ebook img

Renormalization constants for Wilson fermion lattice QCD with four dynamical flavours PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Renormalization constants for Wilson fermion lattice QCD with four dynamical flavours

Renormalization constants for Wilson fermion lattice QCD with four dynamical flavours ETM Collaboration 1 1 Petros Dimopoulosa, Roberto Frezzottib,c, Gregorio Herdoizad, Karl Jansend, 0 2 Vittorio Lubicze, David Palao∗c, Giancarlo Rossib,c n aDipartimentodiFisica,UniversitàdiRoma“LaSapienza” a PiazzaleA.Moro,I-00185Rome,Italy J bDipartimentodiFisica,UniversitàdiRoma“TorVergata” 0 1 ViadellaRicercaScientifica1,I-00133Rome,Italy cINFNSezionedi“RomaTorVergata” ] c/oDipartimentodiFisica,UniversitàdiRoma“TorVergata” t a ViadellaRicercaScientifica1,I-00133Rome,Italy l - dDESY,Platanenallee6,D-15738Zeuthen,Germany p e eDipartimentodiFisica,UniversitàdiRomaTreandINFN h ViadellaVascaNavale84,I-00146Rome,Italy [ E-mail: [email protected] 1 v 7 Wereportonanongoingnon-perturbativecomputationofRI-MOMschemerenormalizationcon- 7 stantsforthelatticeactionwithfourdynamicalflavourscurrentlyinusebyETMC.Forthisgoal 8 1 dedicatedsimulationswithfourdegenerateseaquarkflavoursareperformedatseveralvaluesof . 1 thestandardandtwistedquarkmassparameters.WediscussamethodforremovingpossibleO(a) 0 artifactsatallmomentaandextrapolatingrenormalizationconstantestimatorstothechirallimit. 1 1 Wegivepreliminaryresultsatonelatticespacing. : v i X r a TheXXVIIIInternationalSymposiumonLatticeFieldTheory,Lattice2010 June14-19,2010 Villasimius,Italy ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ RCs–fourdynamicalflavours DavidPalao 1. Introduction Simulations including two degenerate light flavours and a non-degenerate doublet of quarks arecurrentlybeingperformedbytheEuropeanTwistedMass(ETM)Collaboration. Theinclusion of n =2+1+1 flavours is a necessary step to move towards a realistic situation. Fermions are f described by the maximally twisted mass lattice QCD (MtmLQCD) action [1] and gluons by the Iwasakiaction[2]. Whilethefirstphysicalresultsareveryencouraging[3],dedicatedsimulations are required to perform the non-perturbative renormalization of operators in a mass-independent scheme,whererenormalizationconstants(RCs)aredefinedatzeroquarkmass. Inthestudyofn = f 2+1+1QCDETMCisadoptingtheRI-MOMscheme[4]. TheRCsareevaluatedbyextrapolating to the chiral limit the RC estimators computed in the theory with n =4 mass degenerate quarks f forarangeofmassvalues1. Herewereportontheprogresswemadeinthisproject. 