FP6-IST-2003-506745 CAPANINA Deliverable Number D17 Report on adaptive beamforming algorithms for advanced antenna types for aerial platform and ground terminals Document Number CAP-D17-WP3.3-UOY-PUB-01 Contractual Date of Delivery to the CEC 1st Feb 06 Actual Date of Delivery to the CEC 31st Jan 06 Author(s): G. White (UOY), E. Falletti (POLITO), Z. Xu (UOY), D. Borio (POLITO), F. Sellone (POLITO), Y. Zakharov (UOY), L. Lo Presti (EUCON), F. Daneshgaran (EUCON) Participant(s) (partner short names): UOY, POLITO, EUCON Editor (Internal reviewer) Marina Mondin Workpackage: WP3.3 Estimated person months 30 Security (PUBlic, CONfidential, PUB REStricted) Nature Report CEC Version 1.1 Total number of pages (including cover): 175 Abstract: This document presents technical descriptions of signal processing and cross-layer algorithm design for beamforming from high altitude platforms (HAPs) to ground terminals, and vice versa, using advanced antenna types - so-called 'smart antennas'. The research covers topics including vertical antenna arrays for communications from HAPs, optimised antenna array beampatterns for cellular coverage from HAPs, array topologies and SINR balancing in adaptive beamforming from HAPs, data communications to trains from HAPs incorporating DOA estimation and tracking methods, LMS-based beamforming with Doppler recovery and RLS- based beamforming for single carrier IEEE 802.16, both focussed towards HAP applications, and the development of a DSP simulator for smart antenna terminals. Keyword list: Smart antennas, HAPs, beamforming, array signal processing, DOA estimation antenna types for aerial platform and ground terminals CAP-D17-WP3.3-UOY-PUB-01 DOCUMENT HISTORY Date Revision Comment Author / Editor Affiliation 31st Jan 06 01 First issue George White UOY Document Approval (CEC Deliverables only) Date of Revision Role of approver Approver Affiliation approval 31st Jan 06 01 Editor (Internal reviewer) Marina Mondin POLITO 31st Jan 06 01 On behalf of Scientific David Grace UOY Board 31st Jan 06 FP6-IST-2003-506745 CAPANINA Page 2 of 2 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 TABLE OF CONTENTS ExecutiveSummary 16 1 Introduction 17 1.1 Overviewofreport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 BackgroundtoHAP-relatedbeamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 Complexityconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Disseminationofresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 OptimisedantennaarraybeampatternsforHAPcoverage 21 2.1 Backgroundtoconventionalbeamformingmethods . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Projectmotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Communicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Descriptionofmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Verticalantennaarraysandring-shapedcellularconfigurations 31 3.1 Introductiontoring-shapedcellsandverticalantennaarrays. . . . . . . . . . . . . . . . . 31 3.2 Systemmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Determinationofnumberandsizeofcells . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 ArraytopologiesfortheHAP-basedsmartantenna 38 4.1 HAPcommunicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 EffectofHAPpitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Caponbeamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Methodologyforperformanceevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.1 Powercontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.2 Linkbudget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Arraytopologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.7 Anexplanationoftheresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 30/01/2006 FP6-IST-2003-506745-CAPANINA Page3of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 5 ChannelallocationmethodforadaptivebeamformingfromHAPs 51 5.1 Backgroundtochannelallocationmethodsforsmartantennas . . . . . . . . . . . . . . . 51 5.2 Descriptionofchannelallocationmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 ApplicationofchannelallocationmethodtoHAPcommunicationsscenario . . . . . . . . 53 5.3.1 Effectofchannelallocationmethodondistancesbetweenco-channelusers . . . . 53 5.3.2 Methodologyforbeamformingperformanceevaluation . . . . . . . . . . . . . . . . 53 5.3.3 EffectofchannelallocationmethodonSIRofusers . . . . . . . . . . . . . . . . . 54 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 SINRbalancingfortheHAP-userdownlink 57 6.1 DescriptionofSchubertandBochemethod . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.1 OptimisationofpowerassignmentforSINRbalancing . . . . . . . . . . . . . . . . 58 6.1.2 JointoptimisationofpowerassignmentandweightvectorforSINRbalancing . . . 58 6.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 ApplicationofSINRbalancingtotheHAPscenario . . . . . . . . . . . . . . . . . . . . . . 60 6.4 Importanceofeffectivechannelallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.5 MonteCarloperformancestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7 DatacommunicationstorailwaytrainsfromHAPs 66 7.1 Chapteroverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.2 Systemmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.3 DOAestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.3.1 Spectral-basedDOAestimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.3.2 Polynomial-basedDOAestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3.3 Powerestimationofsignalsfromtrains. . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3.4 Estimatingthenumberoftrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3.5 Dataattribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 TrackingtrainsusingextendedKalmanfiltering . . . . . . . . . . . . . . . . . . . . . . . . 77 7.4.1 ExtendedKalmanfiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.4.2 InitialisationofKalmanfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5 Beamformingontheuplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.6 Performancestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.6.1 Scenario1: Maximumnumberoftrains . . . . . . . . . . . . . . . . . . . . . . . . 79 7.6.2 Scenario2: Trainscrossing-DOAandBFconsiderations . . . . . . . . . . . . . . 82 7.6.3 Scenario3: Trainscrossing-theDOAattributionproblem . . . . . . . . . . . . . . 85 7.6.4 Scenario4: Trainenterstunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.6.5 Scenario5: Trainentersstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 30/01/2006 FP6-IST-2003-506745-CAPANINA Page4of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 7.6.6 Scenario6: RobustnesstoHAPmotion . . . . . . . . . . . . . . . . . . . . . . . . 90 7.7 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8 An adaptive LMS-based beamforming algorithm with Doppler shift recovery scheme for OFDMtransmissiontotheHAP 93 8.1 DopplereffectanditsperturbationsonanOFDMsystem . . . . . . . . . . . . . . . . . . 94 8.2 TheLMSalgorithmforbeamformingpurposes . . . . . . . . . . . . . . . . . . . . . . . . 95 8.3 Some adaptive beamforming schemes to suppress both delayed and Doppler-shifted signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.3.1 PilotLMSbeamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.3.2 Pilot-ZeroesLMSbeamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.3.3 Pilot-ExponLMSbeamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.3.4 Pilot-Zeroes-ExponLMSbeamformer . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.3.5 Pilot-Zeroes-Expon-AlphaLMSbeamformer. . . . . . . . . . . . . . . . . . . . . . 102 8.4 Simulatedperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1 Performancetestinflatfadingchannel . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.4.2 Performancetestinmultipathchannel . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9 AnadaptiveRLS-basedbeamformingalgorithmforsinglecarriertransmissiontotheHAP119 9.1 OverviewoftheIEEE-802.16-SCPHYlayer . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 TheRLSbeamformingalgorithmforarraysignalprocessing . . . . . . . . . . . . . . . . . 120 9.2.1 RLSalgorithmfordirect-formFIRfilters . . . . . . . . . . . . . . . . . . . . . . . . 121 9.2.2 QRdecompositionforRLSestimation . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.3 Simulatedperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.3.1 Performancetestinasimplifiedstaticmultipathchannel . . . . . . . . . . . . . . . 124 9.3.2 PerformancetestinfrequencyselectivechannelwithDopplereffect . . . . . . . . 125 9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10 Aself-calibrationalgorithmforsmartantennas 137 10.1 Motivationsandbackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.2 Signalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.3 Problemformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.4 Thecalibrationalgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.4.1 Solutionoftheelementaryproblem. . . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.4.2 Numericalimplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.5 Simulatedperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 30/01/2006 FP6-IST-2003-506745-CAPANINA Page5of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11 ADSPsimulatorforsmartantennaterminals 153 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.2 Signalandchannelmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.2.1 TheOFDMsignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.3 TheSIMOchannelmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.3.1 Thebeamformingalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.4 TheDSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.4.2 DescriptionoftheTMS320C6701module . . . . . . . . . . . . . . . . . . . . . . . 157 11.4.3 TheTMS320C6701evaluationmodule(EVM) . . . . . . . . . . . . . . . . . . . . 157 11.5 TheEmulator’sstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 11.6 Synchronizationaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.7 System’slimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.7.1 Frequencyselectivechannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.7.2 “Angleselective”channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12 Conclusions 168 12.1 Chapterconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.2 Generalconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 30/01/2006 FP6-IST-2003-506745-CAPANINA Page6of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 LIST OF FIGURES 1 OutlineofDeliverable17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 SteeringthepowertoadesiredpositionfromaHAPtotheground. . . . . . . . . . . . . . 22 3 Antennaarrayconfiguration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 121hexagonalcellsconfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 optimizedbeampatternofa424-elementantennaarray,steeredat(-5.46,+0)km. . . . . . 26 6 One section in Fig.5 along the X-axis at Y=Y =0 km; solid line: optimized beampattern 0 using3-stagemethod;dashline: equalamplitudeweightingmethod. . . . . . . . . . . . . 27 7 Beampatternofa424-elementantennaarray,steeredat(-16.38,+18.914)km,usinguni- formweighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8 Beampatternofa424-elementantennaarray,steeredat(-16.38,+18.914)km, usingop- timizedmethod.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 OnesectionofthefunctionF (X,Y)inFig.8alongtheX-axisatY=Y =18.914km. . . . . 29 1 0 10 Multi-beamsteeringtoallcellsofchannel3. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 11 Coverage performance: (1) best cell performance of the 424-element antenna array (dashedline);(2)worstcellperformanceofthe424-elementantennaarray(dottedline); (3)averagecellperformanceofthe424-elementantennaarray(dot-dashedline)(4)set oflensapertureantennas[1](solidline). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12 Verticalantennaarrayandring-shapedcellsforHAPcommunications. . . . . . . . . . . . 32 13 An algorithm of connecting beampatterns in order to determine number and size of the cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 14 Comparisonofthefrequencyresponseofseveralwindowfunctions. . . . . . . . . . . . . 35 15 Comparison of the beampatterns of a vertical antenna with subarray and non-subarray structures: redline: non-subarray,121elems,Hammingwindow;blueline: subarray,190 elems,Hamming/Chebyshevwindow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 16 Comparison of coverage performance with directive aperture antennas and vertical an- tenna array using different window functions. A.121.30: Aperture antenna, 121 elems., 30 cells; H.121.42: Vertical antenna, Hamming, 121 elems., 42 cells; C.121.32: Verti- cal antenna, Chebyshev, 121 elems., 32 cells; B.121.32: Vertical antenna, Blackman, 121 elems., 32 cells; K.121.32: Vertical antenna, Kaiser, 121 elems., 32 cells; S.121.42: Subarrayverticalantenna,Hamming/Chebyshev,121elems.,42cells. . . . . . . . . . . . 36 17 HAPcommunicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 18 TheeffectofHAPpitchonCartesianco-ordinatesystemrelativetonormaltoarray. . . . 40 19 Arraytopologies: a)smallsquare,d=0.5λ,b)circular,d=0.5λ,c)largesquare,d=1.6λ. 43 20 Beampatternsofthreetopologiesthroughazimuthφ=0o . . . . . . . . . . . . . . . . . . 43 30/01/2006 FP6-IST-2003-506745-CAPANINA Page7of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 21 CoverageforCaponbeamfromsmallsquarearray.. . . . . . . . . . . . . . . . . . . . . . 44 22 CoverageforCaponbeamfromcirculararray. . . . . . . . . . . . . . . . . . . . . . . . . . 45 23 CoverageforCaponbeamfromlargesquarearray. . . . . . . . . . . . . . . . . . . . . . . 