ebook img

Repair of Cracked Prestressed Concrete Girders, I-565, Huntsville, Alabama PDF

657 Pages·2011·8.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Repair of Cracked Prestressed Concrete Girders, I-565, Huntsville, Alabama

Research Report No. 2F for ALDOT Project 930-601 REPAIR OF CRACKED PRESTRESSED CONCRETE GIRDERS, I-565, HUNTSVILLE, ALABAMA Submitted to The Alabama Department of Transportation Prepared by Wesley O. Bullock Robert W. Barnes Anton K. Schindler JULY 2011 1. Report No. 2. Government Accession No. 3. Recipient Catalog No. FHWA/ALDOT 930-601-2F 4 Title and Subtitle 5 Report Date Repair of Cracked Prestressed Concrete Girders, I-565, July 2011 Huntsville, Alabama 6 Performing Organization Code 7. Author(s) 8 Performing Organization Report No. Wesley O. Bullock, Robert W. Barnes, and Anton K. Schindler FHWA/ALDOT 930-601-2F 9 Performing Organization Name and Address 10 Work Unit No. (TRAIS) Highway Research Center Department of Civil Engineering 11 Contract or Grant No. 238 Harbert Engineering Center Auburn, AL 36849 12 Sponsoring Agency Name and Address 13 Type of Report and Period Covered Alabama Department of Transportation Technical Report 1409 Coliseum Boulevard Montgomery, Alabama 36130-3050 14 Sponsoring Agency Code 15 Supplementary Notes Research performed in cooperation with the Alabama Department of Transportation 16 Abstract Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal deformations and inadequate reinforcement details, and that the cracking compromised the strength of the girder end regions. A wet-layup fiber-reinforced polymer (FRP) repair system was installed. To assess the efficacy of the FRP repair solution, load testing and finite-element analyses were conducted for pre- and post-repair conditions of two repaired spans. Post-repair testing included controlled truck loading as well as the monitoring of structural response to diurnal thermal conditions. Results indicate that the girders should be considered simply supported for conservative strength-limit-state design of the FRP repair system. FRP response to thermal conditions was accurately estimated using simplified analysis of restrained temperature gradient effects. A design procedure was developed for FRP repair of similar structures in accordance with AASHTO LRFD Bridge Design Specifications and the recommendations of ACI 440.2R-08. The reported procedure was formulated to provide the girder end regions with adequate strength for the combined effects of shear and flexure, as well as to provide adequate performance under daily truck loads and temperature variations. 17 Key Words 18 Distribution Statement Bridges, continuity, cracking, damage, fiber- No restrictions. This document is available to the reinforced polymer reinforcement, repair, restraint public through the National Technical Information stresses, strengthening, thermal effects Service, Springfield, Virginia 22161 19 Security 20 Security 21 No. of pages 22 Price Classification (of Classification (of 621 this report) this report) Unclassified Unclassified _______________________ Research Report FHWA/ALDOT 930-601-2F REPAIR OF CRACKED PRESTRESSED CONCRETE GIRDERS, I-565, HUNTSVILLE, ALABAMA Submitted to The Alabama Department of Transportation Prepared by Wesley O. Bullock Robert W. Barnes Anton K. Schindler JULY 2011 DISCLAIMERS The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Auburn University or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES Robert W. Barnes, Ph.D., P.E. Anton K. Schindler, Ph.D., P.E. Research Supervisors ACKNOWLEDGEMENTS Material contained herein was obtained in connection with a research project ALDOT 930-601, conducted by the Auburn University Highway Research Center. Funding for the project was provided by the Federal Highway Administration (FHWA) and the Alabama Department of Transportation (ALDOT). The funding, cooperation, and assistance of many individuals from each of these organizations are gratefully acknowledged. The authors would like to acknowledge the various contributions of the following individuals: George H. Conner, State Maintenance Engineer, ALDOT Robert King, Structural Engineer, FHWA Eric Christie, Bridge Maintenance Engineer, ALDOT W. Sean Butler, First Division, ALDOT Randall Mullins, Section Supervisor, Bridge Bureau, ALDOT James F. Boyer, Bridge Rating Engineer, ALDOT Robert A. Fulton, formerly of Maintenance Bureau, ALDOT Mark Strickland, Specifications Engineer, ALDOT Lyndi Blackburn, Assistant Materials and Tests Engineer, ALDOT iv ABSTRACT After the construction of elevated portions of I-565 in Huntsville, Alabama, cracks were discovered in numerous prestressed concrete bulb-tee bridge girders that were constructed to exhibit continuous behavior in response to post-construction loads. Previous investigations conducted by Alabama Department of Transportation (ALDOT) and Auburn University Highway Research Center (AUHRC) personnel resulted in determinations that the cracking was a result of restrained thermal deformations and inadequate reinforcement details, and that the cracking compromised the strength of the girder end regions. A wet-layup fiber-reinforced polymer (FRP) repair scheme was proposed to address the deficiency. To assess the efficacy of the FRP repair solution, load testing and finite element model (FEM) analyses were conducted for pre- and post- repair conditions of Northbound Spans 10 and 11. Pre-repair testing was conducted on June 1 and 2, 2005. The FRP reinforcement system was installed in December 2007. Post-repair testing was conducted on May 25 and 26, 2010. Post-repair testing included controlled truck loading as well as the monitoring of structural response to diurnal thermal conditions. Analysis of pre- and post-repair results indicated that the efficacy of the repair solution could not be assessed with direct comparisons between pre- and post-repair measurements due to unforeseen unintentional support conditions that were in effect during the pre-repair testing. Direct analysis of post-repair behavior indicated that the structure exhibits continuity degradation in response to heavy truck loads and should be considered simply supported for conservative strength-limit-state design. Analysis of responses to thermal conditions indicated the FRP reinforcement exhibits behavior that can be accurately estimated with simplified analysis of linear temperature gradient effects on restrained girders. Based on conditions observed after more than 2 years in service, the installed FRP reinforcement system was determined to be performing