Representationtheoryoffinitedimensionalalgebras AntonCox NotesfortheLondonTaughtCourseCentre Autumn2008 CentreforMathematicalScience CityUniversity NorthamptonSquare LondonEC1V0HBEngland 1 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommendedreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter1. Algebrasandmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1. Associativealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3. Quivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4. Representationsofquivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter2. Semisimplicityandsomebasicstructuretheorems . . . . . . . . . . . . . . . . 17 2.1. Simplemodulesandsemisimplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2. Schur’slemmaandtheArtin-Wedderburntheorem . . . . . . . . . . . . . . . . . . 19 2.3. TheJacobsonradical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4. TheKrull-Schmidttheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter3. Projectiveandinjectivemodules . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1. Projectiveandinjectivemodules . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2. Idempotentsanddirectsumdecompositions . . . . . . . . . . . . . . . . . . . . . 31 3.3. Simpleandprojectivemodulesforboundquiveralgebras . . . . . . . . . . . . . . 34 3.4. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter4. RepresentationtypeandGabriel’stheorem . . . . . . . . . . . . . . . . . . . . 37 4.1. Representationtype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2. Representationtypeofquiveralgebras . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3. DimensionvectorsandCartanmatrices . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4. Reflectionfunctors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter5. Furtherdirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1. Ringtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2. Almostsplitsequencesandthegeometryofrepresentations . . . . . . . . . . . . . 47 5.3. Localrepresentationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4. Representationsofotheralgebraicobjects . . . . . . . . . . . . . . . . . . . . . . 49 5.5. QuantumgroupsandtheRingel-Hallalgebra . . . . . . . . . . . . . . . . . . . . . 50 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 6 INTRODUCTION Innon-semisimplesettingsprojectiveandinjectivemodulesplayakeyrole. Inthiscourse wewillonlybeabletotouchonthebasicdefinitions,andwillsaynothingofthevitalrolethey playincohomology. Thisisinpartbecausewewillnothavethetimetodevelopthenecessary backgroundincategorytheorywhichisanimportantpartofmoderndayalgebra. Chapter3givesthebasicdefinitionsofprojectiveandinjectives,beforegoingontoastudy Introduction oftheroleofidempotentsinrepresentationtheory.Usingtheseiswhatallowsustoreducetothe studyofquivers,althoughwewillonlygiveanoutlineofthereductionmethodhere. Wethen showhowsimple,projective,andinjectivemodulescanbeeasilyconstructedforquivers. Thiscoursewillprovideabasicintroductiontotherepresentationtheoryofalgebras,concen- Chapter4introducesthenotionofrepresentationtype. Thisisameasureofhowharditis tratingmainlyonthefinitedimensionalcase. Representationtheoryisconcernedwiththestudy tofullyunderstandtherepresentationtheoryofanalgebra. ThefundamentaltheoremofDrozd ofhowvariousalgebraicobjectsactonvectorspaces, inamannerwhichrespectstheoriginal saysthateveryalgebrafallsintooneofthreetypes;thefirsttwobeing(inprinciple)completely algebraicstructure.Finitedimensionalalgebras,whileofinterestintheirownright,providea(rel- understandable,whilethethirdisprovablyimpossibletofullyunderstand. atively)elementarysettinginwhichtodevelopsomeofthebasiclanguage,whilestillexhibiting Wewillsketchhowtheclassificationbytypecanbecarriedoutintwospecialcases: group mostofthekeyfeaturesthatcanarise. algebras, and forrepresentationsofquiverswithoutrelations. Thelattercase willallowusto Itiscommonforafirstcourseinrepresentationtheorytoconcentrateonthecharactertheoryof introducesomemoreideasfromtherepresentationtheoryofquiverswhichareusedintheproof. finitegroupsoverthecomplexnumbers.Thishasanumberofadvantages,notleastthatcharacters