ebook img

Removing the spin ice cap: magnetic ground states of rare earth tripod kagome lattice Mg$_2$RE$_3$Sb$_3$O$_{14}$ (RE = Gd, Dy, Er) PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Removing the spin ice cap: magnetic ground states of rare earth tripod kagome lattice Mg$_2$RE$_3$Sb$_3$O$_{14}$ (RE = Gd, Dy, Er)

Removingthespinicecap: magneticgroundstatesofrareearthtripodkagomelattice Mg RE Sb O (RE=Gd,Dy,Er) 2 3 3 14 Z. L. Dun,1 J. Trinh,2 K. Li,3,4 M. Lee,5,6 K. W. Chen,6 R. Baumbach,6 Y. F. Hu,3 Y. X. Wang,3 E. S. Choi,6 B. S. Shastry,2 A. P. Ramirez,2 and H. D. Zhou1,6 1DepartmentofPhysicsandAstronomy,UniversityofTennessee,Knoxville,Tennessee37996-1200,USA 2Department of Physics, University of California, Santa Cruz, CA 95064, USA 3BeijingNationalLaboratoryforMolecularSciences,StateKeyLaboratoryofRareEarthMaterialsChemistryandApplications, CollegeofChemistryandMolecularEngineering, PekingUniversity, Beijing100871, PRChina 4CenterforHighPressureScienceandTechnologyAdvancedResearch, Beijing, 100094, PRChina 5Department of Physics, Florida State University, Tallahassee, FL 32306-3016, USA 6NationalHighMagneticFieldLaboratory,FloridaStateUniversity,Tallahassee,FL32310-3706,USA 6 (Dated:March2,2016) 1 0 Wepresentthestructuralandmagneticpropertiesofanewcompoundfamily, Mg RE Sb O (RE=Gd, 2 3 3 14 2 Dy,Er),withahithertounstudiedfrustratinglattice,the“tripodkagome”structure. Susceptibility(ac,dc)and specific heat exhibit features that are understood within a simple Luttinger-Tisza type theory. For RE = Gd, r a we found long ranged order (LRO) at 1.65 K, which is consistent with a 120 ◦ structure, demonstrating the M importanceofdiopleinteractionsforthis2DHeisenbergsystem. ForRE=Dy,LROat0.37Kisrelatedtothe “kagomespinice(KSI)”physicsfora2Dsystem.Thisresultshowsthatthetripodkagomestructureaccelerates 1 thetransitiontoLROpredictedfortherelatedpyrochloresystems. ForRE=Er,twotransitions,at80mKand 2.1Kareobserved,suggestingtheimportanceofquantumfluctuationsforthisputativeXYsystem. ] l e PACSnumbers:75.10.Jm,75.10.Hk - r t s Introduction.—The two-dimensional (2D) kagome lattice couplingthekagomeplanes,leadingtoaKSIstate[17]. . t magnet (KLM) has been a favorite in the theoretical con- a Obviously,ifonecanremovethemagneticmomentofthe m densed matter community since the experimental work on triangular layer in the pyrochlore lattice, a RE3+ kagome- SCGO [1], due to the strong frustration associated with its - only lattice might be realized, enabling the study of in- d network of corner-shared triangles. Many exotic states are trinsic kagome physics. Because of various spin and spin n predicted, such as the quantum spin liquid (QSL) state [2– anisotropiesofdifferentRE3+ ions,exoticandrichmagnetic o 4],thespin-orbitalliquidstate[5],thekagomespinice(KSI) properties should be immediately available via the complex c state[6],dipolarspinorder[7],theKosterlitz-Thouless(KT) [ interplayamongthespin-orbitalcoupling,dipolarinteraction, phasetransition[8],QuantumOrderbyDisorder(QObD)[9], and exchange couplings. In pyrochlores, for example, this 2 and nematicity and supernematicity [10]. The large variety v interplay leads to multi-k ordering [18] with multiple field of exotic states predicted for kagome spin systems lies in 5 induced transitions [19] for Heisenberg spins in Gd2Ti2O7, 7 contrast to a paucity of experimental systems. Early efforts the spin ice state [20] for Ising spins in Ho Ti O [21] and 2 2 7 5 include the exploration of langasites RE Ga SiO [11–13], 3 5 14 Dy Ti O [22], and QObD physics in the XY spin system 2 2 7 1 which possess a distorted kagome lattice. Recent attention Er Ti O [23]. Then,whatwillbethemagneticgroundstates 0 2 2 7 hasbeenpaidtovesignieiteBaCu V O (OH) [14]andher- . 3 2 8 2 intheRE-basedKLMs? 1 bertsmithite ZnCu (OH) Cl [15]. The later one shows in- 0 triguingsignsofQ3SLbeh6av2ior[15]. Fromamaterialsstand- In this letter, we have created such a KLM - 6 point, however, these two systems are limited by (i) known Mg2RE3Sb3O14 based on partial ion substitution in the 1 pyrochlore lattice. Here, the triangular layers in the py- defect prone structures [14, 16], and (ii) the inability to sub- v: stitutefacilelyonthemagneticsite(e.gwithnon-Heisenberg rochlorestructureareoccupiedbynon-magneticMg2+ ions, i leavingtheRE3+-kagomelayerwellisolatedfromneighbor- X spins)torealizestatesotherthantheQSL.Clearlythen,find- ing layers. We studied three representative systems (RE = ingnewKLM-containingcompoundswithspin-typevariabil- r Gd, Dy, Er) by dc-, ac-susceptibility (χ , χ ), and specific a ityisachallengeofthehighestorder. dc ac heat (C(T)) measurements. We present a spin Hamiltonian and show the fundamental differences in collective behavior Intriguingly, a 2D KLM is naturally contained in the frus- betweenthe2DKLMsandtheir3Dpyrochorecousins. trated3Dpyrochlorestructure. InpyrochloresRE X O (RE 2 2 7 =rareearthelement, X=transitionmetalelement), boththe Structure.