and Pham Huu Tiep pointed me toward Oregon for graduate school, and for that I am grateful. Thank you to my friends and family for their support and encouragement, my fellow graduate students for their camaraderie and many enlightening conversations, and the math department office staff for all their kind assistance. Thank you to my kids, Otto and Loretta, for putting up with all the times I was doing math when I should have been playing hide-and-seek. Most of all, thank you to my wife Lindsey— without your support and sacrifice this grad school adventure would never have been possible. vi For Lindsey vii TABLE OF CONTENTS Chapter Page I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Cuspidal systems . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Imaginary Schur-Weyl duality . . . . . . . . . . . . . . . . . . 6 1.3. Stratifying KLR algebras of affine ADE types . . . . . . . . . 12 1.4. Skew Specht modules and real cuspidal modules . . . . . . . . 15 1.5. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1. Ground rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2. Symmetric groups and Schur algebras . . . . . . . . . . . . . . 18 2.3. Lie theoretic notation . . . . . . . . . . . . . . . . . . . . . . . 29 2.4. KLR algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5. Convex preorders and root partitions . . . . . . . . . . . . . . 44 2.6. Cuspidal systems and standard modules . . . . . . . . . . . . . 45 III. IMAGINARY SCHUR-WEYL DUALITY . . . . . . . . . . . . . . . . 47 3.1. Imaginary tensor space . . . . . . . . . . . . . . . . . . . . . . 47 3.2. Imaginary Schur-Weyl duality . . . . . . . . . . . . . . . . . . 56 viii Chapter Page 3.3. Imaginary Schur algebras . . . . . . . . . . . . . . . . . . . . . 61 3.4. Imaginary induction and restriction . . . . . . . . . . . . . . . 64 3.5. Imaginary Howe duality . . . . . . . . . . . . . . . . . . . . . . 67 3.6. Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . 88 3.7. Alternative definitions of standard modules . . . . . . . . . . . 97 3.8. Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.9. Ringel duality and double centralizer properties . . . . . . . . 104 3.10. Characters of imaginary modules . . . . . . . . . . . . . . . . 108 IV. STRATIFYING KLR ALGEBRAS OF SYMMETRIC AFFINE LIE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.1. Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2. Semicuspidal modules . . . . . . . . . . . . . . . . . . . . . . . 128 4.3. Stratifying KLR algebras . . . . . . . . . . . . . . . . . . . . . 137 4.4. Reduction modulo p of irreducible and standard modules . . . 149 4.5. Zigzag algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.6. The minuscule imaginary stratum category . . . . . . . . . . . 166 4.7. On the higher imaginary stratum categories . . . . . . . . . . 179 V. SKEW SPECHT MODULES AND REAL CUSPIDAL MODULES IN TYPE A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.2. Manipulating elements of KLR algebras . . . . . . . . . . . . . 195 5.3. Skew Specht modules . . . . . . . . . . . . . . . . . . . . . . . 197 ix Chapter Page 5.4. Restrictions of Specht modules . . . . . . . . . . . . . . . . . . 203 5.5. Joinable diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 222 5.6. Cuspidal systems . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.7. Cuspidal modules and skew hook Specht modules . . . . . . . 234 VI. CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 6.1. Imaginary tensor space for non-simply-laced types . . . . . . . 244 6.2. Proofs of zigzag relations . . . . . . . . . . . . . . . . . . . . . 283 REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 x

Description:
patient guidance, insight, and support over the past four years. I have also learned .. we have that Bnδ is the basic algebra Morita equivalent to Cnδ. It turns out that On the other hand, w(α) ∈ S12 is the corresponding block permutation: w(α) = 1. 2 Donkin and Mathiew-Papadopoulo. For λ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.