FinallyinChapter5wewillindicatesomefurthertopicswhichthereadermaywishtoinves- aremucheasiertoconstructthanthecorrespondingrepresentations.However,thetheoryisrather tigate. unrepresentativeincertaincrucialrespects. Mostimportantoftheseisthatsuchrepresentationsarealwayssemisimple.Thismeansthatit Recommendedreading isenoughtoclassifythoserepresentationswhichhavenosub-representations,which(foragiven group)isafinitenumber. Allotherrepresentationscanthenbeconstructedfromtheseviadirect Duetothelimitednumberoflecturesavailable,thelectureswillconsistofanoutlineofthe sums. Ingeneralonecannothopetoconstructallrepresentationsofanalgebra. Infact,wewill maintheorytogetherwithsomeexamples. Thesenoteswillfillinmoreofthedetails,butwith seethatsuchanaimisprovablyimpossibletoachieve(exceptincertainspecialcases).Insteadwe onlysketchesoftheproofsinplaces. EachChapterendswithabriefselectionofexercisesfor willdevelopvarioustoolstoanalyserepresentationsingeneral. thereader. Forafarmorecomprehensivetreatmentofthismaterial(togetherwithmanymore Inthiscoursewewillfocusnotongroupalgebras(althoughthesewillplayarole),butrather examplesandexercises)thereaderisrecommendedtolookat[ASS06,ChaptersI-III]. oncertainalgebrasassociatedtoquivers.Thesehavemanyadvantages(evenovergroupalgebras) Forsimplicity,[ASS06]onlyconsidersalgebrasoveralgebraicallyclosedfields.Anexcellent intermsofeaseofcomputationandofconstructingexamples,butarerichenoughtogiveabetter (ifrapid)introductionwhichconsidersmoregeneralringscanbefoundin[Ben91,Chapters1and flavour of general aspects of representation theory. Indeed, it will turn out that to understand 4]. Othernotesavailableonthewebwhichcoversimilarmaterialare[Bru03]and[Bar06]. Our therepresentationtheoryofanyfinitedimensionalalgebraoveranalgebraicallyclosedfieldit expositiondrawsonallofthesesources,aswellasunpublishedlecturenotesofErdmann. isenoughtounderstandtherepresentationtheoryassociatedtoquiversandquotientsofquivers. Twobookswhichgointomoreadvancedtopicsthanthiscourse(andwhicharenotentirely Thisincludesgroupalgebrasasaspecialcase(andoveranyalgebraicallyclosedfield,notjustthe suitableforthebeginner)are[ARS94]and[GR97]. complexnumbers). InChapter1wewillbeginwithvariousbasicdefinitionsandexamples. Firstwewilllook atalgebrasandmodules,andthenatquiversandtheirrepresentations. Wewillthenseethatthe quiversettinggivesrisetoexamplesinthealgebrasetting. Chapter2coversthecoreclassicalrepresentationtheoryofalgebras.Webeginwithananalysis oftherelationbetweensimplerepresentationsandrepresentationsingeneral,andthenconsiderfor whichalgebraswecanreducetothestudyofsimplesalone.Suchalgebrasarecalledsemisimple, andtheArtin-WedderburnTheoremwillgiveacompleteclassificationinthiscase. Ifanalgebraisnotsemisimple,thentheJacobsonradicalofthealgebracanberegardedasa measureofitsnon-semisimplicity.Wewilldevelopthebasicpropertiesofthis.TheKrull-Schmidt Theoremthentellsusthatitisenoughtodeterminetheindecomposablemodules(aclasswhich containsthesimplemodulesbutisingeneralmuchlarger). 5 8 1.ALGEBRASANDMODULES wi=xai11xai22...xaittforsomet.Giventwoelements(cid:229) ni=1l iwiand(cid:229) mi=1l i′w′itheproductisdefinedto betheelement n m (cid:229) (cid:229) l il i′wiw′j CHAPTER 1 i=1j=1 wherewiwj denotestheelementobtainedfromwi andwj byconcatenation. Thisisaninfinite Algebrasandmodules dimensionalassociativealgebrawithidentitygivenbythetrivialpolynomial1. Ifn>1thenthe algebraisnon-commutative. (c)GivenagroupG,wedenotebykGthegroupalgebraobtainedbyconsideringthevector Inthiscoursewewillbeinterestedintherepresentationtheoryoffinitedimensionalalgebras spaceofformallinearcombinationsofgroupelements.Giventwoelements(cid:229) ni=1l igiand(cid:229) mi=1m ihi definedoverafield.Webeginbyrecallingcertainbasicdefinitionsconcerningfields. withl i,m i∈kandgi,hi∈Gwedefinetheproducttobetheelement coeffiDcEieFnINtsITinIOkNha1s.0a.1ro.oAtinfiekl.dAkfiiesldalhgaesbcrahiacraalclytercilsotiscedpiiffpeviesrtyhenosmn-aclolenssttapnotsiptiovleyninotmegiearlswuicthh (cid:229)n (cid:229)m l im jgihj. i=1j=1 that p Theidentityelementistheidentityelemente∈GregardedasanelementofkG.ThealgebrakGis (cid:229) 1=0. finitedimensionalifandonlyifGisafinitegroup,andiscommutativeifandonlyifGisabelian. Ifthereisnosuchpthenthefieldissaidtoi=h1avecharacteristic0. Afieldisinfiniteifitcontains (d)ThesetMn(k)ofn×nmatriceswithentriesinkisafinitedimensionalalgebra,thema- trixalgebra,withtheusualmatrixmultiplication,andidentityelementthematrixI. Ifn>1it infinitelymanyelements. isnon-commutative. Equivalently,letV beann-dimensionalk-vectorspace, andconsiderthe endomorphismalgebra Henceforthkwilldenotesomefield. Endk(V)={f:V−→V|f isk-linear}. Thisisanalgebrawithmultiplicationgivenbycompositionoffunctions.FixingabasisforV the 1.1. Associativealgebras elementsofEndk(V)canbewrittenintermsofmatriceswithrespecttothisbasis,andinthisway wecanidentifyEndk(V)withMn(k). DEFINITION1.1.1. Analgebraoverk,ork-algebraisak-vectorspaceAwithabilinearmap (e)IfAisanalgebrathensoisAop,theoppositealgebra,whichequalsAasavectorspace, A×A −→ A butwithmultiplicationmap(x,y)7−→yx. (x,y) 7−→ xy. AsusualinAlgebra,wearenotjustinterestedinobjects(inthiscasealgebras),butalsoin Wesaythatthealgebraisassociativeifforallx,y,z∈Awehave functionsbetweenthemwhichrespecttheunderlyingstructures. x(yz)=(xy)z. DEFINITION1.1.3. Ahomomorphismbetweenk-algebrasAandBisalinearmapf :A−→B suchthatf (1)=1andf (xy)=f (x)f (y)forallx,y∈A.Thisisanisomorphismpreciselywhen AnalgebraAisunitalifthereexistsanelement1∈Asuchthat1x=x1=xforallx∈A.Suchan thelinearmapisabijection. elementiscalledtheidentityinA.(Notethatsuchanelementisnecessarilyunique.)Wesaythat analgebraisfinitedimensionaliftheunderlyingvectorspaceisfinitedimensional.AnalgebraA DEFINITION1.1.4. GivenanalgebraA,asubalgebraofAisasubspaceSofAcontaining1, iscommutativeifxy=yxforallx,y∈A. suchthatforallx,y∈Swehavexy∈S.Aleft(respectivelyright)idealinAisasubspaceIofA suchthatforallx∈Ianda∈Awehaveax∈I(respectivelyxa∈I).IfIisaleftandarightideal Itiscommontoabuseterminologyandtakealgebratomeananassociativeunitalalgebra,and thenwesaythatIisanidealinA. wewillfollowthisconvention.Thereareseveralimportantclassesofnon-associativealgebras(for EXAMPLE1.1.5. (a)IfHisasubgroupofagroupG,thenkHisasubalgebraofkG. exampleLiealgebras)butweshallnotconsiderthemhere. Thusallalgebrasweconsiderwill beassociativeandunital. (b)GiventwoalgebrasAandB,andahomomorphismf :A−→B,thesetim(f )isasubal- gebraofB,whileker(f )isanidealinA. EXAMPLE1.1.2. (a)Letk[x1,...,xn]denotethevectorspaceofpolynomialsinthe(commut- ing)variablesx1,...,xn. Thisisaninfinitedimensionalcommutativealgebrawithmultiplication Idempotentsplayacrucialroleintheanalysisofalgebras. givenbytheusualmultiplicationofpolynomials,andidentitygivenbythetrivialpolynomial1. DEFINITION1.1.6. Anelemente∈Aisanidempotentife2=e.Twoidempotentse1ande2in (b)Letkhx1,...,xnidenotethevectorspaceofpolynomialsinthenon-commutingvariables Aareorthogonalif x1,...,xn. Ageneralelementisoftheform(cid:229) ni=1l iwi forsomenwhereforeachi, l i∈k and e1e2=e2e1=0. 7 1.2.MODULES 9 10 1.ALGEBRASANDMODULES Anidempotenteiscalledprimitiveifitcannotbewrittenintheforme=e1+e2wheree1ande2 (undertherelationm+N=m′+Nifandonlyifm−m′∈N)hasanA-modulestructuregivenby arenon-zeroorthogonalidempotents.Anidempotenteiscentralifea=aeforalla∈A. a(m+N)=am+N,andiscalledthequotientofMbyN. 1.2. Modules EXAMPLE 1.2.6. (a)ThealgebraAisa(leftorright)A-module,withrespecttotheusual multiplicationmaponA.IfIisaleftidealofAthenIisasubmoduleoftheleftmoduleA. Representationtheoryisconcernedwiththestudyofthewayinwhichcertainalgebraicobjects (b)IfA=kthenA-modulesarejustk-vectorspaces. (inourcase,algebras)actonvectorspaces. Therearetwowaystoexpressthisconcept;interms ofrepresentationsor(inmoremodernlanguage)intermsofmodules. tran(scfo)rImfAat=ionks[xa1,i.:.M.,x−n→]thMen(awnhAer-emaodiudleescisriabeks-vtehcetoarctsipoancoefMxi)t.ogetherwithcommutinglinear DEFINITION1.2.1. GivenanalgebraAoverk,arepresentationofAisanalgebrahomomor- (d)EveryA-moduleMhasMandtheemptyvectorspace0assubmodules. phism f :A−→Endk(M) LEMMA 1.2.7(IsomorphismTheorem). If M andN areA-modulesandf :M−→N isa forsomevectorspaceM. AleftA-moduleisak-vectorspaceMtogetherwithabilinearmap homomorphismofA-modulesthen A×M−→M,whichwewilldenoteby(a,m)7−→am,suchthatforallm∈Mandx,y∈Awehave im(f )∼=M/ker(f ) 1m=mand(xy)m=x(ym).Similarly,arightA-moduleisak-vectorspaceMandabilinearmap f :M×A−→Msuchthatm1=mandm(xy)=(mx)yforallm∈Mandx,y∈A.Wewilladopt