ebook img

Representation theory of finite dimensional algebras Anton Cox PDF

28 Pages·2008·0.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representation theory of finite dimensional algebras Anton Cox

Representationtheoryoffinitedimensionalalgebras AntonCox NotesfortheLondonTaughtCourseCentre Autumn2008 CentreforMathematicalScience CityUniversity NorthamptonSquare LondonEC1V0HBEngland 1 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommendedreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter1. Algebrasandmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1. Associativealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3. Quivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4. Representationsofquivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter2. Semisimplicityandsomebasicstructuretheorems . . . . . . . . . . . . . . . . 17 2.1. Simplemodulesandsemisimplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2. Schur’slemmaandtheArtin-Wedderburntheorem . . . . . . . . . . . . . . . . . . 19 2.3. TheJacobsonradical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4. TheKrull-Schmidttheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter3. Projectiveandinjectivemodules . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1. Projectiveandinjectivemodules . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2. Idempotentsanddirectsumdecompositions . . . . . . . . . . . . . . . . . . . . . 31 3.3. Simpleandprojectivemodulesforboundquiveralgebras . . . . . . . . . . . . . . 34 3.4. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter4. RepresentationtypeandGabriel’stheorem . . . . . . . . . . . . . . . . . . . . 37 4.1. Representationtype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2. Representationtypeofquiveralgebras . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3. DimensionvectorsandCartanmatrices . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4. Reflectionfunctors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter5. Furtherdirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1. Ringtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2. Almostsplitsequencesandthegeometryofrepresentations . . . . . . . . . . . . . 47 5.3. Localrepresentationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4. Representationsofotheralgebraicobjects . . . . . . . . . . . . . . . . . . . . . . 49 5.5. QuantumgroupsandtheRingel-Hallalgebra . . . . . . . . . . . . . . . . . . . . . 50 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 6 INTRODUCTION Innon-semisimplesettingsprojectiveandinjectivemodulesplayakeyrole. Inthiscourse wewillonlybeabletotouchonthebasicdefinitions,andwillsaynothingofthevitalrolethey playincohomology. Thisisinpartbecausewewillnothavethetimetodevelopthenecessary backgroundincategorytheorywhichisanimportantpartofmoderndayalgebra. Chapter3givesthebasicdefinitionsofprojectiveandinjectives,beforegoingontoastudy Introduction oftheroleofidempotentsinrepresentationtheory.Usingtheseiswhatallowsustoreducetothe studyofquivers,althoughwewillonlygiveanoutlineofthereductionmethodhere. Wethen showhowsimple,projective,andinjectivemodulescanbeeasilyconstructedforquivers. Thiscoursewillprovideabasicintroductiontotherepresentationtheoryofalgebras,concen- Chapter4introducesthenotionofrepresentationtype. Thisisameasureofhowharditis tratingmainlyonthefinitedimensionalcase. Representationtheoryisconcernedwiththestudy tofullyunderstandtherepresentationtheoryofanalgebra. ThefundamentaltheoremofDrozd ofhowvariousalgebraicobjectsactonvectorspaces, inamannerwhichrespectstheoriginal saysthateveryalgebrafallsintooneofthreetypes;thefirsttwobeing(inprinciple)completely algebraicstructure.Finitedimensionalalgebras,whileofinterestintheirownright,providea(rel- understandable,whilethethirdisprovablyimpossibletofullyunderstand. atively)elementarysettinginwhichtodevelopsomeofthebasiclanguage,whilestillexhibiting Wewillsketchhowtheclassificationbytypecanbecarriedoutintwospecialcases: group mostofthekeyfeaturesthatcanarise. algebras, and forrepresentationsofquiverswithoutrelations. Thelattercase willallowusto Itiscommonforafirstcourseinrepresentationtheorytoconcentrateonthecharactertheoryof