1.1 Actionandquarkmassparameters Forthepresentstudyweconsiderthelatticeaction 4 (cid:104) (cid:105) SL=SIYwMa+a4∑∑ χ¯f γ·∇(cid:101)−2a∇∗∇+m0,f +iγ5rfµf χf(x) (1.1) x f=1 where χ is a one-flavour quark field in the so-called twisted basis and in this work r is set to f f either1or−1. Passingfromthetwistedtothephysicalquarkbasis2 4 (cid:104) (cid:105) SL=SIYwMa+a4∑∑q¯f γ·∇(cid:101)−iγ5rfeiγ5rfθ0,f(−2a∇∗∇+mcr)+M0,f qf(x). (1.3) x f=1 Thebaremassparameterscanberewrittenas (cid:113) m −m µ M = (m −m )2+µ2, sinθ = 0,f cr, cosθ = f . (1.4) 0,f 0,f cr f 0,f M 0,f M 0,f 0,f (cid:113) Their renormalized counterparts read M =Z Mˆ = Z2m2 +µ2 and tanθ = ZAmPCAC. The f P f A PCAC f f µf parametrizationintermsofM andθ isconvenientbecausetheleadingtermoftheSymanziklocal effective Lagrangian involves only M, not θ. As we will see later (see the end of section 2), this remarkisatthebasisofourmethodtoobtainO(a)-improvedRC-estimatorsatallscalesevenout ofmaximaltwist. Since, forpracticalreasons, weworkinapartiallyquenchedsetupwithallfour flavours having equal mass parameters, we will have to consider in our analysis four quark mass parameters: M ,θ ,M ,θ . sea sea val val 1ForMonteCarlosimulationsweusedahighlyoptimizedimplementationofaHMC-likealgorithm[5]. 2Therelationbetweentwisted(χf fields)andphysical(qf fields)quarkbasisis χf →qf =exp[2i(π2−θ0,f)γ5rf]χf, χ¯f →q¯f =χ¯fexp[2i(π2−θ0f)γ5rf] (1.2) 2 RCs–fourdynamicalflavours DavidPalao 1.2 RI’-MOMschemeandoursetup Thefocusofthepresentstudyisonflavournon-singletquarkbilinearoperators,O =χ¯ Γχ Γ f f(cid:48) (or χ¯ Γχ ), with Γ = S,P,V,A,T, which are written in terms of χ and χ¯ quark fields (i.e. in the f(cid:48) f standard quark basis for untwisted Wilson fermions). RCs are named after the expression of the operatorsinthisbasissoastomatchtheusualnotationintheliteratureaboutWilsonfermions. Asconvenientinlatticestudies,weadopttheRI’-MOMscheme[6,4],whichisdefinedasfollows. Afirstconditionfixesthequarkfieldrenormalization,namely −i (cid:20)Tr(γ S (p)−1)(cid:21) Z−1 ∑(cid:48) ρ f = 1, anyf, (1.5) q 12N(p) p˜ ρ ρ p˜2=µ2 where p˜2 =∑ p˜2 , p˜ ≡ 1sinap . Thesum∑(cid:48) onlyrunsovertheLorentzindicesforwhich p µ µ µ a µ ρ ρ isdifferentfromzeroandN(p)=∑(cid:48) 1. TherenormalizationconditionfortheoperatorsO reads ρ Γ (cid:104) (cid:105) Z−1Z(ff(cid:48))Tr Λ(ff(cid:48))(p˜,p˜)P = 1, f (cid:54)= f(cid:48). (1.6) q Γ Γ Γ p˜2=µ2 AboveSf(p) = a4∑xe−ipx(cid:10)χf(x)χ¯f(0)(cid:11)istheχf fieldpropagatorinmomentumspace,while Λ(ff(cid:48))(p,p) = S−1(p)G(ff(cid:48))(p,p)S−1(p) (1.7) Γ f Γ f(cid:48) denotesthequarkbilinearvertexthatisobtainedby“amputating”theGreenfunction G(ff(cid:48))(p,p) = a8∑e−ip(x−y)(cid:10)χ (x)(χ¯ Γχ )(0)χ¯ (y)(cid:11) Γ = S,P,V,A,T. (1.8) Γ f f f(cid:48) f(cid:48) x,y Barring cutoff effects, RCs are independent of sign(r ). For practical reasons here we limit our- f selvestor =−r inevaluatingZ ,seeeq.(1.6). f(cid:48) f Γ 2. StrategyforRCsintheN =4theory f In order to extract useful information from simulations performed with twisted mass Wilson fermions one must know the twist angle, ω = π −θ, with good precision. The level of precision 2 requestedforω dependsontheobservableofinterest. Inourcase,afteranexploratorystudyona few 163×32 lattices [7], and some tests near maximal twist on a 243×48 lattice we have chosen toworkoutofmaximaltwist. Figure2illustratesthedifficultiesoftuningtomaximaltwist,i.e.settingm tozero,inthe PCAC simulation setup for RC computations, at least if the lattice spacing is not very fine. Specifically, theslopeofm vs1/(2κ)infigure1(a)suggeststhatnearm =0simulationsareinaregion PCAC PCAC withasharpechangeoftheslopeform whereitisdifficulttoextractusefulinformation. On PCAC theotherhandfigure1(b)givesamorequantitativeviewofthisproblemshowingresultsfromone simulationclosetothecriticalpoint(thepointclosesttom =0infigure1(a)). Itappearsthat PCAC due to the long fluctuations a precise measurement of the PCAC mass will require for this case a very large number of Monte Carlo trajectories. In fact, we have observed a similar feature for all theensembleswith|am |(cid:46)0.01atbothβ =1.95andβ =1.90(i.e.fora≥0.08fm). PCAC 3 RCs–fourdynamicalflavours DavidPalao In summary, working at maximal twist for the chosen range of twisted masses (see table 1) wouldimplyaconsiderablefinetuningworkowingtothedifficultiesindeterminingam near PCAC am =0. To alleviate the problem one would need to increase the value of the twisted mass, PCAC µ , andthusM . Instead, workingawayfrommaximaltwist, onecanavoidthemetastableregion f f of parameter space and measure the twist angle with good precision. This comes at the price of a moderate increase of the quark mass M and of a slightly more involved analysis. In our RC- f estimators cutoff effects linear in a are expected to be small and can anyway be removed with controlledprecisionbyaveragingtheresultsobtainedforagivenM atoppositevaluesofθ . f f (a) (b) Figure1: (a)am versus1/2κ onlattices243×48atβ =1.95;(b)MonteCarlohistoryofam for PCAC PCAC themostcriticalcase(correspondingtotheredcrosspoint)inpanel(a). In fact, from the symmetry of the lattice action S under P×(θ → −θ )×D ×(M → L 0 0 d 0 −M ) [1, 8, 12] it follows that the O(a2k+1) artifacts occurring in the vacuum expectation values 0 of (multi)local operators O that are invariant under P×(θ → −θ ) are quantities that change 0 0 sign upon changing the sign of θ (or θ). Hence O(a2k+1) cutoff effects vanish in θ-averages: 0 (cid:104) (cid:105) 1 (cid:104)O(cid:105)| +(cid:104)O(cid:105)| . ThesameistrueforoperatorformfactorsinvariantunderP×(θ →−θ ) 2 Mˆ,θ Mˆ,−θ 0 0 and,inparticular,forourRC-estimatorsatallvaluesofM and p˜2. f 3. Currentanalysisandpreliminaryresults Herewedetailtheanalysisprocedurewefollowedinordertoobtainverypreliminaryresults on the RCs of interest. Indeed, at this stage our main goal was checking the feasibility of the project. In particular, the analysis procedure is not yet the optimal one, for instance concerning the order of the various steps, and some refinements, such as the subtraction of the known cutoff effects at O(a2g2) [9], are still omitted. While these improvements will be included in the final analysis,thepresentworkshowsthatthestrategyadvocatedinsection2allowstoextracttheRCs of the quark field and quark bilinear operators with a ∼ 1% level precision by means of stable simulations at a lattice spacing (a∼0.08 fm) which is among the coarsest ones explored in the studyofn =2+1+1QCDbyETMC. f In practice, for a sequence of M -values, we produced for each M two ensembles with sea sea oppositevaluesofθ . WelabelthemasEp/m,whereE=1,2...andp/mreferstosign(θ ). On sea sea 4 RCs–fourdynamicalflavours DavidPalao ensemble aµ amsea aMsea θsea aµval amval sea PCAC 0 PCAC 1m 0.0085 -0.04125(13) 0.03288(10) -1.3093(8) [0.0085,...,0.0298] -0.0216(2) 1p 0.0085 +0.04249(13) 0.03380(10) 1.3166(7) [0.0085,...,0.0298] +0.01947(19) 3m 0.0180 -0.0160(2) 0.02182(9) -0.601(6) [0.0060,...,0.0298] -0.0160(2) 3p 0.0180 +0.0163(2) 0.02195(9) 0.610(6) [0.0060,...,0.0298] +0.0162(2) 2m 0.0085 -0.02091(16) 0.01821(11) -1.085(3) [0.0085,...,0.0298] -0.0213(2) 2p 0.0085 +0.0191(2) 0.01696(16) 1.046(6) [0.0085,...,0.0298] +0.01909(18) 4m 0.0085 -0.01459(13) 0.01409(8) -0.923(4) [0.0060,...,0.0298] -0.01459(13) 4p 0.0085 +0.0151(2) 0.01441(14) 0.940(7) [0.0060,...,0.0298] +0.0151(2) Table1: Massparametersoftheensemblesanalysedforthiscontribution. Fromtheformulaeinsect. 1.1it followsthatinthevalencesectorwehave 0.013(cid:46)aMval(cid:46)0.033and0.4(cid:46)|θ |(cid:46)1.2 (θ /mval >0). val val PCAC (a) (b) Figure2: Fortheexampleofensemble4m,(ap˜)2=1.5: (a)subtractionofGoldstonepolecontributionand valencechiralextrapolationinΓ =Tr[Λ P ];(b)overviewofthevalencechiralextrapolationforallRCs. P P P eachensembleEp/m,with(MEp/m,θEp/m)wecomputetheRC-estimatorsforseveralvaluesofthe sea sea valencemassparameters(M ,θ )and p˜2 (allcorrespondingto“democratic”momenta p,inthe val val sensespecifiedin[10]),assummarizedintable1. Thenweproceedinvariousstepsasfollows. Valencechirallimit. AfitofRC-estimatorslinearin(MPS)2 turnsouttobenumericallyadequate val (seefig.2(b)). ForΓ=P(seefig.2(a))or,duetoO(a2)terms,Γ=S,wehavealsokeptinto accountthecontribution∝(MPS)−2 comingfromtheGoldstonebosonpole. val O(a2p˜2)discretizationerrors. We applied two different methods, following [10]. In the first method(“M1”),afterbringing,viatheknown[11]perturbativeevolutiontheRC-estimators to a common renormalization scale (p˜2 =1/a2), we remove the remaining O(a2p˜2) dis- M1 cretization errors by a linear fit in p˜2. The second method (“M2”) consists in simply taking thevalueoftheRCsestimatorsatahighmomentumpointfixedinphysicalunits. Wechose p˜2 = 12.2GeV2. ThetwoapproachesyieldRCresultsdifferingonlybycutoffeffects. M2 5 RCs–fourdynamicalflavours DavidPalao (a) (b) Figure 3: Residual p˜2-dependence of RC-estimators at scale 1/a and RC values from method M1 for the casesofensemble1m(panel(a))and2p(panel(b)). (a) (b) Figure 4: Msea-dependence before (empty symbols) and after (full symbols) θ-average of RC-estimators forafewoperatorsaswellastheirchirallimitvalue. Theleft(right)panelcorrespondstoM1(M2)results. In(a)wealsoshowZ (WI),whichisobtainedbyexploitinganexactlatticeWard-Takahashiidentity(WI). V RemovalofO(a)artifacts. Itisachievedbyθ-average(seesection2)oftheRCsestimators, 1(cid:104) (cid:105) Z (ME ,|θE |) = (cid:104)Z (MˆEp,θEp;θEp )(cid:105)+(cid:104)Z (MˆEm,θEm;θEm )(cid:105) (3.1) Γ sea sea 2 Γ sea sea val;eff Γ sea sea val;eff Ep(m) whereθ parameterizesthedominatingO(a)effectsinRC-estimatorsthat(inthepresent val;eff analysis)arisefromemployingMPS inthevalencechiralextrapolation. val;Ep(m) Seachirallimit. ThequantitiesZ (ME ,|θE |)areextrapolatedtoM =0byusingthefitAnsatz Γ sea sea sea Z (M ,θ ) = Z + AM2 + BM2 cos(2θ ). (3.2) Γ sea sea Γ sea sea sea ThisAnsatzcanbejustifiedbyananalysisàlaSymanzikofthelatticeartifactsinZ (M ,θ ) Γ sea sea uptoO(M2 )andneglectingchiralspontaneoussymmetrybreakingeffects[12]. sea Thefirst,verypreliminaryresultsofthisanalysisaresummarizedintable2. 6 RCs–fourdynamicalflavours DavidPalao Method Z Z Z (1/a) Z (1/a) Z /Z Z (1/a) Z (1/a) A V P S P S T q M1 0.761(08) 0.630(05) 0.438(08) 0.614(09) 0.716(21) 0.753(07) 0.767(06) M2 0.771(03) 0.674(03) 0.496(04) 0.647(03) 0.767(08) 0.768(03) 0.813(02) Table2:PreliminaryRCresultsatβ =1.95fromtheanalysisofsection3.WealsogetZ (WI)=0.612(1). V 4. Conclusionsandoutlook WehavedescribedourstrategytocomputeO(a)improvedoperatorRCsfortheN =4lattice f action currently used by ETMC. We have shown that the method advocated in this work provides veryencouragingresultsatonelatticespacing(a∼0.08fm)thatisamongthecoarsestsimulatedin thestudyofQCDwithn =2+1+1dynamicalflavours. Inparticular,theobserveddependences f of RCs on valence and sea quark masses are mild and quite in line with our experience [10] in n =2QCD.Besidesthetechnicalimprovementsmentionedinsection3,weplantopossiblyadd f fewmoreensemblesata∼0.08fm(β =1.95)andtoextendourworktootherlatticespacings. WethankIDRISandINFN/apeNEXTforgivingusCPUtimenecessaryforthisstudy. References [1] R.FrezzottiandG.C.Rossi,JHEP0408(2004)007[arXiv:hep-lat/0306014]andNucl.Phys.Proc. Suppl.128(2004)193[arXiv:hep-lat/0311008]. [2] Y.Iwasaki,Nucl.Phys.B258(1985)141. [3] R.Baronetal.[ETMCollaboration],JHEP1006(2010)111[arXiv:1004.5284[hep-lat]]and arXiv:1009.2074[hep-lat];F.Farchionietal.[ETMCollaboration],arXiv:1012.0200[hep-lat]; G.Herdoiza,PoS(Lattice2010)010 [4] G.Martinelli,C.Pittori,C.T.Sachrajda,M.TestaandA.Vladikas,Nucl.Phys.B445(1995)81 [arXiv:hep-lat/9411010]. [5] K.JansenandC.Urbach,Comput.Phys.Commun.180(2009)2717[arXiv:0905.3331[hep-lat]]. [6] E.FrancoandV.Lubicz,Nucl.Phys.B531(1998)641[arXiv:hep-ph/9803491]. [7] A.Deuzemanetal.[ETMCollaboration]PoSLAT2009(2009)037. [8] R.Frezzotti,G.Martinelli,M.PapinuttoandG.C.Rossi,JHEP0604(2006)038 [arXiv:hep-lat/0503034]. [9] M.Constantinou,V.Lubicz,H.PanagopoulosandF.Stylianou,JHEP0910(2009)064 [arXiv:0907.0381[hep-lat]]. [10] M.Constantinouetal.[ETMCollaboration],JHEP1008(2010)068[arXiv:1004.1115[hep-lat]]. [11] J.A.Gracey,Nucl.Phys.B662(2003)247[arXiv:hep-ph/0304113];K.G.ChetyrkinandA.Retey, Nucl.Phys.B583(2000)3[arXiv:hep-ph/9910332]. [12] ETMCollaboration,inpreparation 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.