asA-modules. theconventionthatallmodulesareleftmodulesunlessstatedotherwise. DEFINITION 1.2.2. AnA-moduleisfinitedimensionalifitisfinitedimensionalasavector PROOF. Copytheproofforlinearmapsbetweenvectorspaces,notingthattheadditionalstruc- space. AnA-moduleM isgeneratedbyaset{m1:i∈I}(whereI issomeindexset)ifevery tureofamoduleispreserved. (cid:3) elementmofMcanbewrittenintheform (cid:229) DEFINITION 1.2.8. IfanA-moduleM hassubmodulesLandN suchthatM=L⊕N asa m= aimi vectorspacethenwesaythatMisthedirectsumofLandN.AmoduleMisindecomposableifit i∈I isnotthedirectsumoftwonon-zerosubmodules(andisdecomposableotherwise).AmoduleMis forsomeai∈A.WesaythatMisfinitelygeneratedifitisgeneratedbyafinitesetofelements.If simple(orirreducible)ifMhasnosubmodulesexceptMand0. AisafinitedimensionalalgebrathenMisfinitelygeneratedifandonlyifMisfinitedimensional. LEMMA1.2.3. (a)Thereisanaturalequivalencebetweenleft(respectivelyright)A-modules Forvectorspaces,thenotionsofindecomposabilityandirreducibilitycoincide.However,this andright(respectivelyleft)Aop-modules. isnotthecaseformodulesingeneral. (b)ThereisanaturalequivalencebetweenrepresentationsofAandleftA-modules. EXAMPLE1.2.9. LetC2denotethecyclicgroupwithelements{1,g},andconsiderthetwo- PROOF. Wegivethecorrespondenceineachcase;detailsarelefttothereader. Givenaleft dimensionalkC2-moduleMwithbasis{m1,m2}wheregm1=m2andgm2=m1.IfM=N1⊕N2 moduleMforAwithbilinearmapf :A×M−→M,definearightAop-modulestructureonM withN1andN2non-zerotheneachNiisthespanofavectoroftheforml 1m1+l 2m2forsome viathemapf ′:M×A−→Mgivenbyf ′(m,x)=f (x,m). Itiseasytoverifythatf isanAop- l 1,l 2∈k. Applyinggwededucethatl 1=±l 2,andhenceNimustbethespanofm1−m2or homomorphism. m1+m2.ButN1=N2ifkhascharacteristic2,whichcontradictsourassumption.ThusMisnever irreducible,butisindecomposableifandonlyifthecharacteristicofkis2. Wewillseethatthis Givenarepresentationf :A−→Endk(M)ofAwedefineanA-modulestructureonM by examplegeneralisestoarbitrarygroupalgebraswhenweconsiderMaschke’sTheorem. setting am=f (a)(m) ThereisacloserelationshipbetweentherepresentationtheoryofAandAop. foralla∈Aandm∈M.Conversely,givenanA-moduleM,themapM−→Mgivenbym7−→rm islinear,andgivesthedesiredrepresentationf :A−→Endk(M). (cid:3) DEFINITION 1.2.10. LetM beafinitedimensional(left)A-module. Thenthedualmodule NsuDchEFthINaItTfIO(aNm1).=2.4a.fA(mh)omfoormalolraph∈isAmabnedtwmee∈nMA-.mTohdiusliessaMniasnodmNoripshaislmineparercmisaeplyfw:hMen−t→he Mfor∗aisllthae∈duAa,lmve∈ctMorsapnadcfeH∈oHmokm(Mk(,Mk),kw)i.thBayrLigemhtmAa-m1o.2d.u3lethaisctgioivnegsiMve∗ntbhye(sftrau)c(tmur)e=off a(almef)t Aop-module. linearmapisabijection. DEFINITION1.2.5. GivenanA-moduleM,asubmoduleofMisasubspaceNofMsuchthat TakingthedualofanAop-modulegivesanA-module,anditiseasytoverify(asforvector foralln∈Nanda∈Awehavean∈N.(NotethatNisanA-moduleinitsownright.)Thequotient spaces)that space M/N={m+N:m∈M} LEMMA1.2.11. ForanyfinitedimensionalA-moduleMwehaveM∗∗∼=M. 1.3.QUIVERS 11 12 1.ALGEBRASANDMODULES 1.3. Quivers PROOF. TheassociativityofmultiplicationinkQisstraightforward. Nextnotethattheele- mentseisatisfy DEFINITION1.3.1. AquiverQisadirectedgraph. WewilldenotethesetofverticesbyQ0, eie j=dijei qaunidvethr.esTehteofuenddgeersly(iwnghigchrawphecQ¯alolfararoqwusiv)ebryQQ1i.sItfheQ0graanpdhQo1btaarienebdotfhrofimnitQetbhyenfoQrgiesttainfignaitlel andhenceformasetoforthogonalidempotents.Further,foranypathp∈kQwehaveeip=pif orientationsofedges. pendsatvertexiand0otherwise.HenceifQ0isfinitethen ApathoflengthninQisasequencep=a 1a 2...a nwhereeacha iisanarrowanda istarts (cid:229) eip=p. atthevertexwherea i+1ends. Foreachvertexi,thereisapathoflength0,whichwedenoteby i∈Q0 ei.Aquiverisacycliciftheonlypathswhichstartandendatthesamevertexhavelength0,and Similarly connectedifQ¯isaconnectedgraph. (cid:229) pei=p EXAMPLE1.3.2. (a)ForthequiverQgivenby i∈Q0 andhence •1 1= (cid:229) ei a i∈Q0 g b 55•(cid:15)(cid:15)2 d ////•3oo r • isthCeounnviteirnseklyQ,.supposethatQ0isinfiniteand1∈kQ. Then1=(cid:229) l ipiforsome(finite)setof thesetofpathsoflengthgreaterthan1isgivenby pathspiandscalarsl i.Pickavertexjsuchthatforallithepathpidoesnotendatj.Thene j1=0, whichgivesacontradiction. {b n+2,b n+1a ,gb n+1,db n+1,gb na ,db na :n≥0}. Finally,ifQ0orQ1isnotfinitethenkQisclearlynotfinitedimensional. Givenafiniteset