introducesomemoreideasfromtherepresentationtheoryofquiverswhichareusedintheproof. finitegroupsoverthecomplexnumbers.Thishasanumberofadvantages,notleastthatcharacters FinallyinChapter5wewillindicatesomefurthertopicswhichthereadermaywishtoinves- aremucheasiertoconstructthanthecorrespondingrepresentations.However,thetheoryisrather tigate. unrepresentativeincertaincrucialrespects. Mostimportantoftheseisthatsuchrepresentationsarealwayssemisimple.Thismeansthatit Recommendedreading isenoughtoclassifythoserepresentationswhichhavenosub-representations,which(foragiven group)isafinitenumber. Allotherrepresentationscanthenbeconstructedfromtheseviadirect Duetothelimitednumberoflecturesavailable,thelectureswillconsistofanoutlineofthe sums. Ingeneralonecannothopetoconstructallrepresentationsofanalgebra. Infact,wewill maintheorytogetherwithsomeexamples. Thesenoteswillfillinmoreofthedetails,butwith seethatsuchanaimisprovablyimpossibletoachieve(exceptincertainspecialcases).Insteadwe onlysketchesoftheproofsinplaces. EachChapterendswithabriefselectionofexercisesfor willdevelopvarioustoolstoanalyserepresentationsingeneral. thereader. Forafarmorecomprehensivetreatmentofthismaterial(togetherwithmanymore Inthiscoursewewillfocusnotongroupalgebras(althoughthesewillplayarole),butrather examplesandexercises)thereaderisrecommendedtolookat[ASS06,ChaptersI-III]. oncertainalgebrasassociatedtoquivers.Thesehavemanyadvantages(evenovergroupalgebras) Forsimplicity,[ASS06]onlyconsidersalgebrasoveralgebraicallyclosedfields.Anexcellent intermsofeaseofcomputationandofconstructingexamples,butarerichenoughtogiveabetter (ifrapid)introductionwhichconsidersmoregeneralringscanbefoundin[Ben91,Chapters1and flavour of general aspects of representation theory. Indeed, it will turn out that to understand 4]. Othernotesavailableonthewebwhichcoversimilarmaterialare[Bru03]and[Bar06]. Our therepresentationtheoryofanyfinitedimensionalalgebraoveranalgebraicallyclosedfieldit expositiondrawsonallofthesesources,aswellasunpublishedlecturenotesofErdmann. isenoughtounderstandtherepresentationtheoryassociatedtoquiversandquotientsofquivers. Twobookswhichgointomoreadvancedtopicsthanthiscourse(andwhicharenotentirely Thisincludesgroupalgebrasasaspecialcase(andoveranyalgebraicallyclosedfield,notjustthe suitableforthebeginner)are[ARS94]and[GR97]. complexnumbers). InChapter1wewillbeginwithvariousbasicdefinitionsandexamples. Firstwewilllook atalgebrasandmodules,andthenatquiversandtheirrepresentations. Wewillthenseethatthe quiversettinggivesrisetoexamplesinthealgebrasetting. Chapter2coversthecoreclassicalrepresentationtheoryofalgebras.Webeginwithananalysis oftherelationbetweensimplerepresentationsandrepresentationsingeneral,andthenconsiderfor whichalgebraswecanreducetothestudyofsimplesalone.Suchalgebrasarecalledsemisimple, andtheArtin-WedderburnTheoremwillgiveacompleteclassificationinthiscase. Ifanalgebraisnotsemisimple,thentheJacobsonradicalofthealgebracanberegardedasa measureofitsnon-semisimplicity.Wewilldevelopthebasicpropertiesofthis.TheKrull-Schmidt Theoremthentellsusthatitisenoughtodeterminetheindecomposablemodules(aclasswhich containsthesimplemodulesbutisingeneralmuchlarger). 5 8 1.ALGEBRASANDMODULES wi=xai11xai22...xaittforsomet.Giventwoelements(cid:229) ni=1l iwiand(cid:229) mi=1l i′w′itheproductisdefinedto betheelement n m (cid:229) (cid:229) l il i′wiw′j CHAPTER 1 i=1j=1 wherewiwj denotestheelementobtainedfromwi andwj byconcatenation. Thisisaninfinite Algebrasandmodules dimensionalassociativealgebrawithidentitygivenbythetrivialpolynomial1. Ifn>1thenthe algebraisnon-commutative. (c)GivenagroupG,wedenotebykGthegroupalgebraobtainedbyconsideringthevector Inthiscoursewewillbeinterestedintherepresentationtheoryoffinitedimensionalalgebras spaceofformallinearcombinationsofgroupelements.Giventwoelements(cid:229) ni=1l igiand(cid:229) mi=1m ihi definedoverafield.Webeginbyrecallingcertainbasicdefinitionsconcerningfields. withl i,m i∈kandgi,hi∈Gwedefinetheproducttobetheelement coeffiDcEieFnINtsITinIOkNha1s.0a.1ro.oAtinfiekl.dAkfiiesldalhgaesbcrahiacraalclytercilsotiscedpiiffpeviesrtyhenosmn-aclolenssttapnotsiptiovleyninotmegiearlswuicthh (cid:229)n (cid:229)m l im jgihj. i=1j=1 that p Theidentityelementistheidentityelemente∈GregardedasanelementofkG.ThealgebrakGis (cid:229) 