appropriately. Based on the experimental observations, a design procedure was developed for FRP repair of similar structures with damaged regions near continuous ends of prestressed concrete bridge girders in accordance with AASHTO LRFD Bridge Design Specifications and the recommendations of ACI 440.2R-08. The design procedure was formulated to provide the girder end regions with adequate strength-limit-state resistance for the combined effects of shear and flexure, as well as to provide adequate performance under service loads—including the effects of daily temperature variations. A design example is presented. v TABLE OF CONTENTS LIST OF TABLES .......................................................................................................................... xvi LIST OF FIGURES ........................................................................................................................ xx CHAPTER 1 INTRODUCTION .............................................................................................................................. 1 1.1 Project Overview ............................................................................................................. 1 1.2 Need for Research .......................................................................................................... 3 1.3 Project Objectives ........................................................................................................... 5 1.4 Project Tasks .................................................................................................................. 5 1.4.1 Task 1: Preliminary Engineering for FRP Repair .............................................. 6 1.4.2 Task 2: Literature Review on Current State of the Art ...................................... 6 1.4.3 Task 3: Preliminary Load Testing ..................................................................... 6 1.4.4 Task 4: Construction Monitoring ....................................................................... 6 1.4.5 Task 5: Post-Repair Load Testing .................................................................... 6 1.4.6 Task 6: Performance Monitoring under Traffic Loads ....................................... 7 1.4.7 Task 7: Evaluation of Bridge Performance ....................................................... 7 1.4.8 Task 8: Evaluation of Acoustic Emission Monitoring ........................................ 7 1.4.9 Task 9: Preparation of Final Project Reports .................................................... 7 1.5 Report Organization ........................................................................................................ 7 CHAPTER 2 HISTORY OF THE BRIDGE STRUCTURE AND ASSOCIATED RESEARCH .............................. 9 2.1 Introduction...................................................................................................................... 9 2.2 Bridge Construction ......................................................................................................... 9 2.3 Structural Geometry and Material Properties .................................................................. 9 2.3.1 Spans Investigated ........................................................................................... 10 2.3.2 Girder Types .................................................................................................... 13 2.3.3 Prestressing Strands ........................................................................................ 14 2.3.4 Shear Reinforcement ....................................................................................... 19 2.3.5 Continuity Reinforcement ................................................................................. 23 2.3.6 Bridge Deck ...................................................................................................... 25 2.4 Unexpected Cracking .................................................................................................... 28 2.4.1 Crack Locations ............................................................................................... 28 2.4.2 Previous Repairs and Safety Measures........................................................... 32 2.4.3 Causes for Cracking ......................................................................................... 34 vi 2.4.3.1 Construction Sequence ................................................................. 34 2.4.3.2 Time-Dependent Effects ................................................................ 35 2.4.3.3 Temperature Effects ...................................................................... 35 2.4.3.4 Internal Reinforcement Details ...................................................... 36 2.4.4 Ramifications of Cracking ................................................................................ 37 2.5 Bridge Behavior Analysis .............................................................................................. 38 2.5.1 Behavior Types Considered ............................................................................. 38 2.5.2 Analysis Methods ............................................................................................. 38 2.5.2.1 Elastic Structural Analysis—Unfactored Demands ........................ 39 2.5.2.2 Sectional Model Analysis—Strength Capacities ............................ 39 2.5.2.3 Strut-and-Tie Analysis—Flow of Forces ........................................ 40 2.6 Design of External Fiber-Reinforced Polymer Strengthening System .......................... 43 2.7 Load Tests Prior to FRP Reinforcement Installation ..................................................... 46 2.7.1 Instrumentation for Pre-Repair Load Testing ................................................... 46 2.7.2 Procedures for Pre-Repair Load Testing ......................................................... 47 2.7.3 Results of Pre-Repair Load Testing ................................................................. 47 2.8 Finite-Element Analysis of Bridge Behavior .................................................................. 48 2.8.1 Uncracked Model ............................................................................................. 48 2.8.2 Cracked Model ................................................................................................. 48 2.8.3 Cracked-with-Reinforcement Model ................................................................. 49 2.8.4 Pre-Repair Model ............................................................................................. 