ofverticeswithfinitelymanyedges,thereareonlyfinitelymanypathsbetweenthemunlessthe (b)ForthequiverQgivenby quivercontainsacycle. (cid:3) a •1 b 55 ii thesetofpathscorrespondstowordsina andb (alongwiththetrivialword). EXAMPLE1.3.5. EachofthequiversinExample1.3.2isfinite,andsothecorrespondingkQ containsaunit. However,thepathalgebrascorrespondingto1.3.2(a)and1.3.2(b)arenotfinite (c)ForthequiverQgivenby dimensional. Indeed,itiseasytoseethatthepathalgebrafor(b)isisomorphictokhx,yi,under themaptakinga toxandb toy.Thepathalgebrafor1.3.2(c)isan8-dimensionalalgebra. a b g •1 //•2 //•3oo •4 BecauseofLemma1.3.4wewillonlyconsiderfinitequiversQ,sothatthecorrespondingpath thesetofpathsis algebrasareunital. {e1,e2,e3,e4,a ,b ,g,ba }. DEFINITION1.3.6. GivenafinitequiverQ,theidealRQofkQgeneratedbythearrowsinQ iscalledthearrowidealofkQ. ThenRmistheidealgeneratedbyallpathsoflengthminQ. An Wewouldliketoassociateanalgebratoaquiver;however,weneedtotakealittlecare. Q idealIinkQiscalledadmissibleifthereexistsm≥2suchthat ofpaDthEsFIiNnIQTI.OMNu1lt.i3p.l3ic.aTtihoenpiastvhiaalcgoenbcraatkeQnaotifoanqoufipvearthQs:iisftphe=k-av1eact2o.r..sapancaenwdiqth=babs1ibs2th..e.bsemt RmQ⊆I⊆R2Q. then IfIisadmissiblethen(Q,I)iscalledaboundquiver,andkQ/Iisaboundquiveralgebra. pq=a 1a 2...a nb 1b 2...b m ifa nstartsatthevertexwhereb 1ends,andis0otherwise. isgrNeaotteertthhaatnifthQemisafixniimteaalnpdatahclyecnlgicththiennQa.nyidealcontainedinR2Qisadmissible,asRmQ=0ifm Wehavenotyetcheckedthattheabovedefinitiondoesinfactdefineanalgebrastructureon EXAMPLE 1.3.7. LetQbeasinExample1.3.2(b),andletI=hba ,b 2i. Thisisnotanad- kQ. missibleidealinkQasitdoesnotcontaina mforanym≥1,andsodoesnotcontainRmforany Q m≥2. LEMMA 1.3.4. LetQbeaquiver. ThenkQisanassociativealgebra. FurtherkQhasan identityelementifandonlyifQ0isfinite,andisfinitedimensionalifandonlyifQisfiniteand PROPOSITION1.3.8. LetQbeafinitequiverwithadmissibleidealIinkQ.ThenkQ/Iisfinite acyclic. dimensional. 1.4.REPRESENTATIONSOFQUIVERS 13 14 1.ALGEBRASANDMODULES PROOF. AsIisadmissiblethereexistsm≥2suchthatRmQ⊆I.Hencethereisasurjectiveal- Thishasarepresentation gtawsebothrDiaenrhEeQoFaImsNrueoIcTmohInOotlhryNpafiht1ina.s3ilmtl.e9plf.yarotAmhmsarenkhlQyaavt/pieoRanttmQhhiseononskaftoQmlekeniQsgs/ttaahIr.filteBnvsiuestertttthelhiaxneneafamnordr.mcthoeemrasblaignmeabetrieoannidsovcfeleprataertlxhy.sfiIofnf{itrleejnd:gimtjh∈eanJts}iloeinas(cid:3)asatl k(=01=)=(=10=)===//(cid:30)(cid:30)kk22(cid:127)((cid:127)(cid:127)11(cid:127)10(cid:127)()(cid:127)01(cid:127)//??11k)2(oo102110)k3 setofrelationsinkQsuchthattheidealgeneratedbythesetisadmissiblethenwesaythatkQis boundbytherelations. Noticehoweasyitwastogivearepresentation: therearenocompatibilityrelationstobe checked(apartfromthatthelinearmapsgobetweentheappropriatedimension)soexamplescan EXAMPLE1.3.10. ConsiderthequiverinExample1.3.2(a)andtherelations beeasilygeneratedforanypathalgebra.Thisisverydifferentfromwritingdownexplicitmodules {gb 2a −da ,gb +db ,b 5}. foranalgebra(ingeneral). Anypathoflengthatleast7mustcontainb 5,andsoQisboundbythissetofrelations. Definition1.4.1looksratherdifferent fromthat foran algebra. However, thenextlemma showsthatrepresentationsofQcorrespondtokQ-modulesinanaturalway. Infacttheaboveexamplegeneralises:itiseasytoseethatanyidealIinR2 isadmissibleifit Q LEMMA 1.4.4. LetMbearepresentationofafiniteacyclicquiverQ. Considerthevector containseachcycleinQtosomepower.Further,wehave space PROPOSITION1.3.11. LetQbeafinitequiver.EveryadmissibleidealinkQisgeneratedbya M′= Ma. finitesequenceofrelationsinkQ. aM∈Q0 ThiscanbegiventhestructureofakQ-modulebydefiningforeacha :i−→jamapfa′ :M−→M PROOF. (Sketch)ItiseasytocheckthateveryadmissibleidealIisfinitelygeneratedbysome by set{a1,...,an}(asRmQandI/RmQarefinitelygenerated). However,ingeneralasetofgenerators fa′(m1,...,mn)=(0,...,0,fa (mi),0,...0) forIwillnotbeasetofrelations,asthepathsineachaimaynotallhavethesamestartvertexand wherethenon-zeroentryisinposition j,andforeachi∈Q0amapei:M−→Mby endvertex.However,thenon-zeroelementsintheset ei(m1,...,mn)=(0,...,0,mi,0,...,0) {exaiey:1≤i≤n,x,y∈Q0} wherethenon-zeroentryisinpositioni. Conversely,supposethatN isakQ-module. Thenwe areallrelations,andthissetgeneratesI. (cid:3) obtainarepresentationofQbysettingNa=eaNanddefiningfa fora :a−→btobetherestriction oftheactionofa ∈kQtoNa. 