1=0. finitedimensionalifandonlyifGisafinitegroup,andiscommutativeifandonlyifGisabelian. Ifthereisnosuchpthenthefieldissaidtoi=h1avecharacteristic0. Afieldisinfiniteifitcontains (d)ThesetMn(k)ofn×nmatriceswithentriesinkisafinitedimensionalalgebra,thema- trixalgebra,withtheusualmatrixmultiplication,andidentityelementthematrixI. Ifn>1it infinitelymanyelements. isnon-commutative. Equivalently,letV beann-dimensionalk-vectorspace, andconsiderthe endomorphismalgebra Henceforthkwilldenotesomefield. Endk(V)={f:V−→V|f isk-linear}. Thisisanalgebrawithmultiplicationgivenbycompositionoffunctions.FixingabasisforV the 1.1. Associativealgebras elementsofEndk(V)canbewrittenintermsofmatriceswithrespecttothisbasis,andinthisway wecanidentifyEndk(V)withMn(k). DEFINITION1.1.1. Analgebraoverk,ork-algebraisak-vectorspaceAwithabilinearmap (e)IfAisanalgebrathensoisAop,theoppositealgebra,whichequalsAasavectorspace, A×A −→ A butwithmultiplicationmap(x,y)7−→yx. (x,y) 7−→ xy. AsusualinAlgebra,wearenotjustinterestedinobjects(inthiscasealgebras),butalsoin Wesaythatthealgebraisassociativeifforallx,y,z∈Awehave functionsbetweenthemwhichrespecttheunderlyingstructures. x(yz)=(xy)z. DEFINITION1.1.3. Ahomomorphismbetweenk-algebrasAandBisalinearmapf :A−→B suchthatf (1)=1andf (xy)=f (x)f (y)forallx,y∈A.Thisisanisomorphismpreciselywhen AnalgebraAisunitalifthereexistsanelement1∈Asuchthat1x=x1=xforallx∈A.Suchan thelinearmapisabijection. elementiscalledtheidentityinA.(Notethatsuchanelementisnecessarilyunique.)Wesaythat analgebraisfinitedimensionaliftheunderlyingvectorspaceisfinitedimensional.AnalgebraA DEFINITION1.1.4. GivenanalgebraA,asubalgebraofAisasubspaceSofAcontaining1, iscommutativeifxy=yxforallx,y∈A. suchthatforallx,y∈Swehavexy∈S.Aleft(respectivelyright)idealinAisasubspaceIofA suchthatforallx∈Ianda∈Awehaveax∈I(respectivelyxa∈I).IfIisaleftandarightideal Itiscommontoabuseterminologyandtakealgebratomeananassociativeunitalalgebra,and thenwesaythatIisanidealinA. wewillfollowthisconvention.Thereareseveralimportantclassesofnon-associativealgebras(for EXAMPLE1.1.5. (a)IfHisasubgroupofagroupG,thenkHisasubalgebraofkG. exampleLiealgebras)butweshallnotconsiderthemhere. Thusallalgebrasweconsiderwill beassociativeandunital. (b)GiventwoalgebrasAandB,andahomomorphismf :A−→B,thesetim(f )isasubal- gebraofB,whileker(f )isanidealinA. EXAMPLE1.1.2. (a)Letk[x1,...,xn]denotethevectorspaceofpolynomialsinthe(commut- ing)variablesx1,...,xn. Thisisaninfinitedimensionalcommutativealgebrawithmultiplication Idempotentsplayacrucialroleintheanalysisofalgebras. givenbytheusualmultiplicationofpolynomials,andidentitygivenbythetrivialpolynomial1. DEFINITION1.1.6. Anelemente∈Aisanidempotentife2=e.Twoidempotentse1ande2in (b)Letkhx1,...,xnidenotethevectorspaceofpolynomialsinthenon-commutingvariables Aareorthogonalif x1,...,xn. Ageneralelementisoftheform(cid:229) ni=1l iwi forsomenwhereforeachi, l i∈k and e1e2=e2e1=0. 7 1.2.MODULES 9 10 1.ALGEBRASANDMODULES Anidempotenteiscalledprimitiveifitcannotbewrittenintheforme=e1+e2wheree1ande2 (undertherelationm+N=m′+Nifandonlyifm−m′∈N)hasanA-modulestructuregivenby arenon-zeroorthogonalidempotents.Anidempotenteiscentralifea=aeforalla∈A. a(m+N)=am+N,andiscalledthequotientofMbyN. 1.2. Modules EXAMPLE 1.2.6. (a)ThealgebraAisa(leftorright)A-module,withrespecttotheusual multiplicationmaponA.IfIisaleftidealofAthenIisasubmoduleoftheleftmoduleA. Representationtheoryisconcernedwiththestudyofthewayinwhichcertainalgebraicobjects (b)IfA=kthenA-modulesarejustk-vectorspaces. (inourcase,algebras)actonvectorspaces. Therearetwowaystoexpressthisconcept;interms ofrepresentationsor(inmoremodernlanguage)intermsofmodules. tran(scfo)rImfAat=ionks[xa1,i.:.M.,x−n→]thMen(awnhAer-emaodiudleescisriabeks-vtehcetoarctsipoancoefMxi)t.ogetherwithcommutinglinear DEFINITION1.2.1. GivenanalgebraAoverk,arepresentationofAisanalgebrahomomor- (d)EveryA-moduleMhasMandtheemptyvectorspace0assubmodules. phism f :A−→Endk(M) LEMMA 1.2.7(IsomorphismTheorem). If M andN areA-modulesandf :M−→N isa forsomevectorspaceM. AleftA-moduleisak-vectorspaceMtogetherwithabilinearmap homomorphismofA-modulesthen A×M−→M,whichwewilldenoteby(a,m)7−→am,suchthatforallm∈Mandx,y∈Awehave im(f )∼=M/ker(f ) 1m=mand(xy)m=x(ym).Similarly,arightA-moduleisak-vectorspaceMandabilinearmap f :M×A−→Msuchthatm1=mandm(xy)=(mx)yforallm∈Mandx,y∈A.Wewilladopt