ebook img

Representation in Machine Learning PDF

102 Pages·2023·4.108 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Representation in Machine Learning

SpringerBriefs in Computer Science M. N. Murty · M. Avinash Representation in Machine Learning SpringerBriefs in Computer Science SeriesEditors StanZdonik,BrownUniversity,Providence,RI,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,MN,USA XindongWu,UniversityofVermont,Burlington,VT,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SA,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,IL,USA XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,FL,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,MD,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,PA,USA KatsushiIkeuchi,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA NewtonLee,InstituteforEducation,ResearchandScholarships,LosAngeles,CA, USA SpringerBriefs present concise summaries of cutting-edge research and practical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) A presentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer’s eBook collection, with millions of users worldwide. In addition, Briefs will be available forindividualprintandelectronicpurchase.Briefsarecharacterizedbyfast,global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscriptsareconsideredforpublicationinthisseries. **Indexing:ThisseriesisindexedinScopus,Ei-Compendex,andzbMATH** M. N. Murty (cid:129) M. Avinash Representation in Machine Learning M.N.Murty M.Avinash DepartmentofCSandAutomation IndianInstituteofTechnologyMadras IndianInstituteofScienceBangalore Chennai,India Bangalore,India ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-981-19-7907-1 ISBN978-981-19-7908-8 (eBook) https://doi.org/10.1007/978-981-19-7908-8 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Overview Thisbookdealswiththemostimportantissueofrepresentationinmachinelearning (ML). While learning class/cluster abstractions from the data using a machine, it is important to represent the data in a form suitable for effective and efficient machinelearning.Inthisbook,weproposetocoverawidevarietyofrepresentation techniquesthatareimportantinboththeoryandpractice. Inpracticalapplicationsofcurrentinterest,thedatatypicallyishighdimensional. These applications include image classification, information retrieval, problem solving in AI, biological and chemical structure analysis, and social network analysis.Amajorproblemwithsuchhigh-dimensionaldataanalysisisthatmostof thepopulartoolslike thek-nearestneighborclassifier, decisiontree classifier, and severalclusteringalgorithmsthatdependoninterpatterndistancecomputationsfail toworkwell.So,representingthedatainalower-dimensionalspaceisinevitable. Popularly used dimensionality reduction techniques may be categorized as follows: 1. Featureselectionschemes:Hereanappropriatesubsetofthegivenfeaturesetis identifiedandusedinlearning. 2. Featureextractionschemes:Herelinearornonlinearcombinationsofthegiven featuresareusedinlearning. Someofthepopularlinearfeatureextractorsarebasedonprincipalcomponents, randomprojections,andnonnegativematrixfactorization.Wecoverallthesetech- niquesinthebook.Therearesomemisconceptionsintheliteratureonrepresenting thedatausingasubsetofprincipalcomponents.Itistypicallybelievedthatthefirst fewprincipalcomponentsmaketherightchoiceforclassifyingthedata.Weargue andshowpractically,inthebook,howsuchapracticemaynotbecorrect. It is argued in the literature that deep learning tools are the ideal choices for nonlinear feature selection; also they can learn the representations automatically. These tools include autoencoders and convolutional neural networks. We discuss v vi Preface thesetoolsinthebook.Further,wearguethatitisdifficultevenforthedeeplearners toautomaticallylearntherepresentations. Wepresentexperimentalresultsonsomebenchmarkdatasetstoillustratevarious ideas. Audience The coverage is meant for both students and teachers and helps practitioners in implementingMLalgorithms.Itisintendedforseniorundergraduateandgraduate students and researchers working in machine learning, data mining, and pattern recognition. We present material in this book so that it is accessible to a wide variety of readers with some basic exposure to undergraduate-levelmathematics. Thepresentationisintentionallymadesimplertomakethereaderfeelcomfortable. Organization This book is organized as follows: Chapter 1 deals with a generic introduction to machine learning (ML) and various concepts including feature engineering, modelselection,modelestimation,modelvalidation,and modelexplanation.Two importanttasksinMLareclassificationandclustering.So,Chap.2dealswiththe representationofdataitems,classes,andclusters. Nearest neighbor finding algorithms play an important role in several ML tasks. However,findingnearestneighborsin high-dimensionalspaces can be both time consumingandinaccurate.InChap.3, we dealwith nearestneighborfinding algorithms using fractional norms and approximate nearest neighborcomputation usinglocality-sensitivehashing.Weillustrateusingseveralbenchmarkdatasets. Chapter 4 deals with feature selection and linear feature extractionschemes. It includesdiscussiononprincipalcomponents,randomprojections,andnonnegative matrix factorization.Nonlinear featureextractionschemes are gainingimportance because of the deep learning architectures based on autoencoders and multilayer perceptrons.ThesetopicsareexaminedinChap.5. Bangalore,India M.N.Murty Chennai,India M.Avinash Contents 1 Introduction ................................................................... 1 1.1 MachineLearning(ML)System........................................ 1 1.2 MainStepsinanMLSystem ........................................... 3 1.2.1 DataCollection/Acquisition..................................... 3 1.2.2 FeatureEngineeringandRepresentation ....................... 7 1.2.3 ModelSelection.................................................. 14 1.2.4 ModelEstimation................................................ 14 1.2.5 ModelValidation................................................. 14 1.2.6 ModelExplanation............................................... 15 1.3 DataSetsUsed ........................................................... 15 1.4 Summary ................................................................. 16 References...................................................................... 16 2 Representation ................................................................ 17 2.1 Introduction .............................................................. 17 2.2 RepresentationinProblemSolving ..................................... 18 2.3 RepresentationofDataItems............................................ 19 2.4 RepresentationofClasses................................................ 25 2.5 RepresentationofClusters............................................... 26 2.6 Summary ................................................................. 28 References...................................................................... 28 3 NearestNeighborAlgorithms ............................................... 29 3.1 Introduction .............................................................. 29 3.2 NearestNeighborsinHigh-DimensionalSpaces ...................... 30 3.3 FractionalNorms......................................................... 38 3.4 LocalitySensitiveHashing(LSH)andApplications.................. 41 3.5 Summary ................................................................. 44 References...................................................................... 45 vii viii Contents 4 RepresentationUsingLinearCombinations............................... 47 4.1 Introduction .............................................................. 47 4.2 FeatureSelection......................................................... 47 4.3 PrincipalComponentAnalysis.......................................... 52 4.4 RandomProjections...................................................... 56 4.5 Non-negativeMatrixFactorization...................................... 58 4.6 Summary ................................................................. 61 References...................................................................... 62 5 Non-linearSchemesforRepresentation.................................... 63 5.1 Introduction .............................................................. 63 5.2 OptimizationSchemesforRepresentation.............................. 63 5.3 Visualization.............................................................. 64 5.4 AutoencodersforRepresentation........................................ 74 5.5 ExperimentalResults:ORLDataSet ................................... 79 5.6 ExperimentalResults:MNISTDataSet ............................... 80 5.7 Summary ................................................................. 85 References...................................................................... 85 6 Conclusions.................................................................... 87 References...................................................................... 89 Index................................................................................ 91

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.