—Samplesynthesismethodandmeasurementse- RE3+ and X4+ sublattices form alternating kagome and tri- tups are described in the supporting material [24]. The angular layers along the [111] axis as a result of the corner- Mg RE Sb O (RE=Gd,Dy,Er)structureisrhombohedral 2 3 3 14 shared tetrahedrons (Fig. 1(a)) [17]. However, the strong with R-3m space group in hexagonal expression. Compared inter-layer interaction enforces three-dimensionality. An ex- with the pyrochlore lattice, the triangular layers of both the ception is found in studies of Dy Ti O in a [111] magnetic RE3+ and Sb5+ sublattices in the KLM structure are occu- 2 2 7 field,whichpolarizesthetriangularlayerspins,effectivelyde- pied by Mg2+ (the Mg2+ site can also be replaced by Co2+ 2 (a ) O 1 (b ) O 1 O 3 [1 1 1 ] O 2 O 2 R E O 2 O 2 O 2 R E O 2 O 2 O 2 O 2 O 3 O 2 O 1 O 1 tria n g u la r la y e r R E -k a g o m e la y e r (c ) M g 1 k a g o m e la y e r M g -tria n g u la r la y e r O 1 tria n g u la r la y e r R E R E R E -k a g o m e la y e r O 1 R E k a g o m e la y e r O 1 M g -tria n g u la r la y e r P y ro c h lo re O 1 T rip o d k a g o m e FIG.1. (coloronline)(a)Alternatingkagomeandtriangularlayersinapyrochlorelatticeviewingalongthe[111]axis.Dashedlinesindicate asingleunitcell.(b)AlternatingRE3+-kagomelayersandMg-triangularlayersinatripodkagomelattice.Localoxygenenvironmentaround RE3+ionforthetwostructureisshownatthetop-right.(c)Asingle“tripod”.DashedlinesrepresentIsingaxes. [25],Mn2+ [26]andZn2+ [27]). Thusthechemicalformula CEF degeneracy has already been lifted by the pyrochlore- can also be written as (Mg RE ) (Mg Sb ) O , likeanisotropyforaneffectivespin-1/2system,thedominant 0.25 0.75 2 0.25 0.75 2 7 which is a pyrochlore (RE X O ) structure with 1 RE3+ anisotropy remains the one distinguishing the puckered ring 2 2 7 4 and X4+ ions substituted in an ordered manner (Fig. 1(b)). fromthelocal-[111]oxygens,makingthisin-planeanisotropy It is noteworthy that for the X-ray diffraction pattern of mostlikelyirrelevantforthegroundstatedegeneracy. Mg2RE3Sb3O14 [24], the strongest peak for pyrochlore at Giventhehighdegreeofsiteorder, thelargedifferencein 2θ ∼ 30◦ disappears completely and splits into two peaks, separation between intra-plane and inter-plane RE ions, it is providingevidencefortheabsenceofMg-REorMg-Sbsite- appropriate to consider this a well-formed kagome structure. disorder[26]. Asshownbelow,theC(T)peaksattheirphase In addition, the CEF-driven single-ion anisotropy, which is transitions are very sharp, further underscoring the high de- vestigial from the parent pyrochlore structure, defines direc- gree of site order in the kagome layers. This good kagome tionsforeithertheIsingspinsortheXY-spinnormalvectors layer separation is likely due to the large ion size difference that are neither uniaxial nor uniplanar. This particular situa- betweenMg2+andRE3+. Inthisstructure,thenearestneigh- tionofthreedistinctaxeswithspecificinter-axesangleswill bor distance between the RE3+ ions within a kagome layer be important for understanding ordered spin configurations, remainssimilartothatofitspyrochlorecousin,andtheRE3+- asweshowbelow. Giventheuniquenessofthisstructureand kagome layers are well isolated from each other by the non- the need to distinguish it from KLMs with undefined local magnetic Mg2+ and Sb5+ layers. Take Mg2Gd3Sb3O14 for anisotropy, we call this the “ tripod kagome lattice (TKL)”, example, the nearest Gd-Gd distance within a kagome layer inspired by a “tripod” formed by three RE3+ and one Mg2+ (3.678A˚)issimilartothatinGd2Ti2O7 (3.600A˚),andmuch ion(Fig. 1(c)). smallerthanthatbetweendifferentplanes(6.162A˚).Sincethe Magneticproperties.