ebook img

Representation Theory and Geometry of the Flag Variety PDF

136 Pages·2022·3.104 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representation Theory and Geometry of the Flag Variety

WilliamM.McGovern RepresentationTheoryandGeometryoftheFlagVariety De Gruyter Studies in Mathematics | Edited by Carsten Carstensen, Berlin, Germany Gavril Farkas, Berlin, Germany Nicola Fusco, Napoli, Italy Fritz Gesztesy, Waco, Texas, USA Niels Jacob,Swansea, United Kingdom Zenghu Li, Beijing, China Karl-Hermann Neeb, Erlangen, Germany René L.Schilling, Dresden, GermanyVolkmar Welker, Marburg, Germany Volume 90 William M. McGovern Representation Theory and Geometry of the Flag Variety | MathematicsSubjectClassification2020 22E46 Author Prof.WilliamM.McGovern UniversityofWashington DepartmentofMathematics P.O.Box354350PDLC-450 SeattleWA98195-4350 USA [email protected] ISBN978-3-11-076690-5 e-ISBN(PDF)978-3-11-076694-3 e-ISBN(EPUB)978-3-11-076696-7 ISSN0179-0986 LibraryofCongressControlNumber:2022944915 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2023WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Theaimofthisbook,asindicatedbyitstitle,istodeveloptheconnectionsbetween therepresentationtheoryofacomplexsemisimpleLiegroupGandthegeometryof itsflagvarietyX = G/B.Webeginbylookingatfinite-dimensionalrepresentations, mostlyofclassicalgroups.WethenoutlinetheBeilinson–Bernsteinconstructionof irreduciblerepresentationsofGfromclosuresoforbitsofsubgroupsofGinX,also showinghowtogotheotherway,fromrepresentationstoorbitclosures,bymeansof thecharacteristicvarietyofarepresentation.Thisleadsinanaturalwaytostudying whichsuchorbitclosureslieinwhichothersandthesingularitiesoforbitclosures atpointsofsmallerorbits.WediscussKazhdan–LusztigandLusztig–Voganpolyno- mials, introduced to study both these singularities and representations. We offer a number of combinatorial characterizations of nonsingular orbit closures, mostly in theclassicalcases.Finally,inadifferentdirection,westudySpringerfibersinXand thesingularitiesoftheircomponents. Inmoredetail,afterlayingoutprerequisitesinapreliminarychapter,wegivea linearalgebraicconstruction,whichstartsfromthedefiningrepresentationofthegen- erallineargroupandconstructsfromthisallofitsirreduciblefinite-dimensionalrep- resentations.Modelsfortheserepresentationsaregivenbythesetsofsemistandard Young tableaux of a fixed shape with entries from a fixed alphabet of symbols. We thenextendtheconstructiontotheotherclassicalgroups,concludingwithabriefac- countoftheBorel–Weilconstructionoffinite-dimensionalirreduciblerepresentations ofsemisimplegroupsfromtheirhighestweights. Turningthentoinfinite-dimensionalrepresentations,weusetheBorho–Brylinski realizationofthequotientU/I oftheenvelopingalgebraU oftheLiealgebragofG byasuitableminimalprimitiveidealI astheringofalgebraicdifferentialoperators onXandtheBeilinson–BernsteinlocalizationofafinitelygeneratedmoduleMover U/I asasheafofmodulesoverthesheafofdifferentialoperatorsonX todefinethe characteristicandassociatedvarietiesofMinChapter3andthemomentmaptaking thefirstofthesetothesecond.InthiswaytherepresentationtheoryofGandgeometry ofXarefirmlytiedtogether.Todocomputations,weneedadecompositionofXinto finitelymanysuborbits,eitherunderaBorelsubgroupBofGorunderasymmetric subgroupK.Wealsoneedadescriptionofwhichorbitclosureslieinwhichothers.We givethisexplicitlyintheclassicalcases.Inthenextchapter,westudythesingularities ofvarieties,ororbitclosures,inmoredetail;inthefollowingtwochapters,wegive an account of the Kazhdan–Lusztig and Lusztig–Vogan polynomials, introduced to measurethesesingularitiesprecisely.Weconsiderthenicestkindofvarieties,namely therationallysmoothones,showinghowtocharacterizethesecombinatoriallyinthe