ebook img

RENDEZVOUS IN COGNITIVE RADIO AD-HOC NETWORKS By Md Akbar Hossain A thesis ... PDF

244 Pages·2016·4.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview RENDEZVOUS IN COGNITIVE RADIO AD-HOC NETWORKS By Md Akbar Hossain A thesis ...

RENDEZVOUS IN COGNITIVE RADIO AD-HOC NETWORKS By Md Akbar Hossain A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) 2015 School of Engineering, Computer and Mathematical Sciences To my parents, brother, sister and my lovely wife ii Table of Contents Table of Contents iii Attestation of Authorship xiii Abstract xiv Acknowledgements xvi List of Publications xvii List of Abbreviations and Acronyms xviii 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Research Methodology for Investigation . . . . . . . . . . . . . . . . . 6 1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Cognitive Radio and Rendezvous Protocols 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Rendezvous in Cognitive Radio Ad-Hoc Networks . . . . . . . . . . . 20 2.4 Rendezvous Protocols: A Review of Literature . . . . . . . . . . . . . 24 2.4.1 Representative Rendezvous Protocols . . . . . . . . . . . . . . 26 2.5 Rendezvous Protocol Performance Issues . . . . . . . . . . . . . . . . 38 2.6 Design Issues for CRAHNs Rendezvous Protocol . . . . . . . . . . . . 40 2.6.1 Channel Status Information . . . . . . . . . . . . . . . . . . . 40 2.6.2 PU Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 iii 2.6.3 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . 42 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 ETQCH: Rendezvous Protocol for Cognitive Radio Ad-Hoc Net- works 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Extended Torus Quorum Grid Channel Hopping (ETQCH) Protocol . 51 3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.2 Extended Torus Grid Formation . . . . . . . . . . . . . . . . . 53 3.4.3 Channel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Channel Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6 Adaptive CH sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7 Features of ETQCH Protocol . . . . . . . . . . . . . . . . . . . . . . 76 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Performance Evaluation of ETQCH Protocol 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Expected Quorum Overlap Size (EQOS) . . . . . . . . . . . . . . . . 80 4.2.1 EQOS of Extended Torus Quorum System . . . . . . . . . . . 80 4.2.2 EQOS of Grid Quorum System . . . . . . . . . . . . . . . . . 87 4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 91 4.3.2 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . 94 4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.4.1 Impact of Channel Order/Rank . . . . . . . . . . . . . . . . . 96 4.4.2 Impact of Number of Channels . . . . . . . . . . . . . . . . . 99 4.4.3 Impact of Asymmetry . . . . . . . . . . . . . . . . . . . . . . 101 4.4.4 Impact of Number of Common Channels . . . . . . . . . . . . 103 4.4.5 Comparison with Non-Channel Rank CH Protocols . . . . . . 107 4.4.6 Performance Enhancement Using Channel Ranking . . . . . . 110 4.5 Validation of Simulation Results . . . . . . . . . . . . . . . . . . . . . 113 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 CR-RDV: A Cognitive Radio Rendezvous MAC Protocol 116 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2 Cognitive Radio MAC Protocols: A Review of the Literature . . . . . 117 5.2.1 CRAHNs MAC Classification . . . . . . . . . . . . . . . . . . 118 iv 5.2.2 Representative MAC protocols . . . . . . . . . . . . . . . . . . 119 5.3 Performance Issues in CRAHNs MAC Protocols . . . . . . . . . . . . 124 5.3.1 Rendezvous Collision . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.2 Handshake Collision . . . . . . . . . . . . . . . . . . . . . . . 125 5.3.3 Blocking Problem . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.4 CR-RDV MAC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.4.1 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4.2 Spectrum Allocation . . . . . . . . . . . . . . . . . . . . . . . 134 5.4.3 Spectrum Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.5 Message Sequence Chart (MSC) . . . . . . . . . . . . . . . . . . . . . 145 5.6 Protocol State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.6.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.6.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6 Performance Evaluation of CR-RDV MAC Protocol 155 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2 Markov Model for CR-RDV MAC Protocol . . . . . . . . . . . . . . . 156 6.2.1 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . 159 6.2.2 Packet Drop Probability . . . . . . . . . . . . . . . . . . . . . 163 6.2.3 Mean Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.3.1 Saturation Throughput . . . . . . . . . . . . . . . . . . . . . . 168 6.3.2 Probability of Packet Drop . . . . . . . . . . . . . . . . . . . . 172 6.3.3 Mean Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.3.4 Comparison with Channel Rank based CH MAC Protocols . . 178 6.4 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7 Implications for System Planning and Deployment 184 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.2 An Evolutionary Path for Adopting CR Technology . . . . . . . . . . 184 7.3 Deployment of CRAHNs . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.4 Recommendation for Future Developments . . . . . . . . . . . . . . . 189 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8 Conclusions 192 References 196 v Appendix A Additional illustration for Extended Torus Quorum Sys- tem 217 vi List of Tables 2.1 Summary of DSA Common Hopping Algorithms . . . . . . . . . . . . 27 3.1 Channels with different optimisation parameters . . . . . . . . . . . . 73 3.2 Channel Ranking for ETQCH protocol . . . . . . . . . . . . . . . . . 