asA-modules. theconventionthatallmodulesareleftmodulesunlessstatedotherwise. DEFINITION 1.2.2. AnA-moduleisfinitedimensionalifitisfinitedimensionalasavector PROOF. Copytheproofforlinearmapsbetweenvectorspaces,notingthattheadditionalstruc- space. AnA-moduleM isgeneratedbyaset{m1:i∈I}(whereI issomeindexset)ifevery tureofamoduleispreserved. (cid:3) elementmofMcanbewrittenintheform (cid:229) DEFINITION 1.2.8. IfanA-moduleM hassubmodulesLandN suchthatM=L⊕N asa m= aimi vectorspacethenwesaythatMisthedirectsumofLandN.AmoduleMisindecomposableifit i∈I isnotthedirectsumoftwonon-zerosubmodules(andisdecomposableotherwise).AmoduleMis forsomeai∈A.WesaythatMisfinitelygeneratedifitisgeneratedbyafinitesetofelements.If simple(orirreducible)ifMhasnosubmodulesexceptMand0. AisafinitedimensionalalgebrathenMisfinitelygeneratedifandonlyifMisfinitedimensional. LEMMA1.2.3. (a)Thereisanaturalequivalencebetweenleft(respectivelyright)A-modules Forvectorspaces,thenotionsofindecomposabilityandirreducibilitycoincide.However,this andright(respectivelyleft)Aop-modules. isnotthecaseformodulesingeneral. (b)ThereisanaturalequivalencebetweenrepresentationsofAandleftA-modules. EXAMPLE1.2.9. LetC2denotethecyclicgroupwithelements{1,g},andconsiderthetwo- PROOF. Wegivethecorrespondenceineachcase;detailsarelefttothereader. Givenaleft dimensionalkC2-moduleMwithbasis{m1,m2}wheregm1=m2andgm2=m1.IfM=N1⊕N2 moduleMforAwithbilinearmapf :A×M−→M,definearightAop-modulestructureonM withN1andN2non-zerotheneachNiisthespanofavectoroftheforml 1m1+l 2m2forsome viathemapf ′:M×A−→Mgivenbyf ′(m,x)=f (x,m). Itiseasytoverifythatf isanAop- l 1,l 2∈k. Applyinggwededucethatl 1=±l 2,andhenceNimustbethespanofm1−m2or homomorphism. m1+m2.ButN1=N2ifkhascharacteristic2,whichcontradictsourassumption.ThusMisnever irreducible,butisindecomposableifandonlyifthecharacteristicofkis2. Wewillseethatthis Givenarepresentationf :A−→Endk(M)ofAwedefineanA-modulestructureonM by examplegeneralisestoarbitrarygroupalgebraswhenweconsiderMaschke’sTheorem. setting am=f (a)(m) ThereisacloserelationshipbetweentherepresentationtheoryofAandAop. foralla∈Aandm∈M.Conversely,givenanA-moduleM,themapM−→Mgivenbym7−→rm islinear,andgivesthedesiredrepresentationf :A−→Endk(M). (cid:3) DEFINITION 1.2.10. LetM beafinitedimensional(left)A-module. Thenthedualmodule NsuDchEFthINaItTfIO(aNm1).=2.4a.fA(mh)omfoormalolraph∈isAmabnedtwmee∈nMA-.mTohdiusliessaMniasnodmNoripshaislmineparercmisaeplyfw:hMen−t→he Mfor∗aisllthae∈duAa,lmve∈ctMorsapnadcfeH∈oHmokm(Mk(,Mk),kw)i.thBayrLigemhtmAa-m1o.2d.u3lethaisctgioivnegsiMve∗ntbhye(sftrau)c(tmur)e=off a(almef)t Aop-module. linearmapisabijection. DEFINITION1.2.5. GivenanA-moduleM,asubmoduleofMisasubspaceNofMsuchthat TakingthedualofanAop-modulegivesanA-module,anditiseasytoverify(asforvector foralln∈Nanda∈Awehavean∈N.(NotethatNisanA-moduleinitsownright.)Thequotient spaces)that space M/N={m+N:m∈M} LEMMA1.2.11. ForanyfinitedimensionalA-moduleMwehaveM∗∗∼=M. 1.3.QUIVERS 11 12 1.ALGEBRASANDMODULES 1.3. Quivers PROOF. TheassociativityofmultiplicationinkQisstraightforward. Nextnotethattheele- mentseisatisfy DEFINITION1.3.1. AquiverQisadirectedgraph. WewilldenotethesetofverticesbyQ0, eie j=dijei qaunidvethr.esTehteofuenddgeersly(iwnghigchrawphecQ¯alolfararoqwusiv)ebryQQ1i.sItfheQ0graanpdhQo1btaarienebdotfhrofimnitQetbhyenfoQrgiesttainfignaitlel andhenceformasetoforthogonalidempotents.Further,foranypathp∈kQwehaveeip=pif orientationsofedges. pendsatvertexiand0otherwise.HenceifQ0isfinitethen ApathoflengthninQisasequencep=a 1a 2...a nwhereeacha iisanarrowanda istarts (cid:229) eip=p. atthevertexwherea i+1ends. Foreachvertexi,thereisapathoflength0,whichwedenoteby i∈Q0 ei.Aquiverisacycliciftheonlypathswhichstartandendatthesamevertexhavelength0,and Similarly connectedifQ¯isaconnectedgraph. (cid:229) pei=p EXAMPLE1.3.2. (a)ForthequiverQgivenby i∈Q0 andhence •1 1= (cid:229) ei a i∈Q0 g b 55•(cid:15)(cid:15)2 d ////•3oo r • isthCeounnviteirnseklyQ,.supposethatQ0isinfiniteand1∈kQ. Then1=(cid:229) l ipiforsome(finite)setof thesetofpathsoflengthgreaterthan1isgivenby pathspiandscalarsl i.Pickavertexjsuchthatforallithepathpidoesnotendatj.Thene j1=0, whichgivesacontradiction. {b n+2,b n+1a ,gb n+1,db n+1,gb na ,db na :n≥0}. Finally,ifQ0orQ1isnotfinitethenkQisclearlynotfinitedimensional. Givenafiniteset