ebook img

Removing beam asymmetry bias in precision CMB temperature and polarisation experiments PDF

3.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

Mon.Not.R.Astron.Soc.000,1–18(2014) Printed17March2015 (MNLATEXstylefilev2.2) Removing beam asymmetry bias in precision CMB temperature and polarisation experiments 5 1 1⋆ 1 1 Christopher G. R. Wallis , Michael L. Brown , Richard A. Battye , 0 1 2 2 Giampaolo Pisano and Luca Lamagna r a 1JodrellBankCentreforAstrophysics,SchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL M 2DipartimentodiFisica,SapienzaUniversita`diRoma,PiazzaleAldoMoro5,00185Roma,Italy 6 1 Accepted2014XXXXXXX.Received2014XXXXXXX;inoriginalform2014XXXXXXX ] O ABSTRACT C Asymmetric beamscan create significantbias in estimates of the power spectra from CMB . experiments.Withthetemperaturepowerspectrummanyordersofmagnitudestrongerthan h theB-modepowerspectrumanysystematicerrorthatcouplesthetwomustbecarefullycon- p trolled and/or removed. Here, we derive unbiased estimators for the CMB temperature and - o polarisationpowerspectratakingintoaccountgeneralbeamsandgeneralscanstrategies.A r simpleconsequenceofasymmetricbeamsisthat,evenwithanidealscanstrategywhereevery t s skypixelisseenateveryorientation,therewillberesidualcouplingfromtemperaturepower a toB-modepoweriftheorientationofthebeamasymmetryisnotalignedwiththeorientation [ of the co-polarisation.We test our correctionalgorithm on simulations of two temperature- 2 onlyexperimentsanddemonstratethatitisunbiased.Thesimulatedexperimentsuserealistic v scan strategies, noise levels and highly asymmetric beams. We also develop a map-making 5 algorithmthatiscapableofremovingbeamasymmetrybiasatthemaplevel.Wedemonstrate 7 itsimplementationusingsimulationsandshowthatitiscapableofaccuratelycorrectingboth 0 temperature and polarisation maps for all of the effects of beam asymmetry including the 2 effectsoftemperaturetopolarisationleakage. . 1 Key words: methods: data analysis - methods: statistical - cosmology:cosmic microwave 0 4 back-ground-cosmology:large-scalestructureofUniverse 1 : v i X 1 INTRODUCTION fainter B-mode signal presents a much greater challenge for ex- r perimentalists,thoughthefirsttentativedetectionsofB-modepo- a The cosmic microwave background (CMB) has proved to be an larization on small scales are now being made through cross- incrediblyusefultoolfortestingcosmological models. TheCMB correlations (Hansonetal. 2013; PolarbearCollaborationetal. two-point correlation functions, or alternatively in Fourier space 2013). thepowerspectra,ofthetemperatureandpolarisationfluctuations TheE-modepowerspectrumisapproximatelytwoordersof areofparticular interest.Therehasbeen awealthofexperiments magnitudefainterthanthetemperaturepower spectrumwhilethe whichhavebeensuccessfulatcharacterisingtheCMBpowerspec- traandtheseobservationsareconsistentwiththestandardΛCDM B-modepowerspectrumisexpectedtobeatleast2ordersofmag- nitudefainterstill(Challinor2013).Thismeansthatinanyexperi- cosmological model (see e.g. PlanckCollaborationetal. 