classicalcasesandtoacertainextentingeneral.Weconcludewithsomerecentwork oncomponentsofSpringerfibers. Theprerequisitesforthisbookconsistofknowledgeofthestructureandfinite- dimensionalrepresentationtheoryofcomplexsemisimplegroupstogetherwithsome https://doi.org/10.1515/9783110766943-201 VI | Preface basicalgebraicgeometryandcertainfactsabouthighestweightandHarish-Chandra modules.Familiaritywiththeauthor’sjointearlierbookonnilpotentorbitswithDavid Collingwoodwouldalsobehelpful;someofthematerialfromthisbookisreviewedin thefirstchapter.ThebookgrewoutofacoursethattheauthorgaveattheUniversity ofWashingtoninthefallof2021. Ineachsection,theorems,lemmas,corollaries,anddefinitionsarenumberedsep- arately,sothatitispossible,forexample,foratheoremandacorollaryinthesame sectiontohavethesamenumber. WilliamM.McGovern Contents Preface|V 1 Preliminaries|1 1.1 Structureofg|1 1.2 Theflagvariety|1 1.3 Finite-dimensionalandhighestweightrepresentations|2 1.4 SymmetricsubgroupsofG|4 1.5 Harish–ChandramodulesanddifferentialoperatorsonG/B|5 1.6 Nilpotentorbitsandorbitalvarieties|7 2 Polynomialrepresentationsandtheflagvariety|10 2.1 Schurmodules|10 2.2 IdentificationandirreducibilityofthemodulesVλ|14 2.3 Definingequationsoftheflagvariety|16 2.4 Cohomologyoftheflagvariety|19 2.5 Symplecticgroups|24 2.6 Orthogonalgroups|24 2.7 Thegeneralcaseandlinebundles|26 3 Associated,characteristic,andorbitalvarieties|27 3.1 Definitionsofthecharacteristicvarietyandmomentmap|27 3.2 K-orbitsinX |29 3.3 TheclosureorderonK-orbits|33 3.4 OrbitalvarietiesandSpringerfibers|37 4 Singularitiesoforbitclosures|46 4.1 Smoothandrationallysmoothpoints|46 4.2 Criterionforrationalsmoothness|47 4.3 Symmetricvarieties|50 5 Kazhdan–LusztigpolynomialsandtheHeckealgebra|53 5.1 TheHeckealgebraandtheR-polynomials|53 5.2 Kazhdan–Lusztigpolynomials|55 5.3 Anotherconstruction|58 5.4 InverseKLpolynomials|60 5.5 Cones,cells,andW-graphs|61 5.6 Applicationstorepresentationtheory|65 5.7 Applicationstogeometry|72 VIII | Contents 6 Lusztig–VoganpolynomialsandHarish-Chandramodules|77 6.1 ℤ/2ℤdata|77 6.2 Circleandcrossactions|80 6.3 TheHeckemodule|82 6.4 Applications|85 7 Patternavoidanceandsingularitiesoforbitclosures|88 7.1 PatternavoidanceforclassicalSchubertvarieties|88 7.2 Rootsubsystempatternavoidance|90 7.3 Patternavoidanceforsymmetricvarieties|94 7.4 RichardsonvarietiesandsymmetricorbitsintypeAIII|99 7.5 Intervalpatternavoidance|101 8 Springerfibers|105 8.1 Thetwo-columncase|105 8.2 Particularcomponents|107 8.3 CohomologyofSpringerfibers|110 8.4 Orbitalvarietiesingeneral|111 Bibliography|115 Index|123 1 Preliminaries Inthischapter,weassemblesomebasicfactsaboutcomplexsemisimpleLiealgebras, flagvarietiesoftheiradjointgroups,andnilpotentorbitsinthealgebras,underthe actionsofboththeadjointgroupanditssymmetricsubgroups.Wealsoreviewsome morespecializedmaterialonhighestweightandHarish–Chandramodulesoversuch algebras.Ourbasicreferencesare[23,34,66,62,73,137].Throughoutthebook,gde- notesacomplexsemisimpleLiealgebra(orsometimesareductiveone),Uitsenvelop- ingalgebra,Gitsadjointgroup,baBorelsubalgebraofg,n=[b,b]itsnilradical,Bthe BorelsubgroupofGcorrespondingtob,andXthequotientG/B,whichidentifieswith theflagvarietyofallBorelsubalgebrasofg.Further,weletθdenoteaninvolutiveauto- morphismofGandK =Gθitsfixedpointsubgroup,calledasymmetricsubgroupofG. Thedifferentialofθisthenaninvolutiveautomorphismofg,alsodenotedbyθ;wede- notebyk+pthe(Cartan)decompositionofgasthesumofthe+1-and−1-eigenspaces ofθ.ForfixedG,thereareonlyfinitelymanychoicesforθuptoconjugacyinG;we willbrieflyrecallthesebelowintheclassicalcases. 1.1 Structureofg Werecallthatgisdetermineduptoisomorphismbyits(crystallographic)rootsystem Φ,afinitecollectionofnonzerovectorsinaEuclideanspaceℝnsuchthat 1. Φspansℝn, 2. Φ∩2Φ=0, (β,α) 3. 