ofverticeswithfinitelymanyedges,thereareonlyfinitelymanypathsbetweenthemunlessthe (b)ForthequiverQgivenby quivercontainsacycle. (cid:3) a •1 b 55 ii thesetofpathscorrespondstowordsina andb (alongwiththetrivialword). EXAMPLE1.3.5. EachofthequiversinExample1.3.2isfinite,andsothecorrespondingkQ containsaunit. However,thepathalgebrascorrespondingto1.3.2(a)and1.3.2(b)arenotfinite (c)ForthequiverQgivenby dimensional. Indeed,itiseasytoseethatthepathalgebrafor(b)isisomorphictokhx,yi,under themaptakinga toxandb toy.Thepathalgebrafor1.3.2(c)isan8-dimensionalalgebra. a b g •1 //•2 //•3oo •4 BecauseofLemma1.3.4wewillonlyconsiderfinitequiversQ,sothatthecorrespondingpath thesetofpathsis algebrasareunital. {e1,e2,e3,e4,a ,b ,g,ba }. DEFINITION1.3.6. GivenafinitequiverQ,theidealRQofkQgeneratedbythearrowsinQ iscalledthearrowidealofkQ. ThenRmistheidealgeneratedbyallpathsoflengthminQ. An Wewouldliketoassociateanalgebratoaquiver;however,weneedtotakealittlecare. Q idealIinkQiscalledadmissibleifthereexistsm≥2suchthat ofpaDthEsFIiNnIQTI.OMNu1lt.i3p.l3ic.aTtihoenpiastvhiaalcgoenbcraatkeQnaotifoanqoufipvearthQs:iisftphe=k-av1eact2o.r..sapancaenwdiqth=babs1ibs2th..e.bsemt RmQ⊆I⊆R2Q. then IfIisadmissiblethen(Q,I)iscalledaboundquiver,andkQ/Iisaboundquiveralgebra. pq=a 1a 2...a nb 1b 2...b m ifa nstartsatthevertexwhereb 1ends,andis0otherwise. isgrNeaotteertthhaatnifthQemisafixniimteaalnpdatahclyecnlgicththiennQa.nyidealcontainedinR2Qisadmissible,asRmQ=0ifm Wehavenotyetcheckedthattheabovedefinitiondoesinfactdefineanalgebrastructureon EXAMPLE 1.3.7. LetQbeasinExample1.3.2(b),andletI=hba ,b 2i. Thisisnotanad- kQ. missibleidealinkQasitdoesnotcontaina mforanym≥1,andsodoesnotcontainRmforany Q m≥2. LEMMA 1.3.4. LetQbeaquiver. ThenkQisanassociativealgebra. FurtherkQhasan identityelementifandonlyifQ0isfinite,andisfinitedimensionalifandonlyifQisfiniteand PROPOSITION1.3.8. LetQbeafinitequiverwithadmissibleidealIinkQ.ThenkQ/Iisfinite acyclic. dimensional. 1.4.REPRESENTATIONSOFQUIVERS 13 14 1.ALGEBRASANDMODULES PROOF. AsIisadmissiblethereexistsm≥2suchthatRmQ⊆I.Hencethereisasurjectiveal- Thishasarepresentation gtawsebothrDiaenrhEeQoFaImsNrueoIcTmohInOotlhryNpafiht1ina.s3ilmtl.e9plf.yarotAmhmsarenkhlQyaavt/pieoRanttmQhhiseononskaftoQmlekeniQsgs/ttaahIr.filteBnvsiuestertttthelhiaxneneafamnordr.mcthoeemrasblaignmeabetrieoannidsovcfeleprataertlxhy.sfiIofnf{itrleejnd:gimtjh∈eanJts}iloeinas(cid:3)asatl k(=01=)=(=10=)===//(cid:30)(cid:30)kk22(cid:127)((cid:127)(cid:127)11(cid:127)10(cid:127)()(cid:127)01(cid:127)//??11k)2(oo102110)k3 setofrelationsinkQsuchthattheidealgeneratedbythesetisadmissiblethenwesaythatkQis boundbytherelations. Noticehoweasyitwastogivearepresentation: therearenocompatibilityrelationstobe checked(apartfromthatthelinearmapsgobetweentheappropriatedimension)soexamplescan EXAMPLE1.3.10. ConsiderthequiverinExample1.3.2(a)andtherelations beeasilygeneratedforanypathalgebra.Thisisverydifferentfromwritingdownexplicitmodules {gb 2a −da ,gb +db ,b 5}. foranalgebra(ingeneral). Anypathoflengthatleast7mustcontainb 5,andsoQisboundbythissetofrelations. Definition1.4.1looksratherdifferent fromthat foran algebra. However, thenextlemma showsthatrepresentationsofQcorrespondtokQ-modulesinanaturalway. Infacttheaboveexamplegeneralises:itiseasytoseethatanyidealIinR2 isadmissibleifit Q LEMMA 1.4.4. LetMbearepresentationofafiniteacyclicquiverQ. Considerthevector containseachcycleinQtosomepower.Further,wehave space PROPOSITION1.3.11. LetQbeafinitequiver.EveryadmissibleidealinkQisgeneratedbya M′= Ma. finitesequenceofrelationsinkQ. aM∈Q0 ThiscanbegiventhestructureofakQ-modulebydefiningforeacha :i−→jamapfa′ :M−→M PROOF. (Sketch)ItiseasytocheckthateveryadmissibleidealIisfinitelygeneratedbysome by set{a1,...,an}(asRmQandI/RmQarefinitelygenerated). However,ingeneralasetofgenerators fa′(m1,...,mn)=(0,...,0,fa (mi),0,...0) forIwillnotbeasetofrelations,asthepathsineachaimaynotallhavethesamestartvertexand wherethenon-zeroentryisinposition j,andforeachi∈Q0amapei:M−→Mby endvertex.However,thenon-zeroelementsintheset ei(m1,...,mn)=(0,...,0,mi,0,...,0) {exaiey:1≤i≤n,x,y∈Q0} wherethenon-zeroentryisinpositioni. Conversely,supposethatN isakQ-module. Thenwe areallrelations,andthissetgeneratesI. (cid:3) obtainarepresentationofQbysettingNa=eaNanddefiningfa fora :a−→btobetherestriction oftheactionofa ∈kQtoNa. 1.4. Representationsofquivers PROOF. CheckingthattheabovedefinitionsgiveakQ-moduleandarepresentationofQre- spectivelyisroutine. (cid:3) DEFINITION1.4.1. LetQbeafinitequiver.ArepresentationMofQoverkisacollectionofk- vectorspaces{Ma:a∈Q0}togetherwithalinearmapfa :Ma−→Mbforeacharrowa :a−→b Wealsoneedthenotionofarepresentationofaboundquiver. Notethatwedonotneedto inQ1.TherepresentationMisfinitedimensionalifalltheMaarefinitedimensional. assumethatQisacyclichere,asadmissibleidealsguaranteethattheassociatedquotientalgebrais DEFINITION1.4.2.GiventworepresentationsMandM′ofafinitequiverQ,ahomomorphism finitedimensional. fromMtoNisacollectionoflinearmaps fi:Mi−→Mi′suchthatforeacharrowa :i−→ jwe DEFINITION1.4.5. Givenapathp=a 1a 2...a ninafinitequiverQfromatobandarepre- havefa′ fi=fjfa . sentationMofQwedefinethelinearmapf pfromMatoMbby Whengivingexamplesofrepresentationsofquiverswewillusuallyfixbasesofeachofthe f p=fanfan−1...fa1. vectorspaces,andrepresentthemapsbetweenthembymatriceswithrespecttocolumnvectorsin Ifr isalinearcombinationofpathspiwiththesamestartvertexandthesameendvertexthenfr thesebases. wisedseafiynethdattoMbeisthbeocuonrdrebsypoInidfifnrg=lin0eaforrcaolmlrbeinlaattiioonnsorft∈heI.f pi.GivenanadmissibleidealIinkQ EXAMPLE1.4.3. Considerthequiver EXAMPLE 1.4.6. ConsidertherepresentationinExample1.4.3. Let p=ba andq=rd . •1BBdBBaBBBB// ••25||||b|r|||//>>•3oo g •4. Tanhdensothisrefppre=se(cid:18)nta11tion10i(cid:19)sb(cid:18)ou10nd(cid:19)b=yth(cid:18)e11ide(cid:19)alhba f−q=rd (cid:18)i.01 11 (cid:19)(cid:18) 01 (cid:19)=(cid:18) 11 (cid:19) 1.5.EXERCISES 15 16 1.ALGEBRASANDMODULES ItiseasytoverifythatthecorrespondencebetweenrepresentationoffiniteacyclicQandkQ- (a) GivenvectorspacesNa≤Ma,whatconditionsmustbesatisfiedfor(Na,fa)tobea modulesgiveninLemma1.4.4extendstoacorrespondencebetweenrepresentationsoffiniteQ subrepresentationNofQ? boundbyIandkQ/I-modules. (b) SupposethatMisarepresentationofQboundbyanadmissibleidealI. Showthat therepresentationNisalsoboundbyI. Inthiscourseweareavoidingthelanguageofcategorytheory. Thisismainlyduetolack (c) IfQhasnvertices,givennon-isomorphicsimplerepresentationsofkQ,andalsoof of time: the language of categories and functors is a very powerful one, and many results in representationtheoryarebeststatedinthisway.Roughly,acategoryisacollectionofobjects(e.g. kQ/I.(Hint:whatconditiononthedimensionsoftheNaguaranteestheabsenceofa propersubrepresentation?) kQ-modules)andmorphisms(e.g. kQ-homomorphisms),andtheideaistostudythecategoryas (d) IfQisacyclicthenwewillseeinChapter2thattheseexamplesformacompleteset awholeratherthanjusttheobjectsormorphismsseparately. Afunctoristhenamapfromone ofsimplerepresentations.However,itisalsopossibletoshowthisdirectly.Suppose categorytoanotherwhichtransportsbothobjectsandmorphismsinasuitablycompatibleway. InthislanguagetheaboveresultrelatingboundrepresentationsofQandkQ/I-modulesgivesan thatMisarepresentationofanacyclicQsuchthatmorethanoneMaisnon-zero. ShowthatMhasapropersubrepresentation. equivalencebetweenthecorrespondingcategories. (e) SupposethatQisfinitebutcontainssomecycle. ShowthatQnowhasinfinitely manynon-isomorphicsimplerepresentationsoverC. 1.5. Exercises (7) InthisexercisewewillclassifytheindecomposablerepresentationsofthequiverQgiven (1) SupposethatIisanidealinanalgebraA. by (a) ShowthatA/Ihasanalgebrastructuresuchthatthereisasurjectivehomomorphism •1 a1 //•2 a2 //•3 a3 //... an−2//•n−1an−1 //•n. fromAtoA/I. LetM=(Mi,fi)beanindecomposablerepresentationofQ. (b) SupposethatAisanalgebrawithidealI,andthatMisanA/I-module.ShowthatM (a) ShowthatiffiisnotinjectivethenMj=0for j>i. canbegiventhestructureofanA-module. (b) SimilarlyshowthatiffiisnotsurjectivethenMj=0for j≤i. (c) IfMisanA-module,whatconditionmustitsatisfytobeanA/I-module? (c) DeducethatMisisomorphictoarepresentationoftheform 0 //... //0 //k id //... id //k //0 //... //0. (2) Supposethat(P,≤)isapartiallyorderedsetofcardinalityn, anddefinekPtobethe subsetofMn(k)givenby (d) Showthatthen(n+1)suchmodulesarepairwisenon-isomorphic. 