LONDONMATHEMATICALSOCIETYSTUDENTTEXTS ManagingEditor:IanJ.Leary, MathematicalSciences,UniversityofSouthampton,UK 57 IntroductiontoBanachalgebras,operatorsandharmonicanalysis,GARTHDALESetal 58 Computationalalgebraicgeometry,HALSCHENCK 59 Frobeniusalgebrasand2-Dtopologicalquantumfieldtheories,JOACHIMKOCK 60 Linearoperatorsandlinearsystems,JONATHANR.PARTINGTON 61 AnintroductiontononcommutativeNoetherianrings(2ndEdition),K.R.GOODEARL& R.B.WARFIELD,JR 62 Topicsfromone-dimensionaldynamics,KARENM.BRUCKS&HENKBRUIN 63 Singularpointsofplanecurves,C.T.C.WALL 64 AshortcourseonBanachspacetheory,N.L.CAROTHERS 65 ElementsoftherepresentationtheoryofassociativealgebrasI,IBRAHIMASSEM, DANIELSIMSON&ANDRZEJSKOWRON´SKI 66 Anintroductiontosievemethodsandtheirapplications,ALINACARMENCOJOCARU& M.RAMMURTY 67 Ellipticfunctions,J.V.ARMITAGE&W.F.EBERLEIN 68 Hyperbolicgeometryfromalocalviewpoint,LINDAKEEN&NIKOLALAKIC 69 LecturesonKählergeometry,ANDREIMOROIANU 70 Dependencelogic,JOUKUVÄÄNÄNEN 71 ElementsoftherepresentationtheoryofassociativealgebrasII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 72 ElementsoftherepresentationtheoryofassociativealgebrasIII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 73 Groups,graphsandtrees,JOHNMEIER 74 RepresentationtheoremsinHardyspaces,JAVADMASHREGHI 75 Anintroductiontothetheoryofgraphspectra,DRAGOŠCVETKOVIC´, PETERROWLINSON&SLOBODANSIMIC´ 76 NumbertheoryinthespiritofLiouville,KENNETHS.WILLIAMS 77 Lecturesonprofinitetopicsingrouptheory,BENJAMINKLOPSCH,NIKOLAYNIKOLOV& CHRISTOPHERVOLL 78 Cliffordalgebras:Anintroduction,D.J.H.GARLING 79 IntroductiontocompactRiemannsurfacesanddessinsd’enfants,ERNESTOGIRONDO& GABINOGONZÁLEZ-DIEZ 80 TheRiemannhypothesisforfunctionfields,MACHIELVANFRANKENHUIJSEN 81 Numbertheory,Fourieranalysisandgeometricdiscrepancy,GIANCARLOTRAVAGLINI 82 Finitegeometryandcombinatorialapplications,SIMEONBALL 83 Thegeometryofcelestialmechanics,HANSJÖRGGEIGES 84 Randomgraphs,geometryandasymptoticstructure,MICHAELKRIVELEVICHetal 85 Fourieranalysis:PartI-Theory,ADRIANCONSTANTIN 86 Dispersivepartialdifferentialequations,M.BURAKERDOGˇAN&NIKOLAOSTZIRAKIS 87 Riemannsurfacesandalgebraiccurves,R.CAVALIERI&E.MILES 88 Groups,languagesandautomata,DEREKF.HOLT,SARAHREES&CLAASE.RÖVER 89 AnalysisonPolishspacesandanintroductiontooptimaltransportation,D.J.H.GARLING 90 Thehomotopytheoryof(∞,1)-categories,JULIAE.BERGNER 91 TheblocktheoryoffinitegroupalgebrasI,M.LINCKELMANN 92 TheblocktheoryoffinitegroupalgebrasII,M.LINCKELMANN 93 Semigroupsoflinearoperators,D.APPLEBAUM 94 Introductiontoapproximategroups,M.C.H.TOINTON 95 RepresentationsoffinitegroupsofLietype(2ndEdition),F.DIGNE&J.MICHEL 96 TensorproductsofC*-algebrasandoperatorspaces,G.PISIER LondonMathematicalSocietyStudentTexts95 Representations of Finite Groups of Lie Type secondedition FRANÇOIS DIGNE UniversitédePicardieJulesVerne,Amiens JEAN MICHEL CentreNationaldelaRechercheScientifique(CNRS),Paris UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108481489 DOI:10.1017/9781108673655 Firstedition©CambridgeUniversityPress1991 Secondedition©FrançoisDigneandJeanMichel2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished1991 Secondedition2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Digne,François,author.|Michel,Jean,author. Title:RepresentationsoffinitegroupsofLietype/FrançoisDigne, UniversitédePicardieJulesVerne,Amiens,JeanMichel,Centre NationaldelaRechercheScientifique(CNRS),Paris. Description:Secondedition.|Cambridge,UnitedKingdom;NewYork,NY: CambridgeUniversityPress,2020.|Series:Londonmathematicalsociety studenttexts;95|Includesbibliographicalreferencesandindex. Identifiers:LCCN2019035714|ISBN9781108481489(hardback)|ISBN 9781108673655(ebook) Subjects:LCSH:Liegroups.|Representationsofgroups. Classification:LCCQA387.D542020|DDC512/.482--dc23 LCrecordavailableathttps://lccn.loc.gov/2019035714 ISBN978-1-108-48148-9Hardback ISBN978-1-108-72262-9Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents IntroductiontotheSecondEdition page1 FromtheIntroductiontotheFirstEdition 2 1 BasicResultsonAlgebraicGroups 5 1.1 BasicResultsonAlgebraicGroups 5 1.2 DiagonalisableGroups,Tori,X(T),Y(T) 8 1.3 SolvableGroups,BorelSubgroups 11 1.4 UnipotentGroups,Radical,ReductiveandSemi-Simple Groups 13 1.5 ExamplesofReductiveGroups 15 2 StructureTheoremsforReductiveGroups 19 2.1 CoxeterGroups 19 2.2 FiniteRootSystems 24 2.3 StructureofReductiveGroups 29 2.4 RootData,Isogenies,PresentationofG 35 3 (B,N)-Pairs;Parabolic,Levi,andReductiveSubgroups; CentralisersofSemi-SimpleElements 39 3.1 (B,N)-Pairs 39 3.2 ParabolicSubgroupsofCoxeterGroups andof(B,N)-Pairs 42 3.3 ClosedSubsetsofaCrystallographicRootSystem 45 3.4 ParabolicSubgroupsandLeviSubgroups 51 3.5 CentralisersofSemi-SimpleElements 56 v vi Contents 4 Rationality,theFrobeniusEndomorphism, theLang–SteinbergTheorem 59 4.1 k -Varieties,FrobeniusEndomorphisms 59 0 4.2 TheLang–SteinbergTheorem;GaloisCohomology 63 4.3 ClassificationofFiniteGroupsofLieType 70 4.4 TheRelative(B,N)-Pair 75 5 Harish-ChandraTheory 79 5.1 Harish-ChandraInductionandRestriction 79 5.2 TheMackeyFormula 83 5.3 Harish-ChandraTheory 86 6 Iwahori–HeckeAlgebras 91 6.1 EndomorphismAlgebras 91 6.2 Iwahori–HeckeAlgebras 97 6.3 SchurElementsandGenericDegrees 104 6.4 TheExampleofG 108 2 7 TheDualityFunctorandtheSteinbergCharacter 113 7.1 F-rank 113 7.2 TheDualityFunctor 116 7.3 RestrictiontoCentralisersofSemi-SimpleElements 123 7.4 TheSteinbergCharacter 126 8 (cid:2)-AdicCohomology 130 8.1 (cid:2)-AdicCohomology 130 9 Deligne–LusztigInduction:TheMackeyFormula 137 9.1 Deligne–LusztigInduction 137 9.2 MackeyFormulaforLusztigFunctors 140 9.3 Consequences:ScalarProducts 146 10 TheCharacterFormulaandOtherResults onDeligne–LusztigInduction 148 10.1 TheCharacterFormula 148 10.2 UniformFunctions 153 10.3 TheCharacteristicFunctionofaSemi-SimpleClass 157 11 GeometricConjugacyandtheLusztigSeries 161 11.1 GeometricConjugacy 161 11.2 MoreonCentralisersofSemi-SimpleElements 167 11.3 TheLusztigSeries 170 Contents vii 11.4 Lusztig’sJordanDecompositionofCharacters: TheLeviCase 175 11.5 Lusztig’sJordanDecompositionofCharacters: TheGeneralCase 183 11.6 MoreaboutUnipotentCharacters 188 11.7 TheIrreducibleCharactersofGLF andUF 191 n n 12 RegularElements;Gelfand–GraevRepresentations; RegularandSemi-SimpleCharacters 196 12.1 RegularElements 196 12.2 RegularUnipotentElements 201 12.3 Gelfand–GraevRepresentations 207 12.4 RegularandSemi-SimpleCharacters 214 12.5 TheCharacterTableofSL (F ) 220 2 q 13 GreenFunctions 225 13.1 Invariants 225 13.2 GreenFunctionsandtheSpringerCorrespondence 231 13.3 TheLusztig–ShojiAlgorithm 236 14 TheDecompositionofDeligne–LusztigCharacters 242 14.1 LusztigFamiliesandSpecialUnipotentClasses 242 14.2 SplitGroups 244 14.3 TwistedGroups 247 References 249 Index 255 Introduction to the Second Edition Wehadtwomainaimsinwritingthisedition: • Be more self-contained where possible. For instance, we have added brief overviewsofCoxetergroupsandrootsystems,andgivensomemoredetails aboutthetheoryofalgebraicgroups. • Whileretainingthesamelevelofexpositionasinthefirstedition,wehave givenamorecompleteaccountoftherepresentationtheoryoffinitegroups ofLietype. Inviewofthesecondaim,wehaveaddedthefollowingtopicstoourexpo- sition: • WecoverReeandSuzukigroupsextendingourexpositionofFrobeniusmor- phismstothemoregeneralcaseofFrobeniusroots. • We have added to Harish-Chandra theory the topic of Hecke algebras and givenasmanyresultsaswecouldeasilydoforfieldsofarbitrarycharacter- isticprimetoq,inviewofapplicationstomodularrepresentations. • We have added a chapter on the computation of Green functions, with a brief review of invariant theory of reflection groups, and a chapter on the decompositionofunipotentDeligne–Lusztigcharacters. Acknowledgements In addition to the people we thank in the introduction to the first edition, we havebenefittedfromtheinputofyoungercolleaguessuchasCédricBonnafé, Olivier Dudas, Meinolf Geck, Daniel Juteau, and Raphaël Rouquier, and we givespecialthankstoGunterMalleforathoroughproofreadingofthisedition. We also thank the many people who pointed out to us misprints and other errorsinthefirstedition. 1