2(α,α) ∈ℤforα,β∈Φ,and (β,α) 4. sα(β)=β−2(α,α) ∈Φforα,β∈Φ, where (⋅,⋅) denotes the usual dot product in ℝn. Such systems are classified in [66, 11.4];everyonearisesastherootsystemofasemisimpleLiealgebra. 1.2 Theflagvariety ABorelsubalgebraofgisamaximalsolvablesubalgebra;anytwosuchareconjugate undertheadjointgroupG,andthestabilizerofaBorelsubalgebrabisitsadjointgroup B[66,16.4].Wehavethewell-knownBruhatdecompositionG = ⋃w∈W̃ BwBofGinto doublecosetsofBor,equivalently,oftheflagvarietyX =G/BintoB-suborbits.HereT isamaximaltorusofGcontainedinB,Nisitsnormalizer,thequotientW =N/Tisthe WeylgroupofG,andW̃ consistsofoneelementfromeachcosetofT inN [137,10.2]. TheLiealgebrahofT isaCartansubalgebraofg.AtypicaldoubleclosetBwBcorre- spondstoaB-orbitX inX,calledaSchubertcell;byabuseofnotationweusually w regardSchubertcellsasindexedbyelementsofW ratherthancosetrepresentatives https://doi.org/10.1515/9783110766943-001 2 | 1 Preliminaries ofTinN.TheorbitXwisisomorphictotheaffinespaceℂℓ(w),whereℓ(w)isthelength ofw,i.e.,theminimumnumberofsimplereflectionswithproductwor,alternatively, thenumberofpositiveroots(relativetob)thatwsendstonegativeroots[137].Inpar- ticular, the Schubert cell X attached to the longest element w of W is open and w0 0 denseinX,whereasthecellX attachedtotheidentityelementisasinglepoint.The 1 closureV ofX inX (ineithertheZariskiortheEuclideantopology)iscalledthe w w Schubertvarietyindexedbyw.AnytwoBorelsubgroupsB ,B ofGhaveacommon 1 2 maximaltorusT,whichisalsoamaximaltorusofG,sothatsomeelementofW =N/T takesB1toB2[66].ThustheorbitsofBorelsubalgebrasb1×b2ofG×Grelativetothe diagonalactionofGarealsoindexedbyelementswofW.Inparticular,givenBand − amaximaltorusT containedinit,thereisauniqueoppositeBorelsubgroupB toB − whoseintersectionwithBisexactlyT;wedenotebyB itsadjointgroup.Theorbits − Yw ofB inG/BarecalledoppositeSchubertcells;theyarealsoindexedbyelements w∈W.TheclosureZwofYwiscalledanoppositeSchubertvariety. IntheclassicalcasesG = SL(n,ℂ)andG = GL(n,ℂ),wemayrealizeanyBorel subalgebraofgasthestabilizerofa(complete)flag inℂn,thatis,ofachainV0 ⊂ V1 ⊂ ⋅⋅⋅ ⊂ Vn = ℂnofsubspacesViofV = ℂnsuchthatdimVi = i.Weoftenidentify thesubalgebrawiththeflag,thusidentifyingXwiththesetofallsuchflags.Herethe WeylgroupW isthesymmetricgroupSnactingonℂnbypermutingthecoordinates. Intheotherclassicalcases,whereGisthegroupofisometriesofℂnwithrespecttoa nondegeneratebilinearform(⋅,⋅),anyBorelsubalgebraisthestabilizerofanisotropic flag,thatis,achainV0 ⊂V1 ⊂⋅⋅⋅⊂VmofsubspacesofVsuchthateachViisisotropic with respect to (⋅,⋅),dimVi = i, and m = ⌊n/2⌋, the greatest integer to n/2 [137]; in thiscase,weidentifyXwiththesetofallsuchisotropicflags.Itisoftenconvenientto ⊥ extendanyisotropicflag{Vi}canonicallytoacompleteflagbysettingVn−i =Vi ,the orthogonalsubspacetoViwithrespecttotheambientform(⋅,⋅),foralli≤ n2.Intypes BandCtheWeylgroupWisthehyperoctahedralgroupHnactingonℂnbypermuting ′ andchangingthesignsofthecoordinates;intypeD ,W isthesubgroupH ofindex n n twoinH consistingofallelementspermutingthecoordinatesandchangingevenly n manyoftheirsigns. 1.3 Finite-dimensionalandhighestweightrepresentations FixingaBorelsubalgebrabofgandaCartansubalgebrahcontainedinb,werecall thatanyfinite-dimensionalrepresentationofgisadirectsumoffinite-dimensional irreduciblerepresentations[66,Thm.6.3]andthatsuchrepresentationsareparame- terizedbytheirhighestweightsλ[66,21.1,21.2].Inmoredetail,anyfinite-dimensional irreduciblemoduleVisthedirectsumofitsweightspacesV ,whereV consistsofall μ μ ∗ v∈Vwithhv=μ(h)vforallh∈h,andμrunsthroughthespaceh oflinearfunctions ∗ onh.Relativetothestandardinnerproductonh (transferredfromtheKillingform ong),theweightsμwithVμ ≠0areallintegral,thatis,theyalltakeintegervalueson

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.