46 24 CDFofa)SNR,b)SIRandc)SINR,withpitchvariation,σ =0.5o . . . . . . . . . . . . . 47 p 25 Testscenario: ReferenceuserUmovesinstepsfromSPPtoECP. . . . . . . . . . . . . . 48 26 DirectivityindirectionofuserUinstepsfromSPPtoECP. . . . . . . . . . . . . . . . . . . 48 27 CaponbeampatternforsmallsquarearraywithUandBclosely-spaced. . . . . . . . . . . 49 28 CaponbeampatternforcirculararraywithUandBclosely-spaced. . . . . . . . . . . . . . 49 29 CaponbeampatternforlargesquarearraywithUandBclosely-spaced. . . . . . . . . . . 50 30 HAPcommunicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 31 Allocationofusersacrosschannelsina)firstrowandb)secondrowofA . . . . . . . . . 54 32 CDFofpairwiseseparationD (km)ofco-channelusers . . . . . . . . . . . . . . . . . . . 54 s 33 CDFofSIRforreferenceuserwithrandomandproposedchannelallocations. . . . . . . 55 34 a) Favourable user distribution, b) less-favourable user distribution of 8 users, c) User SINRsforCapon’smethodwithpowercontrolwithfavourabledistribution,d)UserSINRs forCapon’smethodwithpowercontrolwithless-favourabledistribution . . . . . . . . . . . 62 35 a)UserSINRsforSINR-balancing withfavourabledistribution, d)UserSINRsforSINR- balancingwithless-favourabledistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 36 HAPcommunicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 37 HAPcommunicationsscenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 38 DOAestimationfrompolynomialrootsa)two-trainscenario,b)complexz-planeforC (z), x c)complexz-planeforC (z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 y 39 Scenario 1: Position estimates of trains for a) RM DOA, b) RM DOA/EKF, c) Magnitude ofpositionalestimateerrorfortrainA,d)SINRfortrainA. . . . . . . . . . . . . . . . . . . 81 40 Scenario2: a)Positionalestimatesoftrains,b)Magnitudeofpositionalestimateerrorfor trainA,c)SINRfortrainA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 41 Scenario2: BeampatternfortrainAa)Bartlettbeamforming,b)Caponbeamforming. . . 84 42 Scenario 3: a) Positional estimates of trains for RM DOA, b) Magnitude of positional estimateerrorfortrainA,c)SINRfortrainA. . . . . . . . . . . . . . . . . . . . . . . . . . 86 43 Scenario4: a)PositionalestimatesoftrainsforRMDOA/EKF,b)SINRfortrainA. . . . . 87 44 Scenario 5: a) Positional estimates of trains for RM DOA/EKF, b) Speed of train A, c) SINRfortrainAforRMDOA/EKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 45 Scenario6: a)PositionalestimatesoftrainsforRMDOA/EKF,b)Magnitudeofpositional estimateerrorfortrainA,c)SINRfortrainA. . . . . . . . . . . . . . . . . . . . . . . . . . 91 46 M-elementsOFDMadaptiveantennaarray . . . . . . . . . . . . . . . . . . . . . . . . . . 96 47 OFDMmodelusedforsimulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 30/01/2006 FP6-IST-2003-506745-CAPANINA Page8of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 48 Conventional Delay-and-Sum (DAS) beamformer output signal with higher (yellow) and lower(red)Dopplershiftcomparedtothetransmittedsignal(black). . . . . . . . . . . . . 105 49 PilotLMS(a),(b)andPilot-ZeroesLMS(c),(d)algorithms. Receivedsignalscomparedto thetransmittedones(black)for2084OFDMsymbolsand30dBofSignal-to-Noiseratio. . 106 50 Comparison between the Pilot LMS (red) and the Pilot-Zeroes LMS (green) adaptation errors(a)andcostfunctions(b)for2084OFDMsymbolsand30dBofSignal-to-Noiseratio.106 51 Pilot-Expon LMS beamformer output signal compared to the transmitted one for 2084 OFDMsymbolsand30dBofSignal-to-Noiseratio(a)andthezoomedversion(b). . . . . 107 52 Pilot-Expon LMS beamformer adaptation error (a), cost function (b) and normalized fre- quency estimate φ[n] = fd[n] (c) for 2084 OFDM symbols and 30 dB of Signal-to-Noise 2πTc ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 53 Pilot-ExponLMS(magenta)andPilot-Zeroes-ExponLMS(yellow)beamformersreceived signals compared to the transmitted one (black) for 2084 OFDM symbols and 30dB of Signal-to-Noiseratio. Figure(b)isthezoomononesymbol. . . . . . . . . . . . . . . . . . 108 54 Pilot-ExponLMS(magenta)andPilot-Zeroes-ExponLMS(yellow)beamformersadapta- tionerrors(a),costfunctions(b)andnormalizedfrequencyestimatesφ[n]= fd[n] (c)for 2πTc 2084OFDMsymbolsand30dBofSignal-to-Noiseratio. . . . . . . . . . . . . . . . . . . . 109 55 Pilot-Expon LMS and Pilot-Zeroes-Expon LMS beamformers array factors in the Theta- Phi-Zspace(a),(c)andweighvectors(b),(d)for2084OFDMsymbolsans30dBofSignal- to-Noiseratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 56 Pilot-ExponLMS(magenta)andPilot-Zeroes-ExponLMS(yellow)beamformersnormal- ized frequency estimates φ[n] = fd[n] for 2084 OFDM symbols and different Signal-to- 2πTc Noiseratios: (a)20dB,(b)10dB,(c)0dB,(d) 5dB. . . . . . . . . . . . . . . . . . . . . 