1.4. Representationsofquivers PROOF. CheckingthattheabovedefinitionsgiveakQ-moduleandarepresentationofQre- spectivelyisroutine. (cid:3) DEFINITION1.4.1. LetQbeafinitequiver.ArepresentationMofQoverkisacollectionofk- vectorspaces{Ma:a∈Q0}togetherwithalinearmapfa :Ma−→Mbforeacharrowa :a−→b Wealsoneedthenotionofarepresentationofaboundquiver. Notethatwedonotneedto inQ1.TherepresentationMisfinitedimensionalifalltheMaarefinitedimensional. assumethatQisacyclichere,asadmissibleidealsguaranteethattheassociatedquotientalgebrais DEFINITION1.4.2.GiventworepresentationsMandM′ofafinitequiverQ,ahomomorphism finitedimensional. fromMtoNisacollectionoflinearmaps fi:Mi−→Mi′suchthatforeacharrowa :i−→ jwe DEFINITION1.4.5. Givenapathp=a 1a 2...a ninafinitequiverQfromatobandarepre- havefa′ fi=fjfa . sentationMofQwedefinethelinearmapf pfromMatoMbby Whengivingexamplesofrepresentationsofquiverswewillusuallyfixbasesofeachofthe f p=fanfan−1...fa1. vectorspaces,andrepresentthemapsbetweenthembymatriceswithrespecttocolumnvectorsin Ifr isalinearcombinationofpathspiwiththesamestartvertexandthesameendvertexthenfr thesebases. wisedseafiynethdattoMbeisthbeocuonrdrebsypoInidfifnrg=lin0eaforrcaolmlrbeinlaattiioonnsorft∈heI.f pi.GivenanadmissibleidealIinkQ EXAMPLE1.4.3. Considerthequiver EXAMPLE 1.4.6. ConsidertherepresentationinExample1.4.3. Let p=ba andq=rd . •1BBdBBaBBBB// ••25||||b|r|||//>>•3oo g •4. Tanhdensothisrefppre=se(cid:18)nta11tion10i(cid:19)sb(cid:18)ou10nd(cid:19)b=yth(cid:18)e11ide(cid:19)alhba f−q=rd (cid:18)i.01 11 (cid:19)(cid:18) 01 (cid:19)=(cid:18) 11 (cid:19) 1.5.EXERCISES 15 16 1.ALGEBRASANDMODULES ItiseasytoverifythatthecorrespondencebetweenrepresentationoffiniteacyclicQandkQ- (a) GivenvectorspacesNa≤Ma,whatconditionsmustbesatisfiedfor(Na,fa)tobea modulesgiveninLemma1.4.4extendstoacorrespondencebetweenrepresentationsoffiniteQ subrepresentationNofQ? boundbyIandkQ/I-modules. (b) SupposethatMisarepresentationofQboundbyanadmissibleidealI. Showthat therepresentationNisalsoboundbyI. Inthiscourseweareavoidingthelanguageofcategorytheory. Thisismainlyduetolack (c) IfQhasnvertices,givennon-isomorphicsimplerepresentationsofkQ,andalsoof of time: the language of categories and functors is a very powerful one, and many results in representationtheoryarebeststatedinthisway.Roughly,acategoryisacollectionofobjects(e.g. kQ/I.(Hint:whatconditiononthedimensionsoftheNaguaranteestheabsenceofa propersubrepresentation?) kQ-modules)andmorphisms(e.g. kQ-homomorphisms),andtheideaistostudythecategoryas (d) IfQisacyclicthenwewillseeinChapter2thattheseexamplesformacompleteset awholeratherthanjusttheobjectsormorphismsseparately. Afunctoristhenamapfromone ofsimplerepresentations.However,itisalsopossibletoshowthisdirectly.Suppose categorytoanotherwhichtransportsbothobjectsandmorphismsinasuitablycompatibleway. InthislanguagetheaboveresultrelatingboundrepresentationsofQandkQ/I-modulesgivesan thatMisarepresentationofanacyclicQsuchthatmorethanoneMaisnon-zero. ShowthatMhasapropersubrepresentation. equivalencebetweenthecorrespondingcategories. (e) SupposethatQisfinitebutcontainssomecycle. ShowthatQnowhasinfinitely manynon-isomorphicsimplerepresentationsoverC. 1.5. Exercises (7) InthisexercisewewillclassifytheindecomposablerepresentationsofthequiverQgiven (1) SupposethatIisanidealinanalgebraA. by (a) ShowthatA/Ihasanalgebrastructuresuchthatthereisasurjectivehomomorphism •1 a1 //•2 a2 //•3 a3 //... an−2//•n−1an−1 //•n. fromAtoA/I. LetM=(Mi,fi)beanindecomposablerepresentationofQ. (b) SupposethatAisanalgebrawithidealI,andthatMisanA/I-module.ShowthatM (a) ShowthatiffiisnotinjectivethenMj=0for j>i. canbegiventhestructureofanA-module. (b) SimilarlyshowthatiffiisnotsurjectivethenMj=0for j≤i. (c) IfMisanA-module,whatconditionmustitsatisfytobeanA/I-module? (c) DeducethatMisisomorphictoarepresentationoftheform 0 //... //0 //k id //... id //k //0 //... //0. (2) Supposethat(P,≤)isapartiallyorderedsetofcardinalityn, anddefinekPtobethe subsetofMn(k)givenby (d) Showthatthen(n+1)suchmodulesarepairwisenon-isomorphic. 