2 kP={M=(mij):mij=0if i6≤j}. WewillseeinChapter4thatthisexampleispartofamoregeneralpicture. (a) ShowthatkPisasubalgebraofMn(k)(thisiscalledtheincidencealgebraof(P,≤)). (b) ShowthatPcanbeidentifiedwiththeset{1,...n}insuchawaythatkPcanbe (8) LetS3denotethesymmetricgrouponthreesymbols.DecomposethegroupalgebraCS3 identified withasubalgebraofthealgebraLTn(k)oflowertriangularmatricesin intoadirectsumofsimplerepresentationsforS3.(Youmayfinditconvenienttoidentify Mn(k). CS3withaspaceofpermutationmatrices.) (c) DeducethatifQisafiniteacyclicquiverwithatmostonearrowbetweeneachpair ofvertices,thenkQisasubalgebraofLTn(k)forsomen. (d) IllustrateyourlastconstructioninthecaseofthequiverinExample1.3.2(c). (e) WhichquivercorrespondtothewholeofLTn(k)? (3) SupposethatQisaquiver,andletQopbethequiverobtainedbyreversingallthearrows. Showthatthereisanisomorphismofalgebrask(Qop)∼=(kQ)op. (4) SupposethatGisagroup.ShowthatkG∼=(kG)op. (5) ClassifythesimplemodulesforthecyclicgroupCnoveranalgebraicallyclosedfieldof characteristicp≥0. (6) SupposethatM=(Ma,fa)isarepresentationofsomefinitequiverQ. 18 2.SEMISIMPLICITYANDSOMEBASICSTRUCTURETHEOREMS PROOF. (Sketch)Notethat(a)implies(b)and(b)implies(c)areclear. For(c)implies(a) considerthesetofsubmodulesofAwhoseintersectionwithN is0. Pickonesuch, Lsay, of maximaldimension;ifN⊕L6=MthenthereissomesimpleSinMnotinN⊕L.Butthiswould CHAPTER 2 implythatS+Lhasintersection0withA,contradictingthemaximalityofL. (cid:3) LEMMA2.1.5. IfMisasemisimpleA-modulethensoiseverysubmoduleandquotientmodule Semisimplicityandsomebasicstructuretheorems ofM. PROOF. (Sketch)IfNisasubmodulethenM=N⊕LforsomeLbytheprecedingLemma. Inthischapterwewillreviewsomeoftheclassicalstructuretheoremsforfinitedimensional ButthenM/L∼=N,andsoitisenoughtoprovetheresultforquotientmodules. algebras. Inmostcasesresultswillbestatedwithonlyasketchoftheproof. Henceforthwewill IfM/Lisaquotientmoduleconsidertheprojectionhomomorphismp fromMtoM/L.Write restrictourattentiontofinitedimensionalmodules. MasasumofsimplemodulesSiandverifythatp (S)iseithersimpleor0.ThisprovesthatM/L isasumofsimplemodules,andsotheresultfollowsfromtheprecedinglemma. (cid:3) 2.1. Simplemodulesandsemisimplicity Toshowthatanalgebraissemisimple,wedonotwanttohavetochecktheconditionforevery possiblemodule.Fortunatelywehave RecallthatasimplemoduleisamoduleSsuchthattheonlysubmodulesareSand0. These formthebuildingblocksoutofwhichallothermodulesaremade: PROPOSITION2.1.6. EveryfinitedimensionalA-moduleisisomorphictoaquotientofAnfor somen.HenceanalgebraAissemisimpleifandonlyifAissemisimpleasanA-module. LEMMA2.1.1. IfMisafinitedimensionalA-modulethenthereexistsasequenceofsubmod- ules PROOF. (Sketch)SupposethatMisafinitedimensionalA-module,spannedbysomeelements 0=M0⊂M1⊂···⊂Mn=M m1,...,mn.Wedefineamap suchthatMi/Mi−1issimpleforeach1≤i≤n.SuchaseriesiscalledacompositionseriesforM. f :⊕ni=1A−→M by ofmPiRnOimOaFl.dPimroecneseidonb,ywinhdicuhctiisonneocnesthsaerdiliymseinmspiolen.oNfMow.IdfimM(iMsn/oMt1s)im<pdlei,mpMick,aansdubsomtohdeurleesMul1t f ((a1,...,an))=(cid:229)n aimi. followsbyinduction. (cid:3) i=1 ItiseasytocheckthatthisisahomomorphismofA-modules,andsobytheisomorphismtheorem wehavethat Moreover,wehave M∼=⊕n A/kerf . i=1 THEOREM2.1.2(Jordan-Hölder). SupposethatMhastwocompositionseries Theresultnowfollowsfromtheprecedinglemma. (cid:3) 0=M0⊂M1⊂···⊂Mm=M, 0=N0⊂N1⊂···⊂Nn=M. ForfinitegroupswecansayexactlywhenkGissemisimple: Thenn=mandthereexistsapermutations of{1,...n}suchthat THEOREM2.1.7(Maschke). LetGbeafinitegroup.ThenthegroupalgebrakGissemisimple Mi/Mi+1∼=Ns (i)/Ns (i)+1. ifandonlyifthecharacteristicofkdoesnotdivide|G|,theorderofthegroup. PROOF. Theproofissimilartothatforgroups. (cid:3) PROOF. (Sketch)Firstsupposethatthecharacteristicofkdoesnotdivide|G|.Wemustshow thateverykG-submoduleMofkGhasacomplementasamodule. Clearlyasvectorspaceswe Lifewouldbe(relatively)straightforwardifeverymodulewasadirectsumofsimplemodules. canfindNsuchthatM⊕N=kG. Letp :kG−→Mbetheprojectionmapp (m+n)=mforall m∈Mandn∈N.Wewanttomodifyp sothatitisamodulehomomorphism,andthenshowthat DEFINITION2.1.3. AmoduleMissemisimple(orcompletelyreducible)ifitcanbewrittenas thekernelisthedesiredcomplement. adirectsumofsimplemodules.AnalgebraAissemisimpleifeveryfinitedimensionalA-module issemisimple. DefineamapTp :kG−→Mby LEMMA2.1.4. IfMisafinitedimensionalA-modulethenthefollowingareequivalent: Tp (m)= 1 (cid:229) g(p (g−1m)). |G| (a)IfNisasubmoduleofMthenthereexistsLasubmoduleofMsuchthatM=L⊕N. g∈G (b)Missemisimple. Notethatthisispossibleas|G|−1existsink. ItisthenroutinetocheckthatTp isakG-module (c)Misa(notnecessarilydirect)sumofsimplesubmodules. map. 17 2.2.SCHUR’SLEMMAANDTHEARTIN-WEDDERBURNTHEOREM 19 20 2.SEMISIMPLICITYANDSOMEBASICSTRUCTURETHEOREMS NowletK=ker(Tp),whichisasubmoduleofkG.WewanttoshowthatkG=M⊕K.First GivenanA-moduleMweset rsahnokw-ntuhlalittyTpthaecotrsemasftohreliidneenartitmyaopns,MkG, w=hiMch+imKp.liCesomthbaitnMing∩tKhes=e0tw.oNfeaxcttsnwoteedthedatucbeytthhaet EndA(M)={f :M−→M|f isanA-homomorphism}. kG=M⊕Kasrequired. ThisisasubalgebraofEndk(M).Moregenerally,ifMandNareA-modulesweset Forthereverseimplication,considerw=(cid:229) g∈Gg∈kG.Itiseasytocheckthateveryelement HomA(M,N)={f :M−→N|f isanA-homomorphism}. ofgfixesw,andhencewspansaone-dimensionalsubmoduleMofkG.Nowsupposethatthereis acomplementarysubmoduleNofkG,anddecompose1=e+fwhereeandfaretheidempotents ArguingasintheproofofLemma2.2.1aboveweobtain correspondingtoMandNrespectively. Wehavee=l wforsomel ∈k,ande2=e=l 2w2. It iseasytocheckthatw2=|G|wandhencel w=l 2|G|wwhichimpliesthat1=l |G|. Butthis LEMMA2.2.3(Schur). IfkisalgebraicallyclosedandSandTaresimpleA-modulesthen contradictsthefactthat|G|=0ink. (cid:3) HomA(S,T)∼=(cid:26) k0 oifthSe∼=rwTise. Thenextresultwillbeimportantinthefollowingsection. LEMMA2.1.8. ThealgebraMn(k)issemisimple. Wecannowgiveacompleteclassificationofthefinitedimensionalsemisimplealgebras. THEOREM 2.2.4 (Artin-Wedderburn). Let Abea finitedimensionalalgebraover an alge- PROOF. LetEijdenotethematrixinA=Mn(k)consistingofzeroseverywhereexceptforthe braicallyclosedfieldk.ThenAissemisimpleifandonlyif (i,j)thentry,whichis1.Wefirstnotethat 1=E11+E22+···+Enn A∼=Mn1(k)⊕Mn2(k)⊕···⊕Mnt(k) is an orthogonal idempotentdecompositionof 1, and hence A decomposes as a direct sum of forsomet∈Nandn1,...,nt∈N. modulesoftheformAEii.Wewillshowthatthesesummandsaresimple. PROOF. (Sketch)WesawinLemma2.1.8thatMn(k)isasemisimplealgebra,andifAandB FirstobservethatAEiiisjustthesetofmatriceswhicharezeroexceptpossiblyincolumni. aresemisimplealgebras,thenitiseasytoverifythatA⊕Bissemisimple. Pthieckmxat∈rixAExiwinhoicnh-ziesron;onw-ezemrou.sBtsuhtotwhenthatAx=AEii.Asxisnon-zerothereissomeentryxmiin ForthereverseimplicationsupposethatMandNareA-modules,withM=⊕ni=1MiandN= ⊕mi=1Ni.ThefirstclaimisthatHomA(M,N)canbeidentifiedwiththespaceofmatrices andhenceEji∈Axforall1≤j≤n.BEutjmthxis=imxmpilEiejsi∈thaAtxAx=AEiiasrequired. (cid:3) {(fij)1≤i≤n,1≤j≤m|fi,j:Mj−→NianA-homomorphism} andthatifM=NwithMi=Niforallithenthisspaceofmatricesisanalgebrabymatrixmulti- plication,isomorphictoEndA(M).Thisfollowsbyanelementarycalculation. 2.2. Schur’slemmaandtheArtin-Wedderburntheorem NowapplythistothespecialcasewhereM=N=A,and WebeginwithSchur’slemma,whichtellsusaboutautomorphismsofsimplemodules. A=(S1⊕S2⊕···⊕Sn1)⊕(Sn1+1⊕···⊕Sn1+n2)⊕···⊕(Sn1+n2+···+nt−1+1⊕···⊕Sn1+n2+···+nt) LEMMA2.2.1(Schur). LetSbeasimpleA-moduleandf :S−→Sanon-zerohomomorphism. isadecompositionofAintosimplessuchthattwosimplesareisomorphicifandonlyiftheyoccur Thenf isinvertible. inthesamebracketedterm. BySchur’sLemmaaboveweseethatfijinthisspecialcaseis0if f 6=P0R,OsoOFM. L=et0Mand=fkeisrfinjaencdtivNe.=Siimmifla;rltyhewseesaereetbhoatthNsu=bmS,osdouflesisosfuSrj.ecBtiuvte,Sainsdshimenpcleefanids iSwsioeamhnadovrSpehjiasrmeionfdHifofemreAn(tAb,rAa)ckweittehdMtenr1m(ks),a⊕nd··i·s⊕soMmnte(kl)i.j∈Fiknaoltlhye,rwweisne.otTehtehraetifsotrhaennyanalogbebvrioauAs invertible. (cid:3) EndA(A,A)∼=Aop LEMMA2.2.2. IfkisalgebraicallyclosedandSisfinitedimensionalwithnon-zeroendomor- andhence phismf ,thenf =l .idS,forsomenon-zerol ∈k. A=(Aop)op∼=Mn1(k)op⊕···⊕Mnt(k)op. PROOF. AskisalgebraicallyclosedanddimS<¥ themapf hasaneigenvaluel ∈k.Then ButitiseasytoseethatMn(k)∼=Mn(k)opviathemaptakingamatrixXtoitstranspose,andso f −l idSisanendomorphismofSwithnon-zerokernel(containingalleigenvectorswitheigen- wearedone. (cid:3) value l ). Arguing as in the preceding lemma we deduce that ker(f −l idS)=S, and hence f =l idS. (cid:3) Wecanalsodescribeallthesimplemodulesforsuchanalgebra.

Description:
Introduction. This course will provide a basic introduction to the representation theory of algebras, concen- trating mainly on the finite dimensional
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.