WilliamM.McGovern RepresentationTheoryandGeometryoftheFlagVariety De Gruyter Studies in Mathematics | Edited by Carsten Carstensen, Berlin, Germany Gavril Farkas, Berlin, Germany Nicola Fusco, Napoli, Italy Fritz Gesztesy, Waco, Texas, USA Niels Jacob,Swansea, United Kingdom Zenghu Li, Beijing, China Karl-Hermann Neeb, Erlangen, Germany René L.Schilling, Dresden, GermanyVolkmar Welker, Marburg, Germany Volume 90 William M. McGovern Representation Theory and Geometry of the Flag Variety | MathematicsSubjectClassification2020 22E46 Author Prof.WilliamM.McGovern UniversityofWashington DepartmentofMathematics P.O.Box354350PDLC-450 SeattleWA98195-4350 USA [email protected] ISBN978-3-11-076690-5 e-ISBN(PDF)978-3-11-076694-3 e-ISBN(EPUB)978-3-11-076696-7 ISSN0179-0986 LibraryofCongressControlNumber:2022944915 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2023WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Theaimofthisbook,asindicatedbyitstitle,istodeveloptheconnectionsbetween therepresentationtheoryofacomplexsemisimpleLiegroupGandthegeometryof itsflagvarietyX = G/B.Webeginbylookingatfinite-dimensionalrepresentations, mostlyofclassicalgroups.WethenoutlinetheBeilinson–Bernsteinconstructionof irreduciblerepresentationsofGfromclosuresoforbitsofsubgroupsofGinX,also showinghowtogotheotherway,fromrepresentationstoorbitclosures,bymeansof thecharacteristicvarietyofarepresentation.Thisleadsinanaturalwaytostudying whichsuchorbitclosureslieinwhichothersandthesingularitiesoforbitclosures atpointsofsmallerorbits.WediscussKazhdan–LusztigandLusztig–Voganpolyno- mials, introduced to study both these singularities and representations. We offer a number of combinatorial characterizations of nonsingular orbit closures, mostly in theclassicalcases.Finally,inadifferentdirection,westudySpringerfibersinXand thesingularitiesoftheircomponents. Inmoredetail,afterlayingoutprerequisitesinapreliminarychapter,wegivea linearalgebraicconstruction,whichstartsfromthedefiningrepresentationofthegen- erallineargroupandconstructsfromthisallofitsirreduciblefinite-dimensionalrep- resentations.Modelsfortheserepresentationsaregivenbythesetsofsemistandard Young tableaux of a fixed shape with entries from a fixed alphabet of symbols. We thenextendtheconstructiontotheotherclassicalgroups,concludingwithabriefac- countoftheBorel–Weilconstructionoffinite-dimensionalirreduciblerepresentations ofsemisimplegroupsfromtheirhighestweights. Turningthentoinfinite-dimensionalrepresentations,weusetheBorho–Brylinski realizationofthequotientU/I oftheenvelopingalgebraU oftheLiealgebragofG byasuitableminimalprimitiveidealI astheringofalgebraicdifferentialoperators onXandtheBeilinson–BernsteinlocalizationofafinitelygeneratedmoduleMover U/I asasheafofmodulesoverthesheafofdifferentialoperatorsonX todefinethe characteristicandassociatedvarietiesofMinChapter3andthemomentmaptaking thefirstofthesetothesecond.InthiswaytherepresentationtheoryofGandgeometry ofXarefirmlytiedtogether.Todocomputations,weneedadecompositionofXinto finitelymanysuborbits,eitherunderaBorelsubgroupBofGorunderasymmetric subgroupK.Wealsoneedadescriptionofwhichorbitclosureslieinwhichothers.We givethisexplicitlyintheclassicalcases.Inthenextchapter,westudythesingularities ofvarieties,ororbitclosures,inmoredetail;inthefollowingtwochapters,wegive an account of the Kazhdan–Lusztig and Lusztig–Vogan polynomials, introduced to measurethesesingularitiesprecisely.Weconsiderthenicestkindofvarieties,namely therationallysmoothones,showinghowtocharacterizethesecombinatoriallyinthe classicalcasesandtoacertainextentingeneral.Weconcludewithsomerecentwork oncomponentsofSpringerfibers. Theprerequisitesforthisbookconsistofknowledgeofthestructureandfinite- dimensionalrepresentationtheoryofcomplexsemisimplegroupstogetherwithsome https://doi.org/10.1515/9783110766943-201 VI | Preface basicalgebraicgeometryandcertainfactsabouthighestweightandHarish-Chandra modules.Familiaritywiththeauthor’sjointearlierbookonnilpotentorbitswithDavid Collingwoodwouldalsobehelpful;someofthematerialfromthisbookisreviewedin thefirstchapter.ThebookgrewoutofacoursethattheauthorgaveattheUniversity ofWashingtoninthefallof2021. Ineachsection,theorems,lemmas,corollaries,anddefinitionsarenumberedsep- arately,sothatitispossible,forexample,foratheoremandacorollaryinthesame sectiontohavethesamenumber. WilliamM.McGovern Contents Preface|V 1 Preliminaries|1 1.1 Structureofg|1 1.2 Theflagvariety|1 1.3 Finite-dimensionalandhighestweightrepresentations|2 1.4 SymmetricsubgroupsofG|4 1.5 Harish–ChandramodulesanddifferentialoperatorsonG/B|5 1.6 Nilpotentorbitsandorbitalvarieties|7 2 Polynomialrepresentationsandtheflagvariety|10 2.1 Schurmodules|10 2.2 IdentificationandirreducibilityofthemodulesVλ|14 2.3 Definingequationsoftheflagvariety|16 2.4 Cohomologyoftheflagvariety|19 2.5 Symplecticgroups|24 2.6 Orthogonalgroups|24 2.7 Thegeneralcaseandlinebundles|26 3 Associated,characteristic,andorbitalvarieties|27 3.1 Definitionsofthecharacteristicvarietyandmomentmap|27 3.2 K-orbitsinX |29 3.3 TheclosureorderonK-orbits|33 3.4 OrbitalvarietiesandSpringerfibers|37 4 Singularitiesoforbitclosures|46 4.1 Smoothandrationallysmoothpoints|46 4.2 Criterionforrationalsmoothness|47 4.3 Symmetricvarieties|50 5 Kazhdan–LusztigpolynomialsandtheHeckealgebra|53 5.1 TheHeckealgebraandtheR-polynomials|53 5.2 Kazhdan–Lusztigpolynomials|55 5.3 Anotherconstruction|58 5.4 InverseKLpolynomials|60 5.5 Cones,cells,andW-graphs|61 5.6 Applicationstorepresentationtheory|65 5.7 Applicationstogeometry|72 VIII | Contents 6 Lusztig–VoganpolynomialsandHarish-Chandramodules|77 6.1 ℤ/2ℤdata|77 6.2 Circleandcrossactions|80 6.3 TheHeckemodule|82 6.4 Applications|85 7 Patternavoidanceandsingularitiesoforbitclosures|88 7.1 PatternavoidanceforclassicalSchubertvarieties|88 7.2 Rootsubsystempatternavoidance|90 7.3 Patternavoidanceforsymmetricvarieties|94 7.4 RichardsonvarietiesandsymmetricorbitsintypeAIII|99 7.5 Intervalpatternavoidance|101 8 Springerfibers|105 8.1 Thetwo-columncase|105 8.2 Particularcomponents|107 8.3 CohomologyofSpringerfibers|110 8.4 Orbitalvarietiesingeneral|111 Bibliography|115 Index|123 1 Preliminaries Inthischapter,weassemblesomebasicfactsaboutcomplexsemisimpleLiealgebras, flagvarietiesoftheiradjointgroups,andnilpotentorbitsinthealgebras,underthe actionsofboththeadjointgroupanditssymmetricsubgroups.Wealsoreviewsome morespecializedmaterialonhighestweightandHarish–Chandramodulesoversuch algebras.Ourbasicreferencesare[23,34,66,62,73,137].Throughoutthebook,gde- notesacomplexsemisimpleLiealgebra(orsometimesareductiveone),Uitsenvelop- ingalgebra,Gitsadjointgroup,baBorelsubalgebraofg,n=[b,b]itsnilradical,Bthe BorelsubgroupofGcorrespondingtob,andXthequotientG/B,whichidentifieswith theflagvarietyofallBorelsubalgebrasofg.Further,weletθdenoteaninvolutiveauto- morphismofGandK =Gθitsfixedpointsubgroup,calledasymmetricsubgroupofG. Thedifferentialofθisthenaninvolutiveautomorphismofg,alsodenotedbyθ;wede- notebyk+pthe(Cartan)decompositionofgasthesumofthe+1-and−1-eigenspaces ofθ.ForfixedG,thereareonlyfinitelymanychoicesforθuptoconjugacyinG;we willbrieflyrecallthesebelowintheclassicalcases. 1.1 Structureofg Werecallthatgisdetermineduptoisomorphismbyits(crystallographic)rootsystem Φ,afinitecollectionofnonzerovectorsinaEuclideanspaceℝnsuchthat 1. Φspansℝn, 2. Φ∩2Φ=0, (β,α) 3. 2(α,α) ∈ℤforα,β∈Φ,and (β,α) 4. sα(β)=β−2(α,α) ∈Φforα,β∈Φ, where (⋅,⋅) denotes the usual dot product in ℝn. Such systems are classified in [66, 11.4];everyonearisesastherootsystemofasemisimpleLiealgebra. 1.2 Theflagvariety ABorelsubalgebraofgisamaximalsolvablesubalgebra;anytwosuchareconjugate undertheadjointgroupG,andthestabilizerofaBorelsubalgebrabisitsadjointgroup B[66,16.4].Wehavethewell-knownBruhatdecompositionG = ⋃w∈W̃ BwBofGinto doublecosetsofBor,equivalently,oftheflagvarietyX =G/BintoB-suborbits.HereT isamaximaltorusofGcontainedinB,Nisitsnormalizer,thequotientW =N/Tisthe WeylgroupofG,andW̃ consistsofoneelementfromeachcosetofT inN [137,10.2]. TheLiealgebrahofT isaCartansubalgebraofg.AtypicaldoubleclosetBwBcorre- spondstoaB-orbitX inX,calledaSchubertcell;byabuseofnotationweusually w regardSchubertcellsasindexedbyelementsofW ratherthancosetrepresentatives https://doi.org/10.1515/9783110766943-001 2 | 1 Preliminaries ofTinN.TheorbitXwisisomorphictotheaffinespaceℂℓ(w),whereℓ(w)isthelength ofw,i.e.,theminimumnumberofsimplereflectionswithproductwor,alternatively, thenumberofpositiveroots(relativetob)thatwsendstonegativeroots[137].Inpar- ticular, the Schubert cell X attached to the longest element w of W is open and w0 0 denseinX,whereasthecellX attachedtotheidentityelementisasinglepoint.The 1 closureV ofX inX (ineithertheZariskiortheEuclideantopology)iscalledthe w w Schubertvarietyindexedbyw.AnytwoBorelsubgroupsB ,B ofGhaveacommon 1 2 maximaltorusT,whichisalsoamaximaltorusofG,sothatsomeelementofW =N/T takesB1toB2[66].ThustheorbitsofBorelsubalgebrasb1×b2ofG×Grelativetothe diagonalactionofGarealsoindexedbyelementswofW.Inparticular,givenBand − amaximaltorusT containedinit,thereisauniqueoppositeBorelsubgroupB toB − whoseintersectionwithBisexactlyT;wedenotebyB itsadjointgroup.Theorbits − Yw ofB inG/BarecalledoppositeSchubertcells;theyarealsoindexedbyelements w∈W.TheclosureZwofYwiscalledanoppositeSchubertvariety. IntheclassicalcasesG = SL(n,ℂ)andG = GL(n,ℂ),wemayrealizeanyBorel subalgebraofgasthestabilizerofa(complete)flag inℂn,thatis,ofachainV0 ⊂ V1 ⊂ ⋅⋅⋅ ⊂ Vn = ℂnofsubspacesViofV = ℂnsuchthatdimVi = i.Weoftenidentify thesubalgebrawiththeflag,thusidentifyingXwiththesetofallsuchflags.Herethe WeylgroupW isthesymmetricgroupSnactingonℂnbypermutingthecoordinates. Intheotherclassicalcases,whereGisthegroupofisometriesofℂnwithrespecttoa nondegeneratebilinearform(⋅,⋅),anyBorelsubalgebraisthestabilizerofanisotropic flag,thatis,achainV0 ⊂V1 ⊂⋅⋅⋅⊂VmofsubspacesofVsuchthateachViisisotropic with respect to (⋅,⋅),dimVi = i, and m = ⌊n/2⌋, the greatest integer to n/2 [137]; in thiscase,weidentifyXwiththesetofallsuchisotropicflags.Itisoftenconvenientto ⊥ extendanyisotropicflag{Vi}canonicallytoacompleteflagbysettingVn−i =Vi ,the orthogonalsubspacetoViwithrespecttotheambientform(⋅,⋅),foralli≤ n2.Intypes BandCtheWeylgroupWisthehyperoctahedralgroupHnactingonℂnbypermuting ′ andchangingthesignsofthecoordinates;intypeD ,W isthesubgroupH ofindex n n twoinH consistingofallelementspermutingthecoordinatesandchangingevenly n manyoftheirsigns. 1.3 Finite-dimensionalandhighestweightrepresentations FixingaBorelsubalgebrabofgandaCartansubalgebrahcontainedinb,werecall thatanyfinite-dimensionalrepresentationofgisadirectsumoffinite-dimensional irreduciblerepresentations[66,Thm.6.3]andthatsuchrepresentationsareparame- terizedbytheirhighestweightsλ[66,21.1,21.2].Inmoredetail,anyfinite-dimensional irreduciblemoduleVisthedirectsumofitsweightspacesV ,whereV consistsofall μ μ ∗ v∈Vwithhv=μ(h)vforallh∈h,andμrunsthroughthespaceh oflinearfunctions ∗ onh.Relativetothestandardinnerproductonh (transferredfromtheKillingform ong),theweightsμwithVμ ≠0areallintegral,thatis,theyalltakeintegervalueson