74 4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1 Summary of CR MAC protocols . . . . . . . . . . . . . . . . . . . . . 120 5.2 Example of ACL data structure . . . . . . . . . . . . . . . . . . . . . 136 5.3 Example of COL data structure . . . . . . . . . . . . . . . . . . . . . 136 5.4 Channel Usage by PUs . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.5 Channel Observe by CRs . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.1 Impact of network parameters on RDV process in CRAHNs . . . . . 189 vii List of Figures 1.1 Modified design science research method. . . . . . . . . . . . . . . . . 7 1.2 Block diagram of the adopted performance evaluation methodology. . 9 1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Cognitive cycle [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Concept of spectrum white space [1] . . . . . . . . . . . . . . . . . . . 18 2.3 Cognitive radio ad-hoc networks . . . . . . . . . . . . . . . . . . . . . 22 2.4 Rendezvous problem in CRNs . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Illustration of rendezvous process in cognition cycle . . . . . . . . . . 23 2.6 Mechanisms used in the design of representative CR RDV protocols. . 28 2.7 (a) Channel ranking list of user A, B and B(cid:48) Construction of CH se- quences by using (b) Basic AMRCC. (c) Enhance AMRCC . . . . . . 29 2.8 Illustration of CH sequence generation based on (a) Ring Walk scheme 1 (b) Ring Walk scheme 2. . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Illustration of permutation based CH sequence for a channel set, N = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 Illustration of DRSEQ CH sequence for N = 6 [2] with clock drift. . . 33 2.11 Algorithmic flow chart for Jump Stay CH sequence for both symmetric and asymmetric channel observation. . . . . . . . . . . . . . . . . . . 35 2.12 Example of quorum based CH sequence with channel set R = {0,1,2} with m = 3 frames. The number inside the box is channel index and X represent the channel randomly chosen from {0,·,N −1}. . . . . . 36 viii ix 2.13 An illustration of grid quorum based CH sequence for a channel set, N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.14 An example of TTR calculation. . . . . . . . . . . . . . . . . . . . . . 39 2.15 Impact of channel status on CH sequence design [3] in terms of degree of overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.16 Variation of degree of overlap in accordance with time synchronisation. 43 2.17 Illustration of slot and fractional slot time synchronization . . . . . . 43 3.1 An analogy of rendezvous problem using telephone co-ordination game. 47 3.2 Channel state transition diagram . . . . . . . . . . . . . . . . . . . . 49 3.3 Cognitive cycle of ETQCH protocol . . . . . . . . . . . . . . . . . . . 53 3.4 Quorum system for rendezvous protocol . . . . . . . . . . . . . . . . 55 3.5 Quorum system with rotation closure property . . . . . . . . . . . . . 55 3.6 (a)IllustrationoftwotorusquorumsAandBunderU = {1,2,,3.··· ,32} witht = 4andw = 8. (b)ConstructionofCHsequencebasedonTorus quorums system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7 Time slot assignment in Torus Grid . . . . . . . . . . . . . . . . . . . 59 3.8 Illustration of quorum assignment based on channel rank. . . . . . . . 61 3.9 ExampleofChannelmappingbasedonAlgorithm2withchannelrank- ing C5/C3/C1/C2/C4. (a) Timeslots assignment. (b) Resultant CH sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10 Construction of two extended (3) torus quorum systems of dimension 4×7 with 4 rendezvous channels. . . . . . . . . . . . . . . . . . . . . 66 3.11 Construction of two asymmetric extended (3) torus quorum systems A and B of dimension 4×7 and 5×9 with 4 and 5 rendezvous channels respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.12 Channel hopping update . . . . . . . . . . . . . . . . . . . . . . . . . 75 x 4.1 Illustrationofextendedtorusquorumsystemwiththreedifferentcases: Symmetricchannelobservationwithsamechannelranking(atthetop); Asymmetric channel observation with different channel ranking (at the middle and bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Grid structure and quorum system based on grid quorum . . . . . . . 88 4.3 Quorum selection strategies in asymmetric grid quorum system . . . . 90 4.4 Simulation Environment with 10 PU and 20 CR nodes . . . . . . . . 93 4.5 Comparison of ATTR and degree of overlap with channel rank simi- larity factor: (a) ATTR (b) Degree of overlap . . . . . . . . . . . . . 98 4.6 Comparison of ATTR and degree of overlap with increasing number of available channels: (a) ATTR (b) Degree of overlap . . . . . . . . . . 100 4.7 Comparison of ATTR and degree of overlap when two users experience asymmetric set of channels: (a) ATTR (b) Degree of overlap . . . . . 102 4.8 Comparison of ATTR and degree of overlap in varying number of com- mon channels with symmetric channel rank: (a) ATTR (b) Degree of overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.9 Comparison of ATTR and degree of overlap in varying number of com- mon channels with symmetric channel rank: (a) ATTR (b) Degree of overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.11 ATTR performance of different protocols with number of common channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.10 IllustrationofperformancedifferencebetweenETQCHandnon-channel rank based CH protocols: (a) ATTR (b) Degree of overlap . . . . . . 109 4.12 Performance comparison of Jump Stay and Modified Jump Stay pro- tocols: (a) ATTR (b) Degree of overlap . . . . . . . . . . . . . . . . . 111 4.13 PerformancecomparisonofEnhanceJumpStayandModifiedEnhance Jump Stay protocols: (a) ATTR (b) Degree of overlap . . . . . . . . 112

Description:
1.3 Research Methodology for Investigation . In this thesis MATLAB is used as a primary tool for the performance study of. CRAHNs, including the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.