ebook img

Representation Theory of Finite Group Extensions: Clifford Theory, Mackey Obstruction, and the Orbit Method PDF

347 Pages·2022·4.673 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representation Theory of Finite Group Extensions: Clifford Theory, Mackey Obstruction, and the Orbit Method

Springer Monographs in Mathematics Tullio Ceccherini-Silberstein Fabio Scarabotti Filippo Tolli Representation Theory of Finite Group Extensions Clifford Theory, Mackey Obstruction, and the Orbit Method Springer Monographs in Mathematics Editors-in-Chief MinhyongKim,SchoolofMathematics,KoreaInstituteforAdvancedStudy,Seoul, SouthKorea InternationalCentreforMathematicalSciences,Edinburgh,UK KatrinWendland,SchoolofMathematics,TrinityCollegeDublin,Dublin,Ireland SeriesEditors SheldonAxler,DepartmentofMathematics,SanFranciscoStateUniversity, SanFrancisco,CA,USA MarkBraverman,DepartmentofMathematics,PrincetonUniversity,Princeton, NY,USA Maria Chudnovsky, Department of Mathematics, Princeton University, Princeton, NY,USA TadahisaFunaki,DepartmentofMathematics,UniversityofTokyo,Tokyo,Japan IsabelleGallagher,DépartementdeMathématiquesetApplications,EcoleNormale Supérieure,Paris,France SinanGüntürk,CourantInstituteofMathematicalSciences,NewYorkUniversity, NewYork,NY,USA ClaudeLeBris,CERMICS,EcoledesPontsParisTech,MarnelaVallée,France Pascal Massart, Département de Mathématiques, Université de Paris-Sud, Orsay, France AlbertoA.Pinto,DepartmentofMathematics,UniversityofPorto,Porto,Portugal GabriellaPinzari,DepartmentofMathematics,UniversityofPadova,Padova,Italy Ken Ribet, Department of Mathematics, University of California, Berkeley, CA, USA RenéSchilling,InstituteforMathematicalStochastics,TechnicalUniversity Dresden,Dresden,Germany Panagiotis Souganidis, Department of Mathematics, University of Chicago, Chicago,IL,USA EndreSüli,MathematicalInstitute,UniversityofOxford,Oxford,UK ShmuelWeinberger,DepartmentofMathematics,UniversityofChicago,Chicago, IL,USA BorisZilber,MathematicalInstitute,UniversityofOxford,Oxford,UK Thisseriespublishesadvancedmonographsgivingwell-writtenpresentationsofthe “state-of-the-art”infieldsofmathematicalresearchthathaveacquiredthematurity neededforsuchatreatment.Theyaresufficientlyself-containedtobeaccessibleto morethanjusttheintimatespecialistsofthesubject,andsufficientlycomprehensive toremainvaluablereferencesformanyyears.Besidesthecurrentstateofknowledge initsfield,anSMMvolumeshouldideallydescribeitsrelevancetoandinteraction with neighbouringfields of mathematics, and give pointers to future directionsof research. Tullio Ceccherini-Silberstein (cid:129) Fabio Scarabotti (cid:129) Filippo Tolli Representation Theory of Finite Group Extensions Clifford Theory, Mackey Obstruction, and the Orbit Method TullioCeccherini-Silberstein FabioScarabotti DipartimentodiIngegneria DipartimentoSBAI UniversitàdegliStudidelSannio SapienzaUniversityofRome Benevento,Italy Roma,Italy FilippoTolli DipartimentodiMatematicaeFisica RomaTreUniversity Roma,Italy ISSN1439-7382 ISSN2196-9922 (electronic) SpringerMonographsinMathematics ISBN978-3-031-13872-0 ISBN978-3-031-13873-7 (eBook) https://doi.org/10.1007/978-3-031-13873-7 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To thememoryof mybeloved“aunties”zia CorneliaTrevisaniandziaMarcellaTreves, inprimis,andAdrianaMondolfi,ziaAlma EnriquesGhiron,Augustaandzia Gina Castelnuovo,suorCesarina,Césarine Poiget,ziaEdaBerger Vidale,ElisaFrontali, FiorenzaAlmagiàMaranelli,Giacometta Limentani,zieGiovannaeReginaFranchetti, ziaGiulianaTreves Artom,IdaSacchetti,zia LauraZelasio,Leah Loewenwirth Reuveni, Liviae SiddaGarofolini,MariaDanelon, NellaMortara,Nella Volterra,Paola Franchetti,tataRitaAlverà,ziaSilviaTreves Levi Vidale,Teresa Tagliaferri,MlleYvonne Bâtard,and,lastbutnotleast,AnnaPalaggi To Cristinaand Virginia To mymom,mysisterRossella,mywife Stefania,andmy nieceValentina Preface GiventwogroupsN andH,theproblemofclassifyingthegroupsGsuchthatwe haveashortexactsequence 1−→N −→ι G−π→H −→1 is called the extension problem. This short exact sequence (and, by abuse of language, the group G) is called an extension of H by N. In the framework of representationtheory,anaturalquestionarises,namely: Is it possible to describe the irreducible representations of G by means of the structureofthegroupextension? This problem was faced by many mathematicians, including I. Schur, A.H. Clifford,and G. Mackey(who actually workedon locally compactgroups).More recently,contributionsand expositionswere givenbyM. Isaacs, B. Huppert,Y.G. BerkovichandE.M.Zhmud,andbyJ.M.G.FellandR.S.Doran. Theaimofthepresentmonographistogiveanexpositionofsomeofthemany facetsofthisproblem,atanelementarylevelandpointingtoconcreteapplications. Indeed,therepresentationtheoryofseveralclassesofgroupsisdeterminedbythe study of such group extensions: this is the case, for instance, for wreath products andsemidirectproductswithAbeliannormalsubgroups;wehavedevotedanentire monograph [28] (and several papers) to the first case and Chapter 12 of [30] to remarkable applications of the second case (which is also widely used in the Lie groupssetting).Actually,bothcasesareparticularexamplesofageneralprinciple, which we call the little group method (after Mackey and E. Wigner). We give a preciseformulationofthisprincipleandasktwofundamentalquestions: Whenisitpossibletoapplythismethod? When it is notpossible, is there analternative way to constructthe irreducible representationsofthegroupextension? The present book aims at developing powerful methods and tools, ranging from low-dimensional group cohomology to Clifford theory and to Mackey- Wigner theory, providing, via a thorough analysis of all such related intertwined vii viii Preface concepts, a complete answer to the above questions. Our general approach—with an emphasis on the fundamentalcontributions of Mackey, from Mackey’s lemma (on the decompositionof ResGIndG, where H,K ≤ G) to Mackey’s obstruction K H (whose terminology we borrowed from Fell and Doran)—has a functional flavor andthereforeitismoresuitableforapplicationsinaharmonicanalyticalframework. Weclearlyhaveinmindthatanalternativeapproach,basedoncharactertheoryas Isaacs’ [67], on the one hand gives rise, sometimes, to shorter proofsand elegant applications to group theory, but, on the other hand, seems to be not sufficient in ordertodevelopallthepowerfultoolsforharmonicanalysisandapplications. Thismonographisdefinitivelynotsuitableforageneralcourseonrepresentation theory.Indeed,thetopicstreatedaretooadvancedandpossiblytoomonothematic forsuchageneraltarget.However,webelievethatitmightbesuccessfullyusedas a valid supportfor such a generalcourse,for,say, a subsequentcourseon “topics in representationtheory” as well as for some parallel “readingcourses” and/oran “advancedseminar.”Lastbutnotleast,thematureresearchermayfinditusefulasa referencetoCliffordtheory,Mackey’smachinery(originallydevelopedforlocally compactgroups),andKirillov’sorbitmethod. Itisstructuredasfollows. InChap.1,wegivesomepreliminaryresultsonrepresentationtheoryandgroup extensions:weprovejusttheresultswhicharenotstandard. Chapter 2 is an exposition of Clifford theory which relates the representation theory of a (finite) group G to that of its normal subgroups N ≤ G through the operationsofrestriction,induction,andextension.Westudytheconjugationaction of G (and of H = G/N) on N(cid:2), the (unitary) dual of N. Given σ ∈ N(cid:2), we denote by I (σ) the stabilizer of σ (usually called the inertia group). We study G several particular cases and applications of Clifford theory, in particular we give a precise formulation of the little group method: it may be applied when every σ ∈ N(cid:2) has an extension (cid:3)σ to I (σ) (i.e., (cid:3)σ is an irreducible representation of G I (σ) and its restriction to N is σ). In this case, every irreducible representation G (cid:6) of G is of the form IndG ((cid:3)σ ⊗ ψ), where ψ is an irreducible representation IG(σ) (cid:6) of H (σ) := I (σ)/N and ψ ∈ I(cid:2)(σ) denotes its inflation to I (σ), that is, G G G G (cid:6) ψ(h):=ψ(hN)forallh∈I (σ). G Chapters 3, 4, and 5 are devoted to the study of the case when A := G/N is Abelian.Again,thereareseveralremarkablecaseswherethisconditionissatisfied, for instance the case when N is an index two subgroup of G (which includes G = S ,thesymmetricgroup,andN = A ,thealternatinggroup).Inthegeneral n n (cid:2) (cid:2) case (Chap.3), we examine the dual action of A on G given by tensoring two representations and its relationships with the conjugating action. In Chap.4, we examinetheparticularcasewhenAisAbelianandeveryσ ∈ N(cid:2)hasanextension toI (σ),sothatthelittlegroupmethodmaybeapplied.Inparticular,weexamine G thecasewhenAisofprimeorder.InChap.5,wediscusstherepresentationtheory