2 kP={M=(mij):mij=0if i6≤j}. WewillseeinChapter4thatthisexampleispartofamoregeneralpicture. (a) ShowthatkPisasubalgebraofMn(k)(thisiscalledtheincidencealgebraof(P,≤)). (b) ShowthatPcanbeidentifiedwiththeset{1,...n}insuchawaythatkPcanbe (8) LetS3denotethesymmetricgrouponthreesymbols.DecomposethegroupalgebraCS3 identified withasubalgebraofthealgebraLTn(k)oflowertriangularmatricesin intoadirectsumofsimplerepresentationsforS3.(Youmayfinditconvenienttoidentify Mn(k). CS3withaspaceofpermutationmatrices.) (c) DeducethatifQisafiniteacyclicquiverwithatmostonearrowbetweeneachpair ofvertices,thenkQisasubalgebraofLTn(k)forsomen. (d) IllustrateyourlastconstructioninthecaseofthequiverinExample1.3.2(c). (e) WhichquivercorrespondtothewholeofLTn(k)? (3) SupposethatQisaquiver,andletQopbethequiverobtainedbyreversingallthearrows. Showthatthereisanisomorphismofalgebrask(Qop)∼=(kQ)op. (4) SupposethatGisagroup.ShowthatkG∼=(kG)op. (5) ClassifythesimplemodulesforthecyclicgroupCnoveranalgebraicallyclosedfieldof characteristicp≥0. (6) SupposethatM=(Ma,fa)isarepresentationofsomefinitequiverQ. 18 2.SEMISIMPLICITYANDSOMEBASICSTRUCTURETHEOREMS PROOF. (Sketch)Notethat(a)implies(b)and(b)implies(c)areclear. For(c)implies(a) considerthesetofsubmodulesofAwhoseintersectionwithN is0. Pickonesuch, Lsay, of maximaldimension;ifN⊕L6=MthenthereissomesimpleSinMnotinN⊕L.Butthiswould CHAPTER 2 implythatS+Lhasintersection0withA,contradictingthemaximalityofL. (cid:3) LEMMA2.1.5. IfMisasemisimpleA-modulethensoiseverysubmoduleandquotientmodule Semisimplicityandsomebasicstructuretheorems ofM. PROOF. (Sketch)IfNisasubmodulethenM=N⊕LforsomeLbytheprecedingLemma. Inthischapterwewillreviewsomeoftheclassicalstructuretheoremsforfinitedimensional ButthenM/L∼=N,andsoitisenoughtoprovetheresultforquotientmodules. algebras. Inmostcasesresultswillbestatedwithonlyasketchoftheproof. Henceforthwewill IfM/Lisaquotientmoduleconsidertheprojectionhomomorphismp fromMtoM/L.Write restrictourattentiontofinitedimensionalmodules. MasasumofsimplemodulesSiandverifythatp (S)iseithersimpleor0.ThisprovesthatM/L isasumofsimplemodules,andsotheresultfollowsfromtheprecedinglemma. (cid:3) 2.1. Simplemodulesandsemisimplicity Toshowthatanalgebraissemisimple,wedonotwanttohavetochecktheconditionforevery possiblemodule.Fortunatelywehave RecallthatasimplemoduleisamoduleSsuchthattheonlysubmodulesareSand0. These formthebuildingblocksoutofwhichallothermodulesaremade: PROPOSITION2.1.6. EveryfinitedimensionalA-moduleisisomorphictoaquotientofAnfor somen.HenceanalgebraAissemisimpleifandonlyifAissemisimpleasanA-module. LEMMA2.1.1. IfMisafinitedimensionalA-modulethenthereexistsasequenceofsubmod- ules PROOF. (Sketch)SupposethatMisafinitedimensionalA-module,spannedbysomeelements 0=M0⊂M1⊂···⊂Mn=M m1,...,mn.Wedefineamap suchthatMi/Mi−1issimpleforeach1≤i≤n.SuchaseriesiscalledacompositionseriesforM. f :⊕ni=1A−→M by ofmPiRnOimOaFl.dPimroecneseidonb,ywinhdicuhctiisonneocnesthsaerdiliymseinmspiolen.oNfMow.IdfimM(iMsn/oMt1s)im<pdlei,mpMick,aansdubsomtohdeurleesMul1t f ((a1,...,an))=(cid:229)n aimi. followsbyinduction. (cid:3) i=1 ItiseasytocheckthatthisisahomomorphismofA-modules,andsobytheisomorphismtheorem wehavethat Moreover,wehave M∼=⊕n A/kerf . i=1 THEOREM2.1.2(Jordan-Hölder). SupposethatMhastwocompositionseries Theresultnowfollowsfromtheprecedinglemma. (cid:3) 0=M0⊂M1⊂···⊂Mm=M, 0=N0⊂N1⊂···⊂Nn=M. ForfinitegroupswecansayexactlywhenkGissemisimple: Thenn=mandthereexistsapermutations of{1,...n}suchthat THEOREM2.1.7(Maschke). LetGbeafinitegroup.ThenthegroupalgebrakGissemisimple Mi/Mi+1∼=Ns (i)/Ns (i)+1. ifandonlyifthecharacteristicofkdoesnotdivide|G|,theorderofthegroup. PROOF. Theproofissimilartothatforgroups. (cid:3) PROOF. (Sketch)Firstsupposethatthecharacteristicofkdoesnotdivide|G|.Wemustshow thateverykG-submoduleMofkGhasacomplementasamodule. Clearlyasvectorspaceswe Lifewouldbe(relatively)straightforwardifeverymodulewasadirectsumofsimplemodules. canfindNsuchthatM⊕N=kG. Letp :kG−→Mbetheprojectionmapp (m+n)=mforall m∈Mandn∈N.Wewanttomodifyp sothatitisamodulehomomorphism,andthenshowthat DEFINITION2.1.3. AmoduleMissemisimple(orcompletelyreducible)ifitcanbewrittenas thekernelisthedesiredcomplement. adirectsumofsimplemodules.AnalgebraAissemisimpleifeveryfinitedimensionalA-module issemisimple. DefineamapTp :kG−→Mby