—ForMg Gd Sb O ,aCurie-Weiss dipole-dipoleenergygoesas1/r3,thisleadstointer-layeren- 2 3 3 14 (CW)fitfrom50∼300Kof1/χ (Fig. 2(a))yieldsaWeiss ergiesanorderofmagnitudesmallerthanintra-layerenergies. dc temperature, θ = -7.35 K and an effective magnetic mo- Thus,thekagomelatticeinMg RE Sb O isseeminglyfree W 2 3 3 14 ment, µ = 7.91 µ . The negative θ value is close to ofstructuraldefects. eff B W that of Gd Ti O (θ = -11.7 K) [28]. The value for µ is 2 2 7 W B In RE2X2O7, one important structural feature is that each consistent with µeff = 7.94 µB expected for Gd3+ (8S7/2). RE3+ ion is surrounded by eight oxygens (Fig. 1(a)) with With measurement frequencies ranging from 80 to 700 Hz, twoshorterRE-O1bondslyingalongthelocal-[111]axisand χac shows a sharp and frequency independent peak at TN = six longer RE-O2 bonds forming a puckered ring. This fea- 1.65K(Fig.2(b)),indicatingaLROtransition.Thistransition ture defines the crystal electric field (CEF) and the g-factor isfurtherconfirmedbyasharppeakatthesametemperature which determines the ionic anisotropy for the RE3+ spins. inmagneticspecificheatCmag(T)(Fig. 2(c)). Themagnetic InMg RE Sb O , thislocaloxygencoordinationislargely entropybetween0.2and6Kis17.16J/mol-Gd·K[24]. This 2 3 3 14 preserved. The RE ion is still surrounded by eight oxygens value is close to Rln(2S+1) = 17.29 J/mol·K for a S = 7/2, with the two shortest RE-O1 bonds remain lying along the indicatingacompleteLROamongtheGd3+spins. local-[111]axis(Fig. 1(b)). Thedifferenceisthatthelonger For Mg Dy Sb O , the CW fit below 10 K yields θ 2 3 3 14 W six RE-O bonds are divided into two sets: four longest RE- = -0.18 K and µ = 10.20 µ (Fig. 2(d)), consistent eff B O2bondsandtwointermediateRE-O3bonds[24]. Sincethe with the free ion moment of 10.63 µ for Dy3+ (6H ). B 15/2 3 40 30 ) (a ) M g2G d 3S b 3O 14 (d ) M g2D y3S b 3O 14 (g ) M g2E r3S b 3O 14 (j) /emu 30 5 0 K - 3 0 0 K lin ear fit 2 2 K - 1 0 K lin ear fit 20 5 0 K - 3 0 0 K lin ear fit E l-R 20 c (/modc10 qm wef f= = - 77..9315 mK B 1 qm wef f= = - 100.1.280 K m B 10 qm wef f= = - 194.4.552 m KB 1 0 0 0 0 100 200 300 0 10 20 30 0 50 100 15 0 200 250 300 3 3.0 it)3.2 (b ) M g2G d 3S b 3O 14 (e ) M g2D y3S b 3O 14 2.5 (h ) M g2E r830S bH3zO 1 4 5 0 0 H z (k ) c' (arbit. un ac2223....4680 12 0112....5050 c' (arbit. unit) ac222...4680.0 0.1 T (K ) 0.2 2.2 0 0.0 0 1 2 3 4 5 0.0 0.3 0.6 0.9 1.2 1.5 0 1 2 3 4 5 6 30 ) (c ) M g2G d 3S b 3O 14 6 (f) M g2D y3S b 3O 14 2 (i) M g2E r3S b 3O 14 (l) E·K20 (ad Mo potnetde fCroamrlo R eref.s u7l)t ol-R 4 1 (J/mag10 2 m C 0 0 0 0 1 2 3 4 5 0.0 0.3 0.6 0.9 1.2 1.5 0 1 2 3 4 5 6 T (K ) T (K ) T (K ) FIG.2.(coloronline)(a-i)Temperaturedependenceoftheinverseχ measuredwith200Oe,realpartoftheχ ,andmagneticspecificheat dc ac C forthreecompounds. Thebluedotin(c)istheMonteCarlosimulationresultadoptedfromRef. [7]withscaling. (j)The120◦ LRO mag stateforMg Gd Sb O andMg Er Sb O . ThedashlinesrepresentaunitcellwithA andA asbasisvectors. (k)Ak=0LROstate, 2 3 3 14 2 3 3 14 1 2 and(l)ak=(1/3,2/3)SDW-likestateforMg Dy Sb O . 2 3 3 14 In Dy Ti O [28], the small negative θ (-0.20 K) is due totheweakC (T)peak. 2 2 7 W mag to competition between the dipolar interaction and super- Theoretical investigation and Discussion.—The three sys- exchange couplings of Dy ions. Here, the similarity in lo- tems discussed here - Gd, Dy, and Er, are likely represen- cal structure translates into similar-size coupling to the py- tatives of the three different spin types, Heisenberg, Ising rochlorecase,sincethetotalspin-spincouplingisdominated and XY, respectively, evidenced by similar low temperature by the dipolar interaction. With the ferromagnetic dipolar magnetizationcurvescomparedwiththeirpyrochlorecousins interaction, the negative θ again shows the antiferromag- [24]. In the 3D pyrochlore systems discussed above, each W netic(AFM) nature of the Dy3+-Dy3+ exchange interactions spin type yields significantly different behavior. To uncover in Mg Dy Sb O . A transition to LRO at T = 0.37 K is the possible differences among the spin types in the TKLs, 2 3 3 14 N observedbothintheχ (Fig. 2(e))andC (T)(Fig. 2(f)). wehaveusedaLuttinger-Tiszatypetheory[4,5]andstudied ac mag The integrated magnetic entropy below 6 K is 5.38 J/mol- theeigenvaluesandeigenfunctionsoftheinteractionmatrixin Dy·K[24],whichisclosetoRln2=5.76J/mol-Dy·K,asex- wavevectorspace.Weconstructa2DkagomelatticewithA 1 pected for a Kramers-doublet. This suggests the Dy3+ spins andA asbasisvectorsofthetriangularBravaislatticewhere 2 fullyorderbelow0.37K. therearethreebasissitesinaunitcellforanuprighttriangle ofbasisspins,labeledasblue,redandgreen(Fig. 2(j)). Thus For Mg2Er3Sb3O14, the CW fit above 50 K yields θW = thegeneralHamiltonianfortheTKLcanbewrittenas[24]: -14.25 K, and µ = 9.45 µ (Fig. 2(g)), consistent with eff B the free ion moment of µ = 9.58 µB for Er3+ (4I15/2). The H = 1 (cid:88) Sα,a(k)Sβ,b(−k)Vαβ(k) (1) value for θ is close to that of the pyrochlore Er Ti O ( 2 ab W 2 2 7 k,α,β,a,b θ = -15.93 K [28]). The χ was measured down to 30 W ac mK with a broad peak observed around 80 mK (Fig. 2 (i)), whereV isthesumofadipolarpart,exchangepartandasin- whichshowsweakfrequencydependence. TheC (T)was gle ion anisotropy part dictated by the CEF effects. Here α mag measured down to 120 mK and exhibits a weak and broad and β are the cartesian indices of the spins and a,b run over peakaround2K(Fig. 2(i)). Atthistemperature,noanomaly thethreebasissitesinunit-cell. ThespinvectoristheFourier isobservedinχ ,whileanextremelyweakanomaly(2*10−8 componentoftherealspaceobject,andk runsovertheBril- ac emu/mole-Er)wasseeninχ at2.1Kthatisperhapsrelated louinzoneofthetriangularlattice.Thusforagivenvalueofk, dc 4 V isa9×9matrixthatcanbeeasilydiagonalized. Thedipo- aneigenvaluecorrespondstoaLROstatewitha3×3tripled larpart(D )isfixedexactlybytheeffectivemomentofspin magneticunitcell. Inaddition,themagnitudeofthemoment nn anddistancesbetweenREions,whiletheexchange(J )and differsinspace,asprescribedbyacommensuratespindensity ex singleiontermsarefoundfromtheθ andtheCEFsplitting wave(SDW)state. Unlikethek =0statewheretheKSIice W oftheRE3+inthegivenenvironment[24]. ruleispreservedforeveryMg-Dytetrahedron(greytriangu- larinFig. 2(k)),hereoneoutofsixtetrahedronsviolatesthe The Mg Gd Sb O has Heisenberg spins with J = 7/2, 2 3 3 14 localicerule.NotethattheLuttinger-Tiszamethodusedhere, L = 0 and therefore no single ion term. The θ of -7.35 K W ismoreakintothemeanfieldtheorywhenappliedawayfrom leads to an estimate of the exchange constant J ∼ 6.10 K, ex thezonecenterortheMpointoftheBZ.Thisisanontrivial whilethedipolarenergyscaleofnearestneighborspinsD nn and complex problem (see e.g. Ref. [36, 37]), and requires ∼0.79K.WefoundthattheminimumeigenvalueofV isat further theoretical investigation. Regardless the exact nature the Brillouin zone(BZ) center with k = (0, 0), and the corre- spondingeigenvectorrepresentsa120◦ statewherethethree ofordering, ourTKLsystemthenappearstoenablethespin dynamics to be much more efficient, as compared to the 3D spinsintheunitcelllieintheplanepointingalongthreeaxes Dy Ti O compound. Thisinterestingcontrastthereforepro- atangles2π/3toeachother(Fig.2(j)). Here,thelargedipo- 2 2 7 videsastrongimpetustothestudyoftheunderlyingdynam- lartermbreakstherotationinvariance, liftsthefrustrationof ics. Along with the observed LRO at 0.37 K, the Dy-Ising- a kagome lattice and helps defeat the Mermin-Wagner theo- TKLmightprovidearareexampleexhibitingaLROstatethat remthatforbidsmagneticorderingina2DHeisenberglattice. breakstheKSIdegeneracy. It is known that higher values of spin than 1/2 releases the frustrationsomewhatlikesoftspinswould[31],andthecase The Er3+ ion in Mg2Er3Sb3O14 has a large angular mo- herehasS=7/2. Thisseemstoenablea2D-Isingliketransi- mentum J = 15/2. At low temperatures, it reduces to an ef- tion with a logarithmic heat capacity a` la Onsager. Actually, fectivespin-1/2asaresultoftheKramers-doublet. Thehigh similar spin structure was predicted by Maksymenko et. al temperatureθW ∼-14.52Kimpliesalargeexchangeenergy byconsideringclassicaldipolesonakagomelattice[7]. Their Jex ∼ 11.0 K, while the dipolar energy scale is Dnn ∼ 0.11 calculated specific heat actually agrees well with our experi- K by assuming a moment of 3 µB (similar to that in the Er mentinthecriticalregionbyproperscaling(Fig. 2(c)). Thus, pyrochlore). This implies that below ∼ 10 K the spins are weconcludeMg Gd Sb O tobearareexampleofdipolar locked up into the state preferred by the exchange. The sin- 2 3 3 14 interactionmandatedspinorderingonaKagomelattice. gle ion anisotropy term in this case gives rise to a local-XY model, where the Er3+ are energetically favorable to lie in The Dy3+ ion is an effective spin-1/2 Kramers ion with the local XY-plane perpendicular to the Ising axis discussed Isinganisotropyinaneight-oxygen-surroundingenvironment. above. IntheEr-pyrochlore,suchaXYmodel,willgiverise Similartothespinicesystem,theIsingaxisinDy-TKLvari- toaU(1)degeneracyinthespinHamiltonianatthemean-field ant is along the lines joining each Dy to O1 (dashed lines in level that allows the Er3+ spins to rotate continuously in the Fig. 1(c)). ForthethreesitesinourBravaislattice,theIsing √ √ XY plane [23]. In Er-TKL, similar XY degeneracy is pre- directions are (cid:126)ηblue = √15{ 3,1,1}, (cid:126)ηred = √15{− 3,1,1}, servedfortheexchangepartoftheHamiltonian. However,an (cid:126)ηgreen = √1 {0,−2,1} in the global cartesian frame. The arbitrarilysmalllongrangedipolarinteractionwillbreakthe 5 small θW of -0.18 K corresponds to Jex ∼ 1.12 K, while degeneracy. By diagonalizing the interacting matrix, a low- the dipolar energy scale Dnn ∼ 1.31 K is the largest energy estenergyeigenvalueisfoundattheBZcenterwhoseeigen- scale. It is known that ferromagnetic spins with tripod-like vector,byacuriouscoincidence,correspondstothecoplanar anisotropy on a kagome lattice are highly frustrated, which modelexactlysameasthatoftheGdcompound(Fig. 2(j)). willleadtotheKSIstate[6]. Similartothatofthepyrochlore Regarding the experimental observations for the Er-TKL, spinice[20,22],theicerule(spinswitheithertwo-in-one-out sincethe2.1KanomalyinC(T)isextremelyweakinterms or one-in-two-out respect to the center of each triangular) of oftheentropyunderthepeak,andχ showsasimilarlyweak dc KSIwillalsoresultingreatnumberofgroundstatedegener- anomaly, the order parameter might be one that still allows acyandzero-pointentropy[6]. significantfluctuationsbelowitsT ,reminiscentofaKTtran- C WiththeTKLandstrongdipolarinteraction,itistempting sition [38] where spin-vortices form and bind. Then the 80 toviewMg Dy Sb O asarealizationofadipolarferromag- mKtransitionshownonχ islikelyrelatedtothepredicted 2 3 3 14 ac net where the KSI physics could be realized. Our Luttinger- 120◦ coplanarAFMordering. Ifso,suchaloworderingtem- TiszamethodyieldsametastablestateattheBZcenter,which perature (frustration index f = θW ∼ 180) suggests the im- TN isanorderedKSIstate.Thecorrespondingspinstructure(Fig. portanceofquantumspinfluctuationsintermsofsuppressing 2(k))canbeviewedasathree-sublatticesferromagneticorder theorderingtemperatureandselectingtheorderedstate. The withk=0.Thisspinstructurealsoresemblesthetheoretically weak frequency dependence on χ around the peak might ac predicted LRO state [32–34] for the 3D pyrochlore spin ice indicate an increasing spin-lattice relaxation time as temper- observedinTb Sn O [35]. However,thisk=0stateisNOT ature is decreased. The importance of thermal coupling be- 2 2 7 aglobalgroundstate. Thelowesteigenvalueoftheexchange tween a coherent spin system and the lattice needs to be un- matrixisfoundtobeatthesixKpointsofBZcorners,whose derstood for both identifying and potentially using quantum energyissomewhatlowerthanthatofthezonecenter. Such materials[39]. Futureexperimentsincludingneutronscatter- 5 ingandMuonspinspectroscopywillbeusefultoidentifythe Ressouche,andB.Fak,Phys.Rev.Lett.97,257205,(2006). natureofthetwotransitionsat80mKand2.1K. [18] J.D.M.Champion,A.S.Wills,T.Fennell,S.T.Bramwell,J. S.GardnerandM.A.Green,Phys.Rev.B,64,140407(2001). Summary.—We discovered a new 2D rare earth TKL [19] A.P.Ramirez,B.S.Shastry,A.Hayashi,J.J.Krajewski,D.A. Mg RE Sb O by partially substituting the ions in the cu- 2 3 3 14 HuseandR.J.Cava,Phys.Rev.Lett.,89,067202(2002). bicpyrochlorelattice. OurstudiesonthreesampleswithRE [20] S.T.BramwellandM.J.P.Gingras,Science,294,1495(2001). =Gd,Dy,Erhavealreadyrelatedtheirmagnetismtovarious [21] M.J.Harris, S.T.Bramwell, D.F.McMorrow, T.Zeiskeand exoticstatesincludingthedipolarspinorder,theKSI,andthe K.W.Godfrey,Phys.Rev.Lett.,79,2554(1997). KT transition. Due to the large variability of the spin sets in [22] A.P.Ramirez,A.Hayashi,R.J.Cava,R.SiddharthanandB. S.Shastry,Nature,399,333(1999). the rare earth family and the possibility of tuning the lattice [23] L.Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff and Leon parametersviachemicalpressures,otherexoticphysicsmight Balents,Phys.Rev.Lett.109,167201(2012). also be realized. The future exploration of the whole TKL [24] See Supplemental Material at [URL will be inserted by pub- familymembersisexpectedtoopenanewfieldincondensed lisher]fordetailsofsamplesynthesis, measurementsetups, X- matterphysicsandmaterialssciencestudiesforcomingyears, raydiffractionpattern,crystallographictablewithselectivebond suchasthepyrochloredidduringthelasttwodecades. lengths,theoreticalmodel,estimationmethodsforDnnandJex, andmagneticentropy. TheworkofB.S.S.atUCSCwassupportedbytheU.S.De- [25] K.Li,Y.Hu,Y.Wang,T.Kamiyama,B.Wang,Z.LiandJ.Lin, partment of Energy (DOE), Office of Science, Basic Energy J.SolidStateChem.217,80(2014). Sciences (BES) under Award No. FG02-06ER46319. K.L. [26] W.T.FuandD.J.W.Ijdo,J.SolidStateChem.213,165(2014). and Y.X.W. thank the support of the National Natural Sci- [27] M. B. Sanders, J. W. Krizana, and R. J. Cava, J. Solid State enceFoundationofChina(grantNo. 