ofthealternatinggroup,ofmetacyclic,quaternionic,anddihedralgroups.Wealso examinethecasewhenAisoforderp2. Preface ix Chapter6isdevotedtotheorbitmethodforstep-2nilpotentgroupsofoddorder. When this condition is satisfied, we have a natural and powerful correspondence between Lie rings and nilpotent groups, and this correspondence can be used to describetheirreduciblerepresentationsofthenilpotentgroups.Themaintoolisan actionofthegroupontheringandthecoadjointaction,namelythecorresponding action on the dual of the Lie ring (regarded as an Abelian group). We describe the behavior of this construction with respect to induction and restriction and we apply it to the finite Heisenberg group. In this chapter, we also introduce some cohomologicalmachinerythatisalsousedinthesubsequentchapters. In Chap.7, we answer the questionsraised at the beginningof this preface:we show that the little group method may be applied if and only if a suitable unitary 2-cocycle(theMackeyobstruction)istrivial.Wethenintroduce(unitary)projective representations and use them to give a complete answer to the problem of the constructionoftheirreduciblerepresentationsofafinitegroupextension.We also examinethecommutantofaninducedrepresentationandtherelativeHeckealgebra. Chapters 8 and 9 are devoted to the study of induction for (unitary) projective representations:thisincludesbothMackeyandCliffordtheories.Withrespecttoour main source(Mackey’spaperon unitaryrepresentationsof locally compactgroup extension)wegivemoredirectproofs,involvingdetailedcocyclecomputations. InChap.10,weexposethetheoryofprojectiverepresentationsforfiniteAbelian groups.Someresultsaregivenundertheassumptionthatthegroupisofoddorder. We then apply this theory in order to describe the irreducible representations of finitemetabelian(i.e.,step-2solvable)aswellasstep-2nilpotentgroups. Finally, in the Appendix, we review some historical aspects and discuss some additionaltopics. We express our deep gratitude to Pierre de la Harpe, Slava Grigorchuk, Marty Isaacs,DanielRockmore,andJean-PierreSerreforusefulremarksandsuggestions, as well as for their interest and encouragement. Finally, we warmly thank Elena Griniari from Springer Verlag for her continuous care and most precious help at variousstagesofthepreparationofthemanuscript. Rome,Italy TullioCeccherini-Silberstein April2022 FabioScarabotti FilippoTolli Contents 1 Preliminaries................................................................ 1 1.1 RepresentationsofFiniteGroups ................................... 1 1.2 TheGroupAlgebraandtheLeft-RegularRepresentation ......... 4 1.3 InducedRepresentations ............................................ 7 1.4 FurtherResultsonInducedRepresentations ....................... 11 1.5 SemidirectProducts, Wreath Products, and Group Extensions ........................................................... 15 1.6 RegularWreathProductsandtheKaloujnine-Krasner Theorem .............................................................. 20 2 CliffordTheory ............................................................. 27 2.1 PreliminariesandNotation .......................................... 27 2.2 BasicCliffordTheory ............................................... 30 2.3 FirstApplicationsandtheLittleGroupMethod ................... 38 2.4 TheCaseWhereA (σ):=I (σ)/N isAbelian .................. 47 G G 2.5 SomeApplicationsofMackeyTheorytoCliffordTheory ........ 56 2.6 TheG-ActionontheN-ConjugacyClasses ........................ 60 2.7 Real,Complex,andQuaternionicRepresentationsand CliffordTheory ...................................................... 62 2.8 SemidirectProductswithanAbelianNormalSubgroup .......... 68 2.9 SemidirectProductsofAbelianGroups ............................ 69 2.10 RepresentationTheoryofWreathProductsofFinite Groups................................................................ 74 2.11 Multiplicity-FreeNormalSubgroups ............................... 80 3 AbelianExtensions ......................................................... 81 3.1 TheDualAction ..................................................... 81 3.2 TheConjugationAction ............................................. 88 3.3 TheIntermediaryRepresentations .................................. 91 3.4 DiagrammaticSummaries ........................................... 95 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.