49 2.8.5 Post-Repair Model ........................................................................................... 49 2.9 Installation of External FRP Reinforcement .................................................................. 49 2.9.1 Surface Preparation ......................................................................................... 50 2.9.2 Adhesion Testing ............................................................................................. 53 2.9.3 Tensile Testing ................................................................................................. 54 2.9.4 FRP Fabric Installation Procedures ................................................................. 56 2.9.5 FRP Fabric Installation—First Layer ................................................................ 59 2.9.6 FRP Fabric Installation—Second Layer ........................................................... 59 2.9.7 FRP Fabric Installation—Third Layer ............................................................... 60 2.9.8 FRP Fabric Installation—Fourth Layer ............................................................. 60 2.9.9 Painting of Installed FRP Reinforcement ......................................................... 61 2.9.10 FRP Reinforcement Installation Timeline ......................................................... 62 2.9.10.1 December 11, 2007 ....................................................................... 63 2.9.10.2 December 12, 2007 ....................................................................... 63 2.9.10.3 December 13, 2007 ....................................................................... 63 2.9.10.4 December 14, 2007 ....................................................................... 64 vii 2.9.10.5 December 15, 2007 ....................................................................... 64 2.9.10.6 December 16, 2007 ....................................................................... 64 2.9.10.7 December 17, 2007 ....................................................................... 64 2.9.10.8 December 18, 2007 ....................................................................... 64 2.9.10.9 December 19, 2007 ....................................................................... 64 2.9.10.10 After December 19, 2007 ............................................................... 64 2.10 Installation and Testing Concerns ................................................................................. 65 2.10.1 FRP Orientation ............................................................................................... 65 2.10.2 FRP Samples for Tensile Testing .................................................................... 65 2.10.3 FRP Tensile Testing Observation .................................................................... 65 2.10.4 FRP Tensile Test Results ................................................................................ 66 2.11 Current Research .......................................................................................................... 67 CHAPTER 3 BRIDGE INSTRUMENTATION ..................................................................................................... 68 3.1 Introduction.................................................................................................................... 68 3.2 Instrumentation Overview ............................................................................................. 68 3.3 Crack-Opening Displacement Gages ........................................................................... 70 3.3.1 COD Gage Locations ....................................................................................... 72 3.3.2 COD Gage Installation ..................................................................................... 72 3.4 Deflectometers .............................................................................................................. 74 3.4.1 Deflectometer Locations .................................................................................. 75 3.4.2 Deflectometer Installation................................................................................. 78 3.5 Strain Gages ................................................................................................................. 81 3.5.1 Strain Gage Locations...................................................................................... 82 3.5.1.1 Cross Section Locations ................................................................ 91 3.5.1.2 Gage Locations within A Typical Cross Section ............................ 92 3.5.1.3 Discontinued, Additional, and Replacement Gages ...................... 92 3.5.2 Concrete Strain Gages..................................................................................... 93 3.5.3 FRP Strain Gages ............................................................................................ 94 3.5.4 Strain Gage Installation .................................................................................... 95 3.6 Data Acquisition System ............................................................................................. 101 3.7 Sensor Notation .......................................................................................................... 102 viii CHAPTER 4 BRIDGE TESTING PROCEDURES ............................................................................................ 104 4.1 Introduction.................................................................................................................. 104 4.2 Traffic Control .............................................................................................................. 104 4.3 Load Testing Trucks .................................................................................................... 105 4.3.1 Load Truck Block Configurations ................................................................... 109 4.3.2 Resultant Force Comparisons—Pre- and Post-Repair .................................. 113 4.3.3 Night 1—AE Preloading—LC-6.5 ................................................................... 114 4.3.4 Night 2—AE Loading and Multiposition Load Test—LC-6 ............................. 115 4.3.5 Truck Weight Limits ........................................................................................ 115 4.4 Load Testing Traverse Lanes and Stop Positions ...................................................... 115 4.4.1 Traverse Lanes .............................................................................................. 116 4.4.2 Stop Positions ................................................................................................ 118 4.5 Acoustic Emissions Load Testing ............................................................................... 120 4.6 Bridge Monitoring ........................................................................................................ 122 4.6.1 Weather Conditions during Pre-Repair Testing ............................................. 123 4.6.2 Weather Conditions during Post-Repair Testing ........................................... 123 4.7 Multiposition Load Testing .......................................................................................... 125 4.8 Superposition Testing ................................................................................................. 126 4.9 Data Reduction and Analysis ...................................................................................... 129 CHAPTER 5 RESULTS AND DISCUSSION .................................................................................................... 130 5.1 Introduction.................................................................................................................. 130 5.2 Bearing Pad Effects .................................................................................................... 130 5.3 Bridge Response to Truck Loads—Post-Repair ......................................................... 136 5.3.1 Response to Different Horizontal Truck Alignments ...................................... 136 5.3.2 Indications of Damage to Instrumented Girders ............................................ 141 5.3.2.1 Crack-Opening Displacements .................................................... 141 5.3.2.2 Crack-Opening Displacement Observations ............................... 144 5.3.2.3 Bottom-Fiber Strains .................................................................... 145 5.3.2.4 Bottom-Fiber Strain Observations ............................................... 150 5.3.2.5 COD and Bottom-Fiber Strain Comparisons ............................... 150 5.3.2.6 Damage Indication Conclusions .................................................. 154 5.3.3 Post-Repair Continuity Behavior Assessment ............................................... 154 5.3.3.1 Deflections ................................................................................... 154 5.3.3.2 Bottom-Fiber Strains .................................................................... 159 ix 5.3.3.3 Crack Behavior ............................................................................ 170 5.3.3.4 Continuity Behavior Conclusions ................................................. 177 5.3.4 Linear-Elastic Behavior .................................................................................. 178 5.3.4.1 Linear-Elastic Behavior Assessment—Two-Span Structure ....... 178 5.3.4.2 Linear-Elastic Behavior Assessment—Damaged Regions ......... 180 5.3.4.3 Linear-Elastic Behavior Conclusions ........................................... 185 5.3.5 Relationship between Truck Position and FRP Tensile Demand .................. 185 5.4 Bridge Response to Ambient Thermal Conditions ...................................................... 193 5.4.1 Theoretical Response to Ambient Thermal Conditions ................................. 193 5.4.1.1 Structural Analysis ....................................................................... 194 5.4.1.2 Expected Behavior ....................................................................... 198 5.4.2 Measured Responses to Ambient Thermal Conditions ................................. 206 5.4.2.1 Deflections ................................................................................... 207 5.4.2.2 Bottom-Fiber Strains .................................................................... 213 5.4.2.3 Crack-Opening Displacements .................................................... 231 5.5 Performance of FRP Reinforcement ........................................................................... 238 5.6 Conclusions ................................................................................................................. 239 CHAPTER 6 FRP REINFORCEMENT DESIGN ............................................................................................... 241 6.1 Introduction.................................................................................................................. 241 6.2 Necessity of FRP Reinforcement ................................................................................ 241 6.3 FRP Reinforcement Product Selection ....................................................................... 242 6.4 Strength-Limit-State Design ........................................................................................ 243 6.4.1 Critical Cross-Section Locations .................................................................... 244 6.4.2 Critical Load Conditions ................................................................................. 244 6.4.3 Strength-Limit-State Temperature Demands ................................................. 245 6.4.4 Material Properties ......................................................................................... 245 6.4.4.1 Concrete ...................................................................................... 245 6.4.4.2 Steel Reinforcement .................................................................... 246 6.4.4.3 FRP Reinforcement ..................................................................... 246 6.4.5 Dimensional Properties .................................................................................. 247 6.4.5.1 Cross-Section Dimensions .......................................................... 248 6.4.5.2 Reinforcement Dimensions .......................................................... 248 6.4.6 Initial Estimate of Required FRP Layers ........................................................ 250 6.4.7 Vertical Shear Strength Resistance ............................................................... 251 6.4.7.1 Nominal Strength for Bending Moment Resistance ..................... 252 x

Description:
Wide cracks were discovered in prestressed concrete bridge girders shortly after developed for FRP repair of similar structures in accordance with AASHTO After the construction of elevated portions of I-565 in Huntsville, Alabama, cracks were conditions observed after more than 2 years in serv
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.