111 − 57 Pilot-Expon LMS and Pilot-Zeroes-Expon LMS beamformers array factors in the Theta- Phi-Zspacefor2084OFDMsymbolsandtwodifferentSignal-to-Noiseratios: (a)and(c) 20dB,(b)and(d) 5dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 − 58 Pilot-ExponLMS(magenta)andPilot-Zeroes-ExponLMS(yellow)beamformersreceived signals compared to the transmitted one (black) for 2084 OFDM symbols and different Signal-to-Noiseratios: (a)20dB,(b)10dB,(c)0dB,(d) 5dB. . . . . . . . . . . . . . . 113 − 59 Pilot-Zeroes-ExponLMS(yellow)andPilot-Zeroes-Expon-AlphaLMS(cyano)beamform- ersreceivedsignalscomparedtothetransmittedone(black)for2084OFDMsymbolsand differentSignal-to-Noiseratios: (a)20dB,(b)10dB,(c)0dB,(d) 5dB. . . . . . . . . . . 114 − 60 Pilot-Zeroes-ExponLMS(yellow)andPilot-Zeroes-Expon-AlphaLMS(cyano)beamform- ersreceivedsignalscomparedtothetransmittedone(black)zoomedononesymbolfor 2084OFDMsymbolsanddifferentSignal-to-Noiseratios: (a)20dB,(b)10dB,(c)0dB, (d) 5dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 − 30/01/2006 FP6-IST-2003-506745-CAPANINA Page9of175 Beamformingalgorithmsandimplementationaspects CAP-D17-WP3.3-UoY-PUB-01 61 Pilot-Zeroes-Expon-Alpha LMS beamformer array factor in the Theta-Phi-Z space for 2084 OFDM symbols in the multipath environment with three reflected rays in DOAs =[ 20 ,40 ,60 ]representedbythethreeredlines. Thegreenonerepresentstheuseful ◦ ◦ ◦ − signalwithDOA=20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ◦ 62 Pilot-Zeroes-Expon-Alpha LMS beamformer behavior for 30 dB ofSignal-to-Noise Ratio and 2084 OFDM symbols in the multipath environment: (a) received vs. transmitted signals,(b)adaptationerror,(c)costfunction,(d)normalizedfrequencyestimate,φ[n]. . . 117 63 BlockdiagramofanSCtransmitterthatusestrainingsequences. . . . . . . . . . . . . . . 119 64 Exampleofdatastreamthatalternatestrainingsymbolswithinformationsymbols. . . . . 119 65 ArchitectureoftheT/DD-RLSbeamformerforSCadaptivemodulations. . . . . . . . . . . 120 66 Semi-analyticSymbolErrorRateforCaseStudy1. E /N istheequivalentsignal-to- b 0,eq interference-and-noisepowerratiomeasuredattheantenna. . . . . . . . . . . . . . . . . 125 67 Radiation patterns obtained at SNR = 10 dB (left) and SNR = 3 dB (right), for Case − Study 1. w indicates the radiation pattern at the end of the first training interval; w 0 1 indicates the radiation pattern at the end of the last training interval; w indicates the e radiation pattern at the end of the last data interval. The red vertical line indicates the usefulDOAθ ,whereasthegreenverticalonesindicatetheinterferingDOAs.. . . . . . . 126 0 68 ReceivedsymbolconstellationsobtainedatSNR=10dB(left)andSNR= 3dB(right), − for Case Study 1. Red marks indicate symbols sampled after beamforming; blue marks indicatesymbolssampledafterasingle,non-directionalantenna. . . . . . . . . . . . . . . 127 69 Semi-analytic Symbol Error Rates for Case Study 2, compared with Case Study 2. E /N istheequivalentsignal-to-interference-and-noiseratiomeasuredattheantenna.128 b 0,eq 70 Radiation patterns obtained at SNR = 3 dB using M = 8 sensors (left) and M = 20 − sensors(right),forCaseStudy2. w indicatestheradiationpatternattheendofthefirst 0 traininginterval; w indicatestheradiationpatternattheendofthelasttraininginterval; 1 w indicatestheradiationpatternattheendofthelastdatainterval. Theredverticalline e indicatestheusefulDOAθ ,whereasthegreenverticalonesindicatetheinterferingDOAs.129 0 71 Received symbol constellations obtained at SNR = 3 dB using M = 8 sensors (left) − and M = 20 sensors (right), for Case Study 2. Red marks indicate symbols sampled after beamforming; blue marks indicate symbols sampled after a single, non-directional antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 72 Radiation patterns obtained at SNR = 3 dB using M = 8 sensors (left) and M = 20 − sensors(right),forCaseStudy3. w indicatestheradiationpatternattheendofthefirst 0 traininginterval; w indicatestheradiationpatternattheendofthelasttraininginterval; 1 w indicates the radiation pattern at the end of the last data interval.The red vertical e lines indicate the useful DOAs θ and θ , whereas the green vertical ones indicate the 0 0′ interferingDOAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 30/01/2006 FP6-IST-2003-506745-CAPANINA Page10of175
Description: