ebook img

Renewable and Sustainable Polymers PDF

208 Pages·2011·7.764 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Renewable and Sustainable Polymers

g Renewable and Sustainable or cs.01 a0 s.w http://pub11-1063.f Polymers 1 | 20 5, 20121/bk- 20 ptember doi: 10.1 n Se11 | o0 AN 1, 2 CHIGApril 2 F MIeb): OW NIV ate ( UD y n bo nloaded Publicati w o D In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. g or cs.01 a0 s.w http://pub11-1063.f 1 | 20 5, 20121/bk- 20 ptember doi: 10.1 n Se11 | o0 AN 1, 2 CHIGApril 2 F MIeb): OW NIV ate ( UD y n bo nloaded Publicati w o D In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 1063 ACS SYMPOSIUM SERIES Renewable and Sustainable Polymers Gregory F. Payne, Editor g or University of Maryland cs.01 a0 s.w http://pub11-1063.f PMaticrhiicgkanBM.oSlemcuilathr I,nEstdituittoer 1 | 20 5, 20121/bk- 20 ptember doi: 10.1 n Se11 | o0 AN 1, 2 CHIGApril 2 F MIeb): OW NIV ate ( UD y n bo nloaded Publicati ACS DiviSsipoonnosforPeodlybmyetrhCehemistry w o D AmericanChemicalSociety,Washington,DC DistributedinprintbyOxfordUniversityPress,Inc. In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. LibraryofCongressCataloging-in-PublicationData LibraryofCongressCataloging-in-PublicationData g or cs.01 Renewableandsustainablepolymers/GregoryF.Payne,editor;PatrickB.Smith,editor. s.aw0 p.cm.-- (ACSsymposiumseries;1063) http://pub11-1063.f I"ISnScBplouNnds9eos7r8be-di0b-bl8iyo4gt1hr2ae-p2Ah6iC0caS8l-D1rei(fvaeilrskei.onpncaeopsfearPn)odlyinmdeerxC. hemistry." 1 | 20 1. Polymers--Congresses. I.Payne,G.(GregoryF.)II.Smith,PatrickB.,Dr.III.American 5, 20121/bk- CQheDm3i8c1a.l8S.Ro4ci6et2y0.1D1ivisionofPolymerChemistry. ptember 2doi: 10.10 547′.7--dc22 2011010200 n Se11 | o0 AN 1, 2 CHIGApril 2 TSthaendpaarpderfourseIdnfionrtmhiastipounbSlicciaetniocnesm—eePtesrmthaenmeninciemoufmPraepqeurirfeomr PenritnstoefdALmiberraircyanMNaatetiroianlasl, F MIeb): ANSIZ39.48n1984. OW NIV ate ( Copyright©2011AmericanChemicalSociety UD y n DistributedinprintbyOxfordUniversityPress,Inc. bo wnloaded Publicati Ao$f4ll0th.R2ei5Ughp.Stlsu.sRC$eo0spe.y7rr5viegpdhe.trRApeacpgtrieosigasrllapopawhidiecdtocfoothpreyiniCntegorpnbyaerlyiguohsnetdCotnhlelayat,rpapenrrocmeviiCdtteeedndttebhrya,tISanecpc.te,iro2-n2cs2ha1Rp0ot7esreofwre1oe0oo8df o D Drive,Danvers,MA01923,USA.Republicationorreproductionforsaleofpagesinthis bookispermittedonlyunderlicensefromACS.Directtheseandotherpermissionrequests toACSCopyrightOffice,PublicationsDivision,115516thStreet,N.W.,Washington,DC 20036. Thecitationoftradenamesand/ornamesofmanufacturersinthispublicationisnottobe construedasanendorsementorasapprovalbyACSofthecommercialproductsorservices referenced herein; nor should the mere reference herein to any drawing, specification, chemicalprocess, orotherdataberegardedasalicenseorasaconveyanceofanyright or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce,use,orsellanypatentedinventionorcopyrightedworkthatmayinanywaybe relatedthereto. Registerednames,trademarks,etc.,usedinthispublication,evenwithout specificindicationthereof,arenottobeconsideredunprotectedbylaw. PRINTEDINTHEUNITEDSTATESOFAMERICA In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. Foreword The ACS Symposium Series was first published in 1974 to provide a mechanism for publishing symposia quickly in book form. The purpose of the series is to publish timely, comprehensive books developed from the ACS g sponsoredsymposiabasedoncurrentscientificresearch. Occasionally,booksare or developed from symposia sponsored by other organizations when the topic is of cs.01 a0 keeninteresttothechemistryaudience. s.w http://pub11-1063.f forapBperfoopreriaatgereaenidncgotmoppruebhleisnhsiavebocookv,etrhaegeparonpdofsoerdintatebrleesottfoctohneteanutdsieisncreev.iSeowmede 1 | 20 papersmaybeexcludedtobetterfocusthebook;othersmaybeaddedtoprovide 5, 20121/bk- comprehensiveness. When appropriate, overview or introductory chapters are 20 added. Draftsofchaptersarepeer-reviewedpriortofinalacceptanceorrejection, ptember doi: 10.1 andmanuscriptsarepreparedincamera-readyformat. on Se011 | incluAdesdainrutlhee, voonlluymoersi.giVnaelrbraetsimearrcehprpoadpuecrtsionansdofoprirgeivniaolusrepvuiebwlishpeadpepraspaerres AN 1, 2 arenotaccepted. CHIGApril 2 OF MIWeb): ACSBooksDepartment NIV ate ( UD y n bo nloaded Publicati w o D In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. Chapter 1 The Emergence of Renewable and Sustainable Polymers org PatrickB.Smith*,1andGregoryF.Payne2 cs.01 a0 ubs.3.ch 1Michigan Molecular Institute, 1910 West St. Andrews Road, http://p11-106 2Center for BiosystemMsiRdelasnoudr,cMesIa4n8d64F0ischell Department of 25, 2011 | 021/bk-20 Bioengineering,5115PClaonltl*eSsgmceiiePtnhac@reksm,BMmuiiD.lodr2ing0g7,4U2niversityofMaryland, ptember doi: 10.1 n Se11 | o0 Theseareexcitingtimesforbiofuelsandrenewablechemicals! AN 1, 2 A sense of urgency is driving a frenzy of activity on both HIGpril 2 research and commercialization fronts. Presciently, the ACS F MICeb): A stheelecStperdin“gC2h0em10isntraytifoonraal mSuesettainingabwleithWinorwldh”icahswtheeothregmaneizfeodr OW UNIV Date ( aThseymfoplolosiwuimngencthitalpetder“sRpernoevwidaebleaasnadmSpluisntgainoafbtlheePporloymmiesrisn”g. by on opportunitiesandresearchdirectionscurrentlyunderwayacross nloaded Publicati tfhroemglosbeeed. Ioniclslu,dceadrbaorehycdhraaptetesr,spornottehien-sbyanstehdesmisaotefrmialast,eraianlds w natural monomers using chemical and biocatalytic processes. o D In this introductory chapter we provide a broad perspective on the motivation for these activities and an overview of the likely paths forward. We especially focus on reviewing the explosion of commercialization activities in the hope that this staticsnapshotcanprovideaglimpseofanincrediblydynamic situation. Introduction Throughout history, humans have enlisted biological polymers – especially proteins and polysaccharides - to meet their needs for food, fuel, clothing and shelter. This situation changed dramatically during the last century. ©2011AmericanChemicalSociety In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. Stunning technical advances enabled petroleum to be recovered and processed inexpensively providing cheap fuels that powered the economic growth for much of the world. Further advances in industrial organic chemistry allowed the petroleum feedstock to be processed into a handful of building blocks (e.g., ethylene, propylene, benzene, toluene and xylene) for the synthesis of petroleum-derived chemicals for applications ranging from consumer goods to agriculturalchemicals. Manyofthesebuildingblocksalsobecamethemonomers forthegenerationofsyntheticpolymers. Insomecases,thesesyntheticpolymers offered inexpensive alternatives to biological polymers and in other cases, these synthetics enabled entirely new capabilities (e.g., engineering plastics and non-stickcoatingsforfryingpans). Fromtheperspectiveoftheearly21stcentury, it is easy to overlook the impact that advances in petroleum processing had on g or ourwayoflife. cs.01 a0 pubs.63.ch The Push Away from Fossil Resources 5, 2011 | http://21/bk-2011-10 roefliraenAacsseownosen.ppFreotirrjeostcl,etutihmneto(foothrsesoitlfhureteursrofeou,srtschielesrreethsaoerumerscgeerlsov)weisisnagnroectofisnuncsietteran.insaRtbhelaectefanotrsieagsntviimafircaieatetnyst 20 ptember doi: 10.1 ippnrrdiocidecuacitnetieotlnha”asttiicsoiitnlyo.ptreoWqduhuiecvntaiolsenunptwptilolyl“pcraeenasokunbrocyelotdhneegpenlreetbxioetnda”edcijtuadsdteoeed(s1t)ionadmnicdeaetwtehianilcperoe“ianpsteinaogkf n Se11 | demand,economicspredictsthatpriceswillbepronetosubstantialincreasesand o0 AN 1, 2 fluctuationsinresponsetothemarket. CHIGApril 2 AsthTehpursi,cteheofsepceotrnodlecuomncienrcnrefoasretshethuens-esuarsctahinfoabrialilttyeronfatpivetersolweuilmlbiesceocmoenommoirce. F MIeb): urgent–atboththeindividualandthenationallevels. Importantly,thepetroleum OW reservesarenotdistributedequally,astheOPEC-producingnationscontrolnearly NIV ate ( 80% of the world’s oil reserves (1). Nations that rely on substantial oil imports y Un D tomaintaintheireconomieswillfaceparticularlydifficultpolicydecisionswhen nloaded bPublicatio spchorianclveeesnaenisedcnatnlaaatnteud.ramOlobgrvaeiso)cu,ossbltyul,ytoatthchacenerspfsoeinstrgsoillaernuedmsop.urrocceesscsionugldthbeesecoanlsteidrnearetidve(es.ga.r,ecloeasls, w Do Thethirdconcernfortheun-sustainabilityoffossilresourcesisthecost/risk tosafety,healthandtheenvironment. Muchofthediscussionhasfocusedonlinks amongfossilfuelconsumption,greenhousegasemissionandglobalwarming,and what actions could/should be taken. Yet the recovery and processing of fossil resources presents additional costs/risks. Sadly, 2010 has also been marked by numerousdeathsincoalminingaccidentsandbytheworstoilspillinUShistory. The Likely Path Forward Itseemslikelythatthe20thcentury-trendtoanincreasingrelianceonfossil resourcesforfuels,chemicalsandmaterialswillnotcontinueintothe21stcentury. Thischangeinparadigm,however,doesnotmarkademisebutratheratransition. This transition cannot reasonably be expected to be rapid as it is difficult (or 2 In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. impossible) to imagine completely replacing US consumption of fossil fuels in thenearterm. EveniftheUSmeetstheambitioustargetforproducing35billion gallonsofethanolby2017(2),thiswouldonlyrepresentabout12%oftheannual USpetroleumconsumption. We anticipate three features of the transition from fossil to renewable resources for chemicals and materials. The first expectation is that many of the renewable chemicals and polymers will be driven by successes in biofuels production. Historically, the success of petroleum-based fuels relied on inexpensive large-scale processing. Once the refining capabilities were in place,thentheyprovidedaninexpensivesupplyofbuildingblockchemicalsthat could drive developments in the petrochemical industry. By analogy, advances in the processing of renewable feedstocks (e.g., cellulosics) for biofuels should g or enable the generation of inexpensive building blocks for value-added chemical cs.01 and polymeric products. While this “biorefinery” concept is not new it has a0 ubs.3.ch considerableappealfor“extracting”valuefromtherawmaterial. Infact,eachof http://p11-106 tThaetem&aLjoyrleU,hSavgerabinuipltromcaejsosrinregnceowmapbalenicehse,mCiacraglisllm, AanrucfhaecrtuDrainngieflascMiliitdielasnwditahnidn 25, 2011 | 021/bk-20 tiahncetiedirg)refaxaticisoitlniintwygiigtnhraiBninltahpirer,osNciteEes.,sCAinaDgrgMfailclwihliiattihsedsitosinnMeotrihrdeieslr™wtopitolhelvyite(shrNaygdaetruotrhxeeyWaclooksraktnsao™davtpeao)nltpyal(galaencsttoiincf ptember doi: 10.1 CinliLnotound,oInA,,TaNnd. Tate&LylewithitsBio-PDO™1,3-propandiolproductionfacility n Se11 | The second expectation is that the development of renewable chemicals o0 and polymers will significantly benefit from the previous advances in industrial AN 1, 2 chemistry. In some cases, the transition to renewable polymers may simply HIGpril 2 mean a switch in raw materials. Examples include the dehydration of F MICeb): A afenrdmeanctraytiloicn-daecridiv,edreesptheacntiovlelayn.d 3O-hnycderoxthyepsreopiinotneircmeadciidatetso ayrieeldgeentehryalteende, OW UNIV Date ( pbreeevnioliusstelyd-etostaybielilsdhepdropdruocctesssfoinrgemxiestthinogdsm(aer.gk.e,tsfr.eeIn-raodthicearlcpaosleysm, enreiwzatpiorond)uccatns by on will be generated from renewable resources by extending existing chemical nloaded Publicati approAacthhiersd(ee.xgp.,ecritnatgi-oonpeisnitnhgatpboiloylmogeyrizwatiilolnplfaoyrpanolyinlaccretiadseinsgylnyt-himespiso)r.tant role w inthegenerationofchemicalandmaterialproducts. Biotechnologytransformed o D the practice of medicine in part by providing capabilities for the biosynthesis of protein-basedtherapeutics(e.g.,insulin)andthesecapabilitiesarebeingenlisted for lower-value applications. Already, protein engineering is yielding improved enzymes(e.g.,cellulases)forfeedstockprocessingwhilemetabolicengineeringis providing intermediates that cannot be readily obtained through chemical routes (e.g.,1,3-propandiolforpolyesterproduction). Potentially,syntheticbiologywill provideevenmorecapabilitiestoaccesscomplexfeedstocksandgeneratelow-cost intermediatesandproductswithsuperiorfunctionality. 3 In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. Potential Chemical Building Blocks Derived from Biofuels The development of technology for the biofuels market will likely, as stated earlier, provide feedstocks for the chemical industry. If the processes and target molecules currently under development are any indication, trends in this field might provide direction for the nascent renewable chemicals industry. The biomass conversion technologies being commercially developed today are basedonthreemaintypesofprocesses; fermentation, thermochemicalandalgal processes, but there are many variants within them. Table 1 lists many of the companiesactiveinbiofuelstechnology,categorizingthemwithintheconversion technologyframework. Mostoftheinformationincludedinthistablecamefrom companywebpages. Thistableisnotmeanttoincludeallthecompaniesinthis g or areabecausethelistwouldchangealmostweekly, butrather, itismeanttohelp cs.01 define trends. Some of the companies listed are also active in more than one a0 ubs.3.ch conversiontechnology. http://p11-106 technTohleogipesrimaraereythatnarogleatndbbiouftuaenloslaflothroutghhethfeerremaernetareticoenn-tbeafsfeodrtsctoondveevresiloonp 25, 2011 | 021/bk-20 fhaeryredmuroepncgatraratbdiovened-abtopapsheryoddarcbohicoatforubecolosnn.vfueFerotlsrceainnrbzsotyahmnycadetri,actatehlsleytos(3mf)aa.tltOlytchaocemirdsp,iasnnutyecrhmLaSesd9Aiaimtseysurswiisnh,giacrhae ptember doi: 10.1 hcoymdrmocearrcbiaolnizsin(4g).aSciamrbiloahrlyyd,rbatieofufeerlms efrnotmatioanlgatol cpornovdeurcseionpotleycfhanrnoelosgeniees-boafsteend n Se11 | targetethanolandoilsforbiodieselandgreendieselproduction. Thermochemical o0 biomass conversion technologies most often produce syngas or bio-oil which AN 1, 2 canbeupgradedtofuelsusingconventionalcrudeoilrefiningprocessessuchas HIGpril 2 hydroforming/hydrotreating, catalytic upgrading and Fisher Tropsch processes. F MICeb): A ASosmreenteewchabnloelobgiioefsueplrsobdeuccoemseynlegsassewxpheicnhsivisetahnednmfeorrmeeanvtaeidlatboleetthheaynowli(l5l,al6s)o. OW UNIV Date ( becoImneoradtterracntoivtetofbeeedosvtoecrlkysofpotrimgeinsteircaatibnogurtetnheewfuatbulreecohfebmioicfualeslsananddproelnyemwearbs.le by on chemicals, it should be noted that the US renewable fuels business is still nloaded Publicati ssuobmsetawnhtiaatliflnucatusatatitoenosfinfltuhxedpuriecetoofseovile,rtahlefuanctcoerrst.ainTtyheosfefefdacetroarlstaixncsluupdpeorthtse, w the food versus fuel debate and issues surrounding carbon dioxide emissions. o D Ethanolproduction,primarilyfromcornintheUS,appearstobeviablebecause reformulated transportation fuels require an oxygenate and ethanol is the oxygenateofchoice. However,theUSethanolbusiness,evenwiththefederaltax credits, wasonlymarginallyprofitablewhenthepriceofoildroppedbelow$70 perbarrel. Withoilpriceswellabovethatleveltodayandtrendingupward, this businessisexpectedtocontinuetogrow. Biodiesel, ontheotherhand, hasseen considerablecapacityreductionin2009and2010intheUSasaresultoftheloss offederaltaxcredits. Ethanol from sugar cane or corn starch and biodiesel from seed oils are the lowcostrenewablefuelsinproductiontoday,butmuchresearchisdevotedtothe commercialization of the so-called second (cellulosic feedstocks), third (algal) and fourth (thermochemical) generation biofuels. There are many hurdles to thecommercializationofthesenextgenerationprocesses, theirbusinesssuccess 4 In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011. depending on breakthrough technologies which will significantly reduce their costs. The future cost of oil is another unknown but fossil fuels are a limited resource. In our opinion, the transition from this limited resource to renewable fuels is inevitable. The only question is with regard to the timing. And as the biofuels industry grows, we believe there will be a synergistic growth in the commercializationofchemicalsandmaterialsfromrenewableresources. Renewable Chemicals and Polymers There is also increasing interest in obtaining chemicals from renewable resources and this has spurred a myriad of commercial activities. Table 2 lists g or many of the commercial organizations active in this area and the renewable cs.01 chemicals they are targeting. (Table 2 has the same disclaimers associated with a0 ubs.3.ch Table 1.) As indicated, much of the interest in renewable chemicals is targeted http://p11-106 taonwdaarddsippicolaycmidesr)s.arFeobreiinnsgtainncvee,stmigaantyedofasthmeosnmoamllermsofloercuploeslym(laecrtiscy,natchreysliisc. 25, 2011 | 021/bk-20 pfTrohalciystmiosenitruiozafatittohioneni.insduasntarlioalgaocutsivtiotytihsedepveotrtoecdhteommicoanlominedrussytrnythweshiesraendassuubbssetqanuteinatl ptember doi: 10.1 repreTsoenptultetshsestheacnom1%meorfciathleactotitvailtiepslaisntitcospmerasrpkeectti(v7e), rbeuntewitaibsleapsleagsmticesntstiolfl n Se11 | the market with excellent projected growth rates of nearly 13% over the period o0 between 2009 and 2014 (8). Obviously, the growth potential of renewable AN 1, 2 polymersismotivatingthecommercialactivityoutlinedinTable2. HIGpril 2 The primary feedstocks for the renewable chemical industry today are CA F MIeb): c(saorby,ohcaysdtroart,epsaslumc,heatsc.g),lugcloysceer(oslugfraormcabnieo)daiensdelstparrochdu(cptriiomnaarinldyceothrann),osl.eeTdhoeirles OW UNIV Date ( h1a0v),egblyeceenroselvaesraalfereevdisetwocsko(n11s–p1e3c)ifiacndchreemneiwcaalbslefropmolyrmeneerws(a1b4le–1f7ee).dsTtohcekresa(r9e, by on alsoseveralrecentbookswrittenonthesubjectofrenewableandbiodegradable nloaded Publicati polymReenrsew(1a8b–le22p)o.lymers are chemically diverse and can be categorized based w ontheirsource/synthesis. Traditionally,renewablepolymerswereobtainedfrom o D natural sources and these pre-formed polymers could be subsequently modified to adjust properties. Pre-formed renewable polymers include carbohydrates (e.g., starch, cellulose and chitin), proteins (e.g. gelatin), natural rubber and lignin. More recently, chemical-synthesis methods were developed to generate polymers from renewable monomers. Examples include poly(lactic acid), PLA, andpoly(butylenesuccinate),PBS.Also,fermentation-derived1,3-propanediol isbeingconvertedtopoly(propyleneterephthalate),PPT,andthedehydrationof ethanolprovidesthemonomerforrenewablepolyethylene,PE.Athirdcategory ofrenewablepolymersarethosethataregeneratedfromrenewablesubstratesvia fermentationprocesses. Theclassicexampleofafermentation-derivedrenewable polymerisxanthangumwhiletheemergingexampleispoly(hydroxyalkanoate), PHA,thatisproducedbyengineeredbacteriatomakecopolymerswhichdonot existinnature. 5 In Renewable and Sustainable Polymers; Payne, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.