2013c). mentaimedatdetectingB-modes,systematiceffectsthatcouldpo- The temperature power spectrum is now extremely well charac- terised(PlanckCollaborationetal.2013a)andongoingandfuture tentiallycouplethetemperatureorE-modesignaltotheB-mode power spectrummust bestrictlycontrolled. Onesourceofpoten- experimentswillfocusoncharacterisingthepolarizationmoreac- tialerrorisanasymmetricopticalresponsefunction(i.e.theexper- curately. imentalbeam).DuringthedataanalysisforCMBexperiments,one The polarisation of the CMB, being a spin-2 field, can be oftenassumesthatthebeamisaxisymmetricsothatitseffectisto decomposed intocurl-free(E-mode) andgradient-free (B-mode) simply(andisotropically)smooththesky.Thisassumptioncanre- components. E-modes have been successfully detected and char- sultinabiasinsubsequentpowerspectrumestimatesif,asisoften acterised, and have helped to constrain cosmology (Kovacetal. thecaseinreality,thebeamisnotperfectlyaxisymmetric. 2002; Readheadetal. 2004; Montroyetal. 2006; Brownetal. 2009; Chiangetal. 2010; QUIETCollaborationetal. 2012). The AtpresentthishasnotbeencrucialinextractingCMBpower spectra,butwithincreasedsensitivityofinstruments,thisbiaswill beimportantforfutureexperiments. Currentlytherearethreeap- ⋆ E-mail:[email protected] proachesintheliteraturethatattempttodealwiththiseffect.The 2 ChristopherG.R. Walliset al. first is simply to quantify the systematic error on the cosmologi- modesproposedforfutureCMBsatelliteexperimentssuchasthose calparameterscausedbytheasymmetryandbesatisfiedthatthey describedinBocketal.(2009). are below the statistical uncertainty. This can be done by simu- Removingtheasymmetryatthemaplevelhastwomainben- latingan experiment’s full beam response (Mitraetal. 2011) and efits.Firstly,incontrasttothecaseofthepseudo-C approach,the ℓ propagatingtheerror(PlanckCollaborationetal.2013b).Thisap- polarisationpowerspectrumestimatorerrorbarsarenotaffectedby proach is effective as the error in the maps can be estimated. In thesamplevarianceofthetemperaturepowerspectrum.Secondly, their analysis the Planck team accounted for the effects of beam theresultingbias-freetemperatureandpolarisationmapscanalso asymmetry by finding the most suitable axisymmetric effective be used for science other than power spectrum estimation. Fore- beam transfer function to deconvolve the recovered power spec- groundscanberemovedafterthemap-makinghasbeenperformed trum. Any further asymmetry bias was shown to have little to meaningthatcurrentcomponent separationtechniquescanbeap- no effect on the science (PlanckCollaborationetal. 2013a). The plied. second method investigated attempts a full deconvolution of the The paper is organized as follows. We begin in Section 2 TimeOrderedData(TOD)fromaCMBexperimenttoremovethe where we present some basic definitions and develop the mathe- effect completely (Wandelt&Go´rski 2001; Challinoretal. 2000; maticalformalismonwhichouralgorithmsarebased.InSection3, Keiha¨nen&Reinecke2012).Theresultsofthismethodareencour- wepresent thepseudo-C based approach tocorrecting forbeam ℓ agingbutitisnotabletodealwithcertainunavoidablereal-world asymmetry.Section4discussesthepotentialimpactofbeamasym- complications. In particular when noise is added to the TOD the metries on CMB polarization experiments, if they are left uncor- deconvolutionnolongerworksforhighmultipoles.Inaddition,the rected.InSection5,wepresentatechniquetocorrectfortheeffects deconvolutiononlyworksiftheexperimentobservestheentiresky. ofbeamasymmetryinthemapdomain.Section6discussessome Thisisnotasignificantproblemforsatellite-basedexperimentsbut detailsofthedecompositionofthebeamwhichisrequiredforboth for ground- or balloon-based experiments this will obviously not ofourapproaches.Wedemonstrateourtechniquesonsimulations bethecase. inSections7&8andourconclusionsarepresentedinSection9. A third approach is to calculate, and subsequently correct for, the asymmetry bias on the measured pseudo-C in an ex- ℓ periment (Ramamonjisoaetal. 2013; Souradeepetal. 2006). As 2 BASICDEFINITIONSANDPRELIMINARIES presentlyformulatedthisisunabletodeal withacut skywithout Ourobjectiveistoconstructestimatorsforthetemperatureandpo- apodisingtheazimuthaldependence ofthemask.Thisinturnre- larisationfluctuationpowerspectragivenaTOD.Weassumethat sultsinareductionofthecosmologicalinformationcontentofthe anynon-astrophysical signalsintheTODhavebeenflagged and, TODwhichissomethingthatwewouldliketoavoid.Inaddition, forthepseudo-C approach, thatforegroundshavebeenremoved ℓ theseauthorsassumethateachskypixelisseeninasingleorien- and/or masked. We consider an asymmetric beam and a general tationonly,whereas,ingeneral,experimentswillobserveeachsky scanstrategy.Webeginbydefiningsomerelevantquantities. pixelinanumberofdifferentorientations. The CMB temperature and polarisation fluctuations, In this paper, we present two methods to remove the effect ∆T(θ,φ),Q(θ,φ) and U(θ,φ), can be decomposed into spin- of asymmetry bias. The firstisan algorithm to recover theCMB weightedsphericalharmonics powerspectrausingthepseudo-C approach.Wemakenoassump- ℓ tions about the beam or the scan strategy indeveloping unbiased a0ℓm = dΩ0Yℓ∗m(Ω)∆T(Ω) and (1) estimators for the underlying CMB temperature and polarisation Z power spectra. We also show that noise can be easily accommo- a = dΩ Y∗ (Ω)[Q(Ω)∓iU(Ω)], (2) ±2ℓm ±2 ℓm dated.Thepseudo-Cℓ estimatorthatweproposeisbasedonacal- Z culation similar to one presented in Hanson,Lewis,&Challinor wheresYℓm arethespinweightedspherical harmonics.Thetem- (2010). Here, we extend the analysis to polarisation and demon- perature,E-modeandB-modeharmoniccoefficientsarerelatedto strate its implementation on simulated temperature-only experi- theseby ments.Sincetheestimatorworksdirectlyonthetimeordereddata aT = a , (3) (TOD),it is sub-optimal for polarization experiments that do not ℓm 0ℓm 1 directlymeasurebothQandU Stokesparametersinthetimeline aE = − (a +a ), (4) ℓm 2 2ℓm −2ℓm (e.g.viadetectordifferencing).Forsuchexperiments,theestima- 1 torwillperformthedecompositionintoQandU atthelevelofthe aB = − (a −a ). (5) ℓm 2i 2ℓm −2ℓm powerspectrumwhichwillcontributetothestatisticalerror.How- ever,thisestimatoriswellsuitedtoanexperimentsuchasPlanck Weareinterestedinobtainingunbiasedestimatesforthepowerand whichhas both instrument-Q andinstrument-U detector pairson crossspectraoftheCMBdefinedas itsfocalplane. ℓ 1 Inadditiontothepseudo-Cℓapproach,wepresentanewmap- CℓXY = 2ℓ+1 aXℓmaYℓm∗, (6) makingalgorithmthatiscapableofmakingtemperatureandpolar- mX=−ℓ isation maps cleaned of asymmetry bias. The map-making algo- whereX,Y={T,E,B}. rithmproducesmapscontainingtheskysignalsmoothedwithjust Theresponse of atelescope tothe Stokesparameters on the theaxisymmetriccomponentsofthebeamandnoise.Notethatthis sky(T,Q,U)canbedescribedbysomeresponse(beam)functions map-makingschemerequiresasuitablescanstrategy—ingeneral, (T˜,Q˜,U˜).Thetotaldetectedpoweris the more complex the beam asymmetry is, the more redundancy (in termsof polarization angle covereage) isrequired in the scan W ∝ (TT˜+QQ˜+UU˜)dΩ. (7) strategy. For the asymmetric beams that we have investigated in Z thispaper,thescanstrategyrequirementsarefullymetbyscanning For details of how polarised detectors respond to the CMB see Removing beamasymmetrybiasinCMB experiments 3 Challinoretal.(2000).OneelementoftheTODisthenthispower TheWignerD-matricesprovideacompleteorthogonal basis W integratedoverthetimeintervalbetweentwosamples.Wede- forthisspace,soweusethemtodecomposeboththeTODandthe finethespinweightedsphericalharmonictransformsofthebeam hitcubeas tobe Tℓ∗ = d3ωDℓ (ω)t˜(ω)n(ω) and (13) mk mk b0ℓk = dΩ0Yℓ∗k(Ω)T˜(Ω) and (8) Z 2ℓ+1 Z wℓ = d3ωDℓ∗ (ω)W(ω)n(ω). (14) b±2ℓk = dΩ±2Yℓ∗k(Ω)[Q˜(Ω)∓iU˜(Ω)], (9) mk 8π2 Z mk Z Here, we have introduced the weighting function n(ω), which whenthebeamispointinginthez-directioninafiducialorientation rangesfrom0to1.Weusethisfunctiontodown-weightnoisypix- suchthattheco-polarisationisalignedwiththey-direction.Note els,applyaforegroundmaskand/orapodisethehitcubesothatis thatthisformalismcandescribeallaspectsofadetector’sresponse canbedescribedwellwithinourexpansion.1Weusetheprefactor function.Forexample,wecanincludeboththeasymmetryofthe inequation(14)tocorrectlynormalisethecoefficientssothatwe beam and any cross-polarisation response. This will allow us to canwrite remove any bias that these beam imperfections would impart on W(ω)n(ω)= wℓ Dℓ (ω). (15) theestimatedpowerspectra. mk mk We truncate our expansion of both the beam and the sky at ℓXmk somemaximummultipole,ℓ .Wealsocaptheexpansionofthe Forthisreconstruction of thehit cube to beexact, one would re- max beaminkatsomemaximumvalue,kmax.Thisisareasonableap- quirektorangefrom−ℓtoℓ,notaswehaveherefrom−kmaxto proximationtomakeasbeamresponsefunctionsaretypicallyclose kmax.Thisisnotaproblemforourproposedtechniquessince,as toaxisymmetric.InSection6wewillexaminethisassumptionfor weshallseelater,weonlyneedtocapturethefeaturesintheψdi- somespecificcases.Thebeamisthenrotatedaroundtheskyina rectionwithFouriermodesuptosomekmax,thevalueofwhichis scan to measure the CMB. We describe this rotation using Euler determinedbythecomplexityofthebeamasymmetry.Thisisanal- anglesω=[φ,θ,ψ].Thisisreallythreeactiverotations.Theyare ogoustotheaxisymmetriccase,wheretorecoverthetemperature active as the beam moves with respect to the coordinate system. fluctuationpowerspectrumtheanalysisusesthehitmap,whichis Thefollowingseriesofstepsdescribehowtorotatethebeamfrom justthek=0Fouriermodeofthehitcube.Sowhilewecannotfully thefiducialorientationtotheorientationdescribedbyω,allrota- recoverthecompletehitcubewedorecoveritsimportantfeatures. tionsbeingperfomedanticlockwisewhenlookingdowntheaxisby whichtheyaredefined. 3 BEAMASYMMETRYCORRECTIONWITHINTHE (i) Thebeamisrotatedaroundthezaxisbyψ. PSEUDO-C FRAMEWORK (ii) Thebeamisrotatedbyθaroundtheyaxis. ℓ (iii) Thebeamisrotatedaroundthezaxisagainbyφ. In this section, we develop a technique to correct for the effects The Wigner D-matrix, Dℓ (ω), performs the required ro- of beam asymmetry within the framework of pseudo-Cℓ power mk spectrum estimators (Hivonetal. 2002; Brown,Castro,&Taylor tations on the spherical harmonic decomposition of a function. 2005). As described earlier, thisapproach to correcting for beam ThereforewecanwriteoneelementoftheTOD(tj)as asymmetries is well suited to experiments that can measure the tj = Dmℓ∗k(ωj)b∗sℓkasℓm. (10) Q and U Stokes parameters simultaneously in the timestream (e.g. differencing experiments). In Appendix A we show that for sℓmk X such an experiment the pseudo-C presented here is similar to For simplicity, in this paper, we only write the index which is ℓ thatofthestandardpseudo-C approach(Brown,Castro,&Taylor being summed over and not the ranges. For the rest of this pa- ℓ 2005). per one should assume ℓ ranges from 0 to ℓ , m from −ℓ to max ℓands=0,±2. Theindexk rangesfrom−k tok ,unless max max ℓ<k ,inwhichcasetherangeisthesameasform. max 3.1 Definitionofthepseudo-C spectra ℓ Beforewecangofurtherwemustdefinesomemoremathe- maticalconstructs.Thefirstisthe“hitcube”,W(ω)≡ δ(ω− We wish to define a two-point statistic that contains the relevant j ωj),whichdescribeswhichskypositionstheexperiment hasob- information from the TOD and which can also be related to the served, and in which orientations. W(ω) isdefined onPthe space powerspectradefinedinequation(6)viaacouplingmatrix.Asthe running from0toπ inθ andfrom0to2π inbothφandψ.The quantityTmℓk containsallof theinformationpresent intheTOD, infinitesimalvolumeelementofthisspaced3ω=sinθdθdφdψ. itmustthereforecontainalloftheinformationrequiredtorecover Theconvolutionoftheskywiththebeamt(ω)isacontinuous theCMBspectra.Wedefinethepseudo-Cℓspectraas functionwhichweonlyhavelimitedknowledgeof.Theknowledge wcuebhe.avFeorismdailclytawteedhbayvtehescanstrategy,orinthisformalismthehit C˜ℓkk′ ≡ Tmℓ∗kTmℓk′, (16) m X t(ω) = Dℓ∗ (ω)b∗ a , (11) mk sℓk sℓm sXℓmk 1 Specificallyweconsideraweightingfunctionthatopenlydependsonθ t˜(ω) = W(ω)t(ω). (12) andφ.Ourchoiceofnormalisedweightingfunctionforagivenskypixel t˜(ω)isafunctionwhichcontainsalloftheastrophysicalinforma- isn(p)=m(p)/Nhits(p),wherem(p)isthemaskappliedtopixelpand Nhits(p)isthenumberofhits thatpixel preceives inthescanstrategy. tionpresentintheexperiment.ItissimplyarewritingoftheTOD, WeightingaTODelementwithafactorof1/Nhits(p)isequivalenttothe whereeachelementisdecribedbyaδ-functionattherelevantori- weighttheelementreceiveswhenmakingabinnedmapandshouldnotbe entationω. consideredtobedownweightinghighsignaltonoiseregionsofthemap. 4 ChristopherG.R. Walliset al. whichcan becomputed directlyfromtheTOD.Theappropriate- the coupling operator that describes the contribution of each sky ness of this choice becomes clear when we write the Wigner D- spectrumCs1s2 toeachoftheC˜kk′,i.e.wecanwrite ℓ ℓ matricesintermsofthespinweightedspherical harmonics, from equation(3.10)inGoldbergetal.(1967): hC˜k1k1′i = Ok1k1′s1s2Cs2s3, (23) ℓ1 ℓ1ℓ2 ℓ2 4π ℓ2Xs2s3 Dmℓ k(φ,θ,ψ)= 2ℓ+1eikψ−kYℓm(θ,φ). (17) where, r WeseethatTmℓ0willbesimilartothea0ℓmcoefficientsofabinned Oℓk11ℓk21′s1s2 = b∗s2ℓ2k2bs3ℓ2k3Mkℓ11kℓ21′k2k3. (24) mapmadefromtheTODwhileTmℓ,±2willbesimilartothea±2ℓm kX2k3 coefficients.ThisisduetothefactthattheWignerD-matricesare Certainsymmetries can be used to reduce the number of M ma- decomposingthe3Dspace,ω,withbasisfunctionsovertheθand tricesrequiredtoevaluateequation(24).Thesesymmetries,which φdimensionswhicharethespinweightedsphericalharmonics. arederivedinAppendixC,are Mkℓ11kℓ21′k2k3 = Mkℓ1′1kℓ21∗k3k2, (25) 3H.e2rewCealaciumlattoinfigntdhaencoanuapllyitnicgeoxpperreastsoiornfortheC˜kk′ definedin Mkℓ11kℓ21′k2k3 = (−1)k2−k1+k3−k1′M−ℓ1kℓ12−∗k1′−k2−k3. (26) ℓ equation(16)intermsofthetrueskyspectraandacouplingmatrix thatdependsonlyonthescanstrategyandthebeam.Webeginby 3.3 RecoveringthetrueCMBspectra re-writingthedecompositionoftheTODusingequation(10)and thedefinitionofthewindowfunction.Wedothistoreplacethesum We are now in a position to obtain unbiased estimators for the overjwithanintegral, true CMB power spectra CℓXY defined in equation (6). We start bydefiningalargevectormadeupofthepseudo-C spectra,C˜kk′, Tmℓ