11275012). A.P.Rwas Chem.4,541(2016). supportedbyNSF-DMR1534741,andJ.T.wassupportedby [28] S. T. Bramwell, M. N. Field, M. J. Harris and I. P. Parkin, J. Phys.:Condens.Matter12,483(2000). NSF DGE-1339067. The work at NHMFL is supported by [29] J.M.LuttingerandL.Tisza,Phys.Rev.70,954(1946). NSF-DMR-1157490andStateofFloridaandtheDOEandby [30] L.Onsager,J.Phys.Chem.43,189(1939). theadditionalfundingfromNHMFLUserCollaboration. [31] O.Nagai,S.MiyashitaandT.Horiguchi,Phys.Rev.B47,202 (1993). [32] R.Siddharthan,B.S.Shastry,andA.P.Ramirez,Phys.Rev.B 63,184412(2001). [33] R.Siddharthan,B.S.Shastry,A.P.Ramirez,A.Hayashi,R.J. [1] A.P.Ramirez,G.P.Espinosa,andA.S.Cooper,Phys.Rev.Lett., Cava,andS.Rosenkranz,Phys.Rev.Lett.,83,1854(1999). 64,2070(1990). [34] R.G.Melko,B.C.denHertog,andM.J.P.Gingras,Phys.Rev. [2] P.Lecheminant,B.Bernu,C.Lhuillier,L.Pierre,andP.Sindz- Lett.,87,067203(2001). ingre,Phys.Rev.B56,2521(1997). [35] I.Mirebeau,A.Apetrei,J.Rodriguez-Carvajal,P.Bonville,A. [3] X.-G.Wen,FieldTheoryofMany-bodySystems: FromtheOri- Forget,D.Colson,V.Glazkov,J.P.Sanchez,O.Isnard,andE. gin of Sound to an Origin of Light and Electrons, reissue ed. Suard,Phys.Rev.Lett.,94,246402(2005). (OxfordUniversityPress,NewYork,2007). [36] T.Takagi,andM.Mekata,J.Phys.Soc.Jpn.,62,3943,(1993). [4] L.Balents,Nature464,08917(2010). [37] T.Takagi,andM.Mekata,J.Phys.Soc.Jpn.,64,4609,(1995). [5] R.Schaffer,S.Bhattacharjee,andY.B.Kim,Phys.Rev.B,88, [38] J.MKosterlitzandD.J.Thouless,J.Phys.C:SolidStatePhys. 174405(2013). 6,1181(1973). [6] A.S.Wills,R.BallouandC.Lacroix,Phys.Rev.B,66,144407 [39] M. A. Schmidt, D. M. Silevitch, G. Aeppli, and T. F. Rosen- (2002). baum,Proc.Natl.Acad.Sci.USA111,3689(2014). [7] M. Maksymenko, V. R. Chandra, and R. Moessner, Phys. Rev. B,91,184407(2015). [8] Y.Zhao,W.Li,B.Xi,Z.Zhang,X.Yan,S.J.Ran,T.Liu,and G.Su,Phys.Rev.E,87,032151(2013). [9] S.Sachdev,Phys.Rev.B45,12377(1992). [10] T.PicotandD.Poilblanc,Phys.Rev.B,91,064415(2015). [11] P.Bordet,I.Gelard,K.Marty,A.Ibanez,J.Robert,V.Simonet, B.Canals,R.BallouandP.Lejay,J.Phys.:Condens.Matter18, 5147(2006). [12] H.D.Zhou,B.W.Vogt,J.A.Janik,Y.-J.Jo,L.Balicas,Y.Qiu, J.R.D.Copley,J.S.Gardner,andC.R.Wiebe,Phys.Rev.Lett. 99,236401,(2007). [13] A.Zorko,F.Bert,P.Mendels,P.Bordet,P.Lejay,andJ.Robert, Phys.Rev.Lett.100,147201,(2008). [14] Y. Okamoto, H. Yoshida, and Z. Hiroi, J. Phys. Soc. Jpn. 78, 033701(2009). [15] T.H.Han,J.S.Helton,S.Chu,D.G.Nocera,J.A.Rodriguez- Rivera,C.BroholmandY.S.Lee,NaturePhys.492,406(2012). [16] S.-H.Lee,H.Kikuchi,Y.Qiu,B.Lake,Q.Huang,K.Habicht, andK.Kiefer,Nat.Mater.6853(2007). [17] Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. 6 Supplemental material M g G d S b O 50000 2 3 3 14 Y obs 40000 Y Calc 1.SAMPLESYNTHESISMSEETTUHPOSDANDMEASUREMENT (arbit. unit)2300000000 R p = 1 .2 1YB,r oRabsg-w gpY =pc1aolc.s8i1ti,o (cid:1)n2 = 0 .5 5 Polycrystalline samples of tripod kagome lattice (TKL) sity10000 n te compoundsMg2RE3Sb3O14 (RE=Gd,Dy,Er)weresynthe- In 0 sizedbysolidstatereactions. StoichiometricratiosofRE O 2 3 -10000 (RE = Gd, Dy, Er), MgO, and Sb2O3 powder were carefully 0 20 40 2 q (d e g re e )60 80 100 ground and reacted at a temperature of 1573 K for 60 hours with several intermediate grindings. Performing the reaction FIG.3. (Coloronline)TheXRDpatternforMg2Gd3Sb3O14. The attemperaturesabove1623Kwillintroducesite-disorderbe- solidcurveisthebestfitsfromtheRietveldrefinementusingFull- prof. tweentheREsiteandtheMgsite,whichisevidencedbythe cubic pyrochlore phase in X-ray diffraction (XRD) patterns. The room temperature XRD patterns were measured with a 7.0µ /Gd3+ (6.4µ /Gd3+ forGd Ti O )at6.5T,whichis B B 2 2 7 HUBER X-ray powder diffractometer with the structural re- aboutthe88.5%ofitseffectivemoment. finements performed using software package Fullprof-suite. SimilartoDy Ti O , stronganisotropicbehaviorsareob- 2 2 7 The dc susceptibility measurements were performed using servedinDy-TKLthatthemagnetizationquicklysaturatesat a commercial superconducting interference device (SQUID) aplateauof5.1µ /Dy3+,whichisabouthalfofitseffective B magnetometerwithamagneticfieldof200Oe.Theacsuscep- moment. Inthepyrochlorespinice, suchhalfmagnetization tibilitywasmeasuredatNationalHighMagneticFieldLabo- plateauisacharacteristicbehaviorofDy3+Isingmoment[1]. ratory with the conventional mutual inductance technique at Similar half magnetization plateau observed here provides a frequencies between 80 Hz and 700 Hz. The low temper- strongevidenceforthelocalIsinganisotrpyforDyioninthe ature specific heat measurements were performed in a He3- TKLsystem. He4 dilution refrigerator using the semi-adiabatic heat pulse For Er-TKL, the magnetization reaches 4.8 µ /Er3+ (4.6 B technique. The powder samples were cold-sintered with Ag µ /Er3+ for Er Ti O ), which is about half of the effective B 2 2 7 powder, the contribution of which was measured separately moment per Er ion. Moreover, the magnetization curve of and subtracted from the data. For all the specific heat data Er-TKL is also very similar to that of its pyrochlore cousin shownbelow,themagneticcontribution(C )wasobtained mag Er Ti O for the whole field region from 0 to 6.5 T. This 2 2 7 by subtracting a lattice contribution estimated from the re- similarity provides a supporting evidence for the local XY sultsofaseparatemeasurementofthenon-magneticisomorph anisotropythathasbeenconfirmedintheErpyrochlore. Zn La Sb O . 2 3 3 14 4.MODELANDPARAMETERS 2.XRDPATTERNANDCRYSTALLOGRAPHICTABLE Forthekagomelatticedescribedinthemaintext, A and 1 The X-ray diffraction (XRD) pattern and Rietveld refine- A are basis vectors of the triangular Bravais lattice where 2 mentresultforMg Gd Sb O areshowninFig.3.TheXRD 2 3 3 14 therearethreebasissitesinaunitcellforanuprighttriangle pattern for the other two compounds are similar to that of of basis spins, labeled as blue, red and green. The nearest Mg2Gd3Sb3O14 except for the peak shifts due to the lattice distancebetweentwospinarethusR = 1A . Thepositions parameterdifferences. Asexpected,thelatticeparametersde- oftheBravaislatticepointsaredenotnendby2R1l,whereaseach creasewiththedecreasingionicsizefromGd3+toEr3+. The of the three sites in the unit cell is labeled by r (where a = a refinedcrystallographicresultsofatomicpositions,latticepa- blue,red,green). SoeachsitecanbelabledasRl =Rl +r . a a rameters,andselectivebondslengthsarelistedinTab. I. ThegeneralHamiltonianofthesystemis: H = 1 (cid:88) (cid:88)Vαβ(cid:0)Rkl(cid:1)Sα(cid:0)Rk(cid:1)Sβ(cid:0)Rl(cid:1) 3.MAGNETIZATIONANDSINGLEIONANISOTROPY 2 ab ab a b k,l,a,bα,β Themagnetizationcurvesat2KforthreeTKLcompounds +(cid:88)C(cid:0)Sα(cid:0)Rla(cid:1)ηα(cid:0)Rla(cid:1)(cid:1)2 (2) andtheirpyrochlorecousins(allinpolycrystallineforms)are l,a,α shownshowninFig. 4,whereapparentsimilaritiesarefound (cid:18) (cid:19) forallthreesamplesets. δ R R Vαβ(R)=D R3 αβ −3 α β +J δ|R=Rnn| ForGd-TKL,themagnetizationcurveshowsastraightline ab nn nn |R|3 |R|5 ex αβ upto3T,whichsignaturesaisotropicg-factorasexpectedfor (3) aSstateofGd3+ (J=7/2,L=0). Themagnetizationreaches TheRkl isthevectorbetweentwoclassicalspinsSα(cid:0)Rk(cid:1), ab a 7 TABLE I. Crystallographic parameters and selected bond lengths from Rietveld refinement of room temperature XRD patterns for Mg RE Sb O (RE=Gd,Dy,Er). 2 3 3 14 RE Gd Dy Er IR(RE3+)(A˚) 1.08 1.05 1.03 a(A˚) 7.35644(3) 7.31865(8) 7.29226(10) c(A˚) 17.35214(9) 17.2868(2) 17.2365(3) Atom Wyckoffsite x,y,z x,y,z x,y,z Mg1 3a 0,0,0 0,0,0 0,0,0 Mg2 3b 0,0,1/2 0,0,1/2 0,0,1/2 RE 9d 1/2,0,1/2 1/2,0,1/2 1/2,0,1/2 Sb 9e 1/2,0,0 1/2,0,0 1/2,0,0 O1 6c 0,0,0.1027(10) 0,0,0.1038(10) 0,0,0.1034(16) O2 0.5361(7) 0.5411(7) 0.5377(12) x O2 18h 0.4639(7) 0.4589(7) 0.4623(12) y O2 0.8876(6) 0.8850(6) 0.8883(9) z O3 0.4752(7) 0.4797(7) 0.4793(12) x O3 18h 0.5248(7) 0.5203(7) 0.5207(12) y O3 0.3590(5) 0.3608(5) 0.3624(9) z RE-RE(intra-plane)(A˚) 3.67822(1) 3.65934(5) 3.64613(3) RE-RE(inter-plane)(A˚) 6.16157(3) 6.13739(6) 6.11900(10) RE-O1(A˚) 2.395(9) 2.375(8) 2.370(14) RE-O2(A˚) 2.566(5) 2.576(6) 2.562(8) RE-O3(A˚) 2.467(9) 2.420(11) 2.386(16) B(A˚2) 1.32(2) 1.37(3) 1.47(4) R 1.21 1.60 3.73 p R 1.81 2.33 5.32 wp χ2 0.554 0.939 2.81 1 0 m m 1 0 = 1 0 .2 0 eff B m m m m = 9 .4 5 = 7 .9 1 eff B 8 eff B 8 ) E6 6 /R B (m 4 4 M 2 M g 2G d 3S b 3O 14 M g 2D y 3S b 3O 14 M g 2E r3S b 3O 14 2 G d 2T i2O 7 D y 2T i2O 7 E r2T i2O 7 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 m m m H ( T ) H ( T ) H ( T ) 0 0 0 FIG.4. (Coloronline)Magnetizationcurvesupto6.5TmeasuredatT =2KforMg RE Sb O andRE Ti O (RE=Gd,Dy,Er). The 2 3 3 14 2 2 7 µ istheeffectivemomentofREionforeachRE-TKLfoundbytheCurie-Weissfitofthedcsusceptibility. eff Sβ(cid:0)Rl(cid:1)oftheunitlength. kandlindextheunitcell,aandb Gd. b runoverthesitesintheunitcell,whileαandβ denotethex, The first term in Vαβ represents dipolar interaction and ab y, z components of the spin vectors. The first term in Eq.(2) D isthedipolarenergyscalethattakestheform: nn istheinteractingtermwhilethesecondtermisthesingleion µ µ2 term. Fourier transformation of the Equation (2) yields the D = 0 eff (4) Hamiltonianinthewavevectorspacethatislistedinthemain nn 4π Rn3n text. η(Rl)representsthelocalIsingaxisofsiteRl asgiven a a whereµeff istheeffectivemomentofREions. ForeachRE- in the main text. To enforce the spin anisotropies (e.g Ising- TKL, R is found by the Retvield refinement of the XRD nn likeforDyionandlocalXY-likeforErion),thesignofcoef- patternandlistedinTable.1. ficientC istakennegativeforDyionandpositiveforErion The second term in matrix Vαβ represents the nearest whilethemagnitudeofC ischosententimeslargerthanany ab neighbor exchange interaction. The effective exchange con- other energy scale. C is zero for the half filled spin case of stantJ ispositiveforantiferromagneticexchangecoupling ex 8 (a ) (c ) (e ) 10 1 (cid:215)C (J/mol-GdK) 0.11 (cid:215)C (J/mol-DyK)0.11 (cid:215)C (J/mol-ErK)0.1 0.01 M g2G d3S b3O 14 0.01 M g2D y3S b3O 14 0.01 M g2E r3S b3O 14 Z n2L a3S b3O 14 Z n2L a3S b3O 14 Z n2L a3S b3O 14 20 20 20 8 (b ) (d ) 15 (f) R ln8 6 2C/T (J/mol-Gd·K) mag 11505 Mestgi2mGadti3oSnb3OS (J/mol-Gd·K)14mag51105 2C/T (J/mol-Dy·K) mag11505 R Mlng22D y3S b3O 14 S (J/mol-Dy·K)mag24 2C/T (J/mol-Er·K) mag150 M g2RElrn32S b3O 14 S (J/mol-Gd·K)mag 246 0 0 0 0 0 0 0 2 4 6 0 2 4 6 0 2 4 6 T (K ) T (K ) T (K ) FIG.5.(Coloronline)(a,c,e)MeasuredtotalspecificheatofthreeTKLcompoundsandthelatticecontributionmeasuredwithZn La Sb O . 2 3 3 14 (b,e,f)MagneticspecificheatovertemperatureandtheintegratedmagneticentropyforMg RE Sb O (RE=Gd,Dy,Er). 2 3 3 14 and negative for ferromagnetic exchange coupling. An es- of the Brillouin Zone (BZ), typically the minima lie on high timation of the exchange constant J can be found from the symmetry lines, we evaluate all possible periodicities of the measuredWeisstemperatureθ viaameanfieldtheory[2]: magneticstate. Theeigenvectorsaredecomposedtofindthe W magnitudeofmomentsoneachofthethreespins,iftheseare 3θ J =− W (5) normalizabletothesameconstantwehaveanacceptableso- zS(S+1) lution. Thecaseofadegenerateeigenvalueissubtleandoften comesupinouranalysis. Inthiscase,weperformatest:ifno where z is the number of nearest neighbor. In our TKL sys- linear combination of the eigenvectors can be found leading tem, z =4. SinceJ istheeffectiveexchangeconstantthat ex toanequalnormalizationofthethreespins,thenthesolution couplestwounitspins,J =JS(S+1). ex isunphysicalandmustbediscarded. Whenevertheminimiz- BecauseofthelargespinmomentintheRE-oxidesystems, ingwavevectorisdifferentfromΓorMpointoftheBZ,the θ has the contribution from both the exchange and dipolar W solution found by this method is analogous to a mean field parts. As a simple approximation, one can estimate the ex- spindensitywave. Sincethemagnitudesofthespins, which changecontributionbysubtractingθ bythedipolarcontri- W isgivenbytherealpartofthewave,mustvaryinmagnitudeat butionD [3]. Thusweget: nn differentsites,thisdoesnotfulfilltheconditionsofLuttinger andTisza. 3 J =− (θ −D ) (6) ex 4 W nn AdoptingtheparametersforourTKLsystem,weget(1)D 5.MAGNETICSPECIFICHEATANDENTROPY nn =0.79K,J =6.1KforGdcompound, (2)D =1.31K, ex nn J =1.12KforDycompound,and(3)D =0.11K,J = ForalltheTKLsystem,themagneticspecificheat(C ) ex nn ex mag 11.0KforErcompound. was obtained by subtracting the total specific heat (C) by a In order to determine their ground states, we have used a lattice contribution estimated from the results of a separate Luttinger-Tisza type theory to calculate the eigenvalues and measurement of the non-magnetic isomorph Zn La Sb O . 2 3 3 14 eigenfunctions of the interaction matrix, following two early Below 6 K, the lattice contribution is almost two magni- referencesbyLuttinger-Tisza[4]andOnsager[5]. Thesefun- tudesmallerthanthemagneticcontributionasshowninFig. damentalpapersoutlineaprocedureforsimplecubiccellwith 5(a,c,e). The corresponding integrated magnetic entropies a single magnetic species. Their idea is adapted for the case (S ) are shown in Fig. 5(b,d,f). For Mg Er Sb O , the mag 2 3 3 14 ofKagomelattice, viewedashavingthreeindependentspins integratedS from0.11Kto6Kreaches6.61J/mol-Er·K. mag inatriangularunitcell. Wecomputethe9×9interactionma- Duetothepossiblemagneticorderingat80mKandpossible trixofV ateachwavevectornumerically,andsearchforthe contributionfromthe167Ernuclearspin,itisunlikelythatthe absoluteminimumeigenvalue. Byscanningallwave-vectors integratedentropyhasanysignificance. 9 [3] B. Z. Malkin, T. T. A. Lummen, P. H. M. van Loosdrecht, G. Dhalenne,and A. R. Zakirov, J. Phys.: Condens. Matter 22, 276003(2010). [1] K.Matsuhira,Z.Hiroi,T.Tayama,S.Takagi,andT.Sakakibara, [4] J.M.LuttingerandL.Tisza,Phys.Rev.70,954(1946). J.Phys.:Condens.Matter14,L560(2002). [5] L.Onsager,J.Phys.Chem.43,189(1939). [2] C.Kittel,IntroductiontoSolidStatePhysics,P446,7thed.(John Wiley&Son,Inc.1995).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.