LEMMA2.1.4. IfMisafinitedimensionalA-modulethenthefollowingareequivalent: Tp (m)= 1 (cid:229) g(p (g−1m)). |G| (a)IfNisasubmoduleofMthenthereexistsLasubmoduleofMsuchthatM=L⊕N. g∈G (b)Missemisimple. Notethatthisispossibleas|G|−1existsink. ItisthenroutinetocheckthatTp isakG-module (c)Misa(notnecessarilydirect)sumofsimplesubmodules. map. 17 2.2.SCHUR’SLEMMAANDTHEARTIN-WEDDERBURNTHEOREM 19 20 2.SEMISIMPLICITYANDSOMEBASICSTRUCTURETHEOREMS NowletK=ker(Tp),whichisasubmoduleofkG.WewanttoshowthatkG=M⊕K.First GivenanA-moduleMweset rsahnokw-ntuhlalittyTpthaecotrsemasftohreliidneenartitmyaopns,MkG, w=hiMch+imKp.liCesomthbaitnMing∩tKhes=e0tw.oNfeaxcttsnwoteedthedatucbeytthhaet EndA(M)={f :M−→M|f isanA-homomorphism}. kG=M⊕Kasrequired. ThisisasubalgebraofEndk(M).Moregenerally,ifMandNareA-modulesweset Forthereverseimplication,considerw=(cid:229) g∈Gg∈kG.Itiseasytocheckthateveryelement HomA(M,N)={f :M−→N|f isanA-homomorphism}. ofgfixesw,andhencewspansaone-dimensionalsubmoduleMofkG.Nowsupposethatthereis acomplementarysubmoduleNofkG,anddecompose1=e+fwhereeandfaretheidempotents ArguingasintheproofofLemma2.2.1aboveweobtain correspondingtoMandNrespectively. Wehavee=l wforsomel ∈k,ande2=e=l 2w2. It iseasytocheckthatw2=|G|wandhencel w=l 2|G|wwhichimpliesthat1=l |G|. Butthis LEMMA2.2.3(Schur). IfkisalgebraicallyclosedandSandTaresimpleA-modulesthen contradictsthefactthat|G|=0ink. (cid:3) HomA(S,T)∼=(cid:26) k0 oifthSe∼=rwTise. Thenextresultwillbeimportantinthefollowingsection. LEMMA2.1.8. ThealgebraMn(k)issemisimple. Wecannowgiveacompleteclassificationofthefinitedimensionalsemisimplealgebras. THEOREM 2.2.4 (Artin-Wedderburn). Let Abea finitedimensionalalgebraover an alge- PROOF. LetEijdenotethematrixinA=Mn(k)consistingofzeroseverywhereexceptforthe braicallyclosedfieldk.ThenAissemisimpleifandonlyif (i,j)thentry,whichis1.Wefirstnotethat 1=E11+E22+···+Enn A∼=Mn1(k)⊕Mn2(k)⊕···⊕Mnt(k) is an orthogonal idempotentdecompositionof 1, and hence A decomposes as a direct sum of forsomet∈Nandn1,...,nt∈N. modulesoftheformAEii.Wewillshowthatthesesummandsaresimple. PROOF. (Sketch)WesawinLemma2.1.8thatMn(k)isasemisimplealgebra,andifAandB FirstobservethatAEiiisjustthesetofmatriceswhicharezeroexceptpossiblyincolumni. aresemisimplealgebras,thenitiseasytoverifythatA⊕Bissemisimple. Pthieckmxat∈rixAExiwinhoicnh-ziesron;onw-ezemrou.sBtsuhtotwhenthatAx=AEii.Asxisnon-zerothereissomeentryxmiin ForthereverseimplicationsupposethatMandNareA-modules,withM=⊕ni=1MiandN= ⊕mi=1Ni.ThefirstclaimisthatHomA(M,N)canbeidentifiedwiththespaceofmatrices andhenceEji∈Axforall1≤j≤n.BEutjmthxis=imxmpilEiejsi∈thaAtxAx=AEiiasrequired. (cid:3) {(fij)1≤i≤n,1≤j≤m|fi,j:Mj−→NianA-homomorphism} andthatifM=NwithMi=Niforallithenthisspaceofmatricesisanalgebrabymatrixmulti- plication,isomorphictoEndA(M).Thisfollowsbyanelementarycalculation. 2.2. Schur’slemmaandtheArtin-Wedderburntheorem NowapplythistothespecialcasewhereM=N=A,and WebeginwithSchur’slemma,whichtellsusaboutautomorphismsofsimplemodules. A=(S1⊕S2⊕···⊕Sn1)⊕(Sn1+1⊕···⊕Sn1+n2)⊕···⊕(Sn1+n2+···+nt−1+1⊕···⊕Sn1+n2+···+nt) LEMMA2.2.1(Schur). LetSbeasimpleA-moduleandf :S−→Sanon-zerohomomorphism. isadecompositionofAintosimplessuchthattwosimplesareisomorphicifandonlyiftheyoccur Thenf isinvertible. inthesamebracketedterm. BySchur’sLemmaaboveweseethatfijinthisspecialcaseis0if f 6=P0R,OsoOFM. L=et0Mand=fkeisrfinjaencdtivNe.=Siimmifla;rltyhewseesaereetbhoatthNsu=bmS,osdouflesisosfuSrj.ecBtiuvte,Sainsdshimenpcleefanids iSwsioeamhnadovrSpehjiasrmeionfdHifofemreAn(tAb,rAa)ckweittehdMtenr1m(ks),a⊕nd··i·s⊕soMmnte(kl)i.j∈Fiknaoltlhye,rwweisne.otTehtehraetifsotrhaennyanalogbebvrioauAs invertible. (cid:3) EndA(A,A)∼=Aop LEMMA2.2.2. IfkisalgebraicallyclosedandSisfinitedimensionalwithnon-zeroendomor- andhence phismf ,thenf =l .idS,forsomenon-zerol ∈k. A=(Aop)op∼=Mn1(k)op⊕···⊕Mnt(k)op. PROOF. AskisalgebraicallyclosedanddimS<¥ themapf hasaneigenvaluel ∈k.Then ButitiseasytoseethatMn(k)∼=Mn(k)opviathemaptakingamatrixXtoitstranspose,andso f −l idSisanendomorphismofSwithnon-zerokernel(containingalleigenvectorswitheigen- wearedone. (cid:3) value l ). Arguing as in the preceding lemma we deduce that ker(f −l idS)=S, and hence f =l idS. (cid:3) Wecanalsodescribeallthesimplemodulesforsuchanalgebra.
Description: