ebook img

Renewal Theory for Perturbed Random Walks and Similar Processes PDF

260 Pages·2016·1.611 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Renewal Theory for Perturbed Random Walks and Similar Processes

Probability and Its Applications Alexander Iksanov Renewal Theory for Perturbed Random Walks and Similar Processes Probability and Its Applications Serieseditors SteffenDereich DavarKhoshnevisan AndreasKyprianou SidneyI.Resnick Moreinformationaboutthisseriesathttp://www.springer.com/series/4893 Alexander Iksanov Renewal Theory for Perturbed Random Walks and Similar Processes AlexanderIksanov FacultyofComputerScience andCybernetics TarasShevchenkoNational UniversityofKyiv Kyiv,Ukraine ISSN2297-0371 ISSN2297-0398 (electronic) ProbabilityandItsApplications ISBN978-3-319-49111-0 ISBN978-3-319-49113-4 (eBook) DOI10.1007/978-3-319-49113-4 LibraryofCongressControlNumber:2016961210 MathematicsSubjectClassification(2010):60-02,60G,60K ©SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisbookispublishedunderthetradenameBirkhäuser,www.birkhauser-science.com TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To myfamily Preface The present book offers a detailed treatment of perturbed random walks, per- petuities, and random processes with immigration. These objects are of major importanceinmodernprobabilitytheory,boththeoreticalandapplied.Furthermore, these havebeenused tomodelvariousphenomena.Areasofpossibleapplications includemostofthenaturalsciencesaswellasinsuranceandfinance.Recentyears haveseenanexplosionofactivityaroundperturbedrandomwalks,perpetuities,and randomprocesseswithimmigration.Overthelastdecade,severalniceresultshave beenproved,andsomeefficienttechniquesandmethodshavebeenworkedout.This bookisaresultofagrowingauthor’sconvictionthatthetimehascometopresent inabookformatmaindevelopmentsintheareaaccumulatedtodate.Summarizing, thefirstpurposeofthisbookistoprovideathoroughdiscussionofthestateofthe artintheareawithaspecialemphasisonthemethodsemployed.Althoughmostof the resultsaregivenina finalformasultimate criteria,thereare stilla numberof openquestions.Someofthesearestatedinthetext. Formally,themainobjectsarerelatedbecauseeachoftheseisaderivedprocess ofi.i.d.pairs.X1;(cid:2)1/,.X2;(cid:2)2/;:::.Here(cid:2)1,(cid:2)2;:::arereal-valuedrandomvariables, whereasX1,X2;:::arereal-valuedrandomvariablesinthecaseofperturbedrandom walksandperpetuities(withnonnegativeentries)andX1,X2;:::areDŒ0;1/-valued random processes in the case of random processes with immigration. As far as perturbedrandomwalks.Tn/n2N definedby Tn WD(cid:2)1C:::C(cid:2)n(cid:2)1CXn; n2N are concerned,the main motivation behind our interest is to what extent classical results(someofthesearegiveninSection6.3)forordinaryrandomwalks.(cid:2)1C::: C(cid:2)n/n2N must be adjusted in the presence of a perturbating sequence. A similar motivation is also our driving force in studying weak convergence of random processeswithimmigration.X.t//t(cid:3)0definedby X X.t/WD XkC1.t(cid:2)(cid:2)1(cid:2):::(cid:2)(cid:2)k/1f(cid:2)1C:::C(cid:2)k(cid:4)tg; t(cid:3)0: k(cid:3)0 vii viii Preface IfX .t/(cid:4)1and(cid:2) (cid:3)0forallk 2N,thenX.t/isnothingelsebutthefirsttimethe k k ordinaryrandomwalkexitstheinPterval.(cid:2)1;t(cid:3).Thisisaclassicalobjectofrenewal theory,anditiswellknownthat. k(cid:3)01f(cid:2)1C:::C(cid:2)k(cid:4)utg/u(cid:3)0satisfiesafunctionallimit theoremast ! 1.IfX .t/ isnotidenticallyone,theasymptoticbehaviorofX.t/ k is affected by both the first-passage time process as above and fluctuations of the “perturbating”sequence.Xk/k2N.Withthispointofview,thesubjectmatterofthe bookisonegeneralizationofrenewaltheory.Thus,thesecondpurposeofthebook istoworkouttheoreticalgroundsofsuchageneralization.Actually,theconnections betweenthemainobjectsextendfarbeyondtheformaldefinition.Thethirdpurpose ofthebookistoexhibittheselinksinfull.Asawarm-up,wenowgivetwoexamples in whichperturbedrandomwalksare linkedto perpetuitiesandrandomprocesses withimmigration,respectively. (a) To avoid at this point introducingadditionalnotation, we only discuss perpe- tuitieswith nPonnegativeentriesthatarealmostsurelyconvergentseriesofthe formY WD exp.T /.Itturnsoutthatwheneverthetailofthedistribution 1 n(cid:3)1 n ofY issufficientlyheavy,theasymptoticbehaviorofPfY > xgasx ! 1 1 1 is completelydeterminedbythatofPfsup T > logxg.In particular,if the n(cid:3)1 n powerorlogarithmicmomentsofsup exp.T /arefinite,soarethoseofY ; n(cid:3)1 n 1 see Sections 1.P3.1and 2.1.4.A similar relation also exists between the finite- n-perpetuities nkD1exp.Tk/ and maxima max1(cid:4)k(cid:4)nexp.Tk/, thoughthis time withrespecttoweakconvergence;seeSection2.2. (b) The number of visits to .(cid:2)1;t(cid:3) of the perturbed random walk is a certain randomprocesswithimmigrationevaluatedatpointt.Themomentresultsfor generalrandomprocesseswithimmigrationderivedinSection3.4areakeyin the analysis of the moments of the numbers of visits (see Section 1.4 for the latter). As has already been mentioned, the random processes treated here allow for numerousapplications. The fourth purpose of the book is to add two less known examplestothe listofpossibleapplications.InSection4we showthatacriterion forthefinitenessofperpetuitiescanbeusedtoproveanultimateversionofBiggins’ martingaleconvergencetheoremwhichisconcernedwiththeintrinsicmartingales insupercriticalbranchingrandomwalks.Fortheproof,wedescribeandexploitan interestingconnectionbetweentheseatfirstglanceunrelatedmodelswhichemerges when studying the weighted random tree associated with the branching random walk under the so-called size-biased measure. In Section 5 we investigate weak convergenceofthenumberofemptyboxesintheBernoullisievewhichisarandom allocationschemegeneratedbyamultiplicativerandomwalkandauniformsample onŒ0;1(cid:3).Wedemonstratethattheproblemamountstostudyingweakconvergence of a particular random process with immigration which is actually an operator definedona particularperturbedrandomwalk. We emphasizethatthe connection betweentheBernoullisieveandcertainrandomprocesseswithimmigrationremains veiled unless we consider the Bernoulli sieve as the occupancy scheme in a randomenvironment,andfunctionalsinquestionareanalyzedconditionallyonthe environment. Preface ix Iclosethisprefacewiththanksandacknowledgments.Ithankmyfamilyforall theirloveandcreatinganiceworkingatmosphere,bothathomeanddacha,where most of the research and writing of this monograph was done. The other portion oftheresearchunderlyingthepresentdocumentwasmostlyundertakenduringmy frequentvisitstoMünsterunderthegeneroussupportoftheUniversityofMünster andDFGSFB878“Geometry,GroupsandActions.”IthankGeroldAlsmeyerfor makingthese visits to Münster possible and always being ready to help. Matthias MeinershelpedinarrangingmyvisitstoMünster,too,whichishighlyappreciated.I thankOlegZakusylo,myformersupervisor,forall-roundsupportatvariousstages of my scientific career. I thank my colleagues and friends (in alphabetical order) Gerold Alsmeyer, Darek Buraczewski, Sasha Gnedin, Zakhar Kabluchko, Sasha Marynych,Matthias Meiners, Andrey Pilipenko, Uwe Rösler, Zhora Shevchenko, and Vladimir Vatutin, in collaboration with whom many of the results presented inthisbookwereoriginallyobtained.SashaMarynychscrutinizedtheentirebook and found many typos, inconsistencies, and other blunders of mine. Apart from this, Iowe specialthanksto Sasha forhisability tobe helpfulalmostatanytime. I am grateful to Darek Buraczewski, Matthias Meiners, Andrey Pilipenko, and IgorSamoilenkowhoreadsomechaptersof the bookandgavemeusefuladvices concerningthepresentationanddetectedseveralerrors. Kyiv,Ukraine AlexanderIksanov Contents 1 PerturbedRandomWalks .................................................. 1 1.1 DefinitionandRelationtoOtherModels .............................. 1 1.2 GlobalBehavior......................................................... 4 1.3 SupremumofthePerturbedRandomWalk............................ 6 1.3.1 DistributionalProperties........................................ 6 1.3.2 ProofsforSection1.3.1 ........................................ 8 1.3.3 WeakConvergence ............................................. 20 1.3.4 ProofsforSection1.3.3 ........................................ 22 1.4 First-Passage Time and Related Quantities forthePerturbedRandomWalk........................................ 29 1.5 ProofsforSection1.4................................................... 32 1.6 BibliographicComments............................................... 41 2 Perpetuities ................................................................... 43 2.1 ConvergentPerpetuities................................................. 44 2.1.1 CriterionofFiniteness.......................................... 44 2.1.2 ExamplesofPerpetuities....................................... 45 2.1.3 ContinuityofPerpetuities...................................... 52 2.1.4 MomentsofPerpetuities........................................ 57 2.1.5 ProofsforSection2.1.4 ........................................ 59 2.2 WeakConvergenceofDivergentPerpetuities ......................... 65 2.3 ProofsforSection2.2................................................... 68 2.4 BibliographicComments............................................... 83 3 RandomProcesseswithImmigration...................................... 87 3.1 Definition................................................................ 87 3.2 LimitTheoremsWithoutScaling....................................... 89 3.2.1 StationaryRandomProcesseswithImmigration.............. 90 3.2.2 WeakConvergence ............................................. 91 3.2.3 ApplicationsofTheorem3.2.1................................. 93 3.2.4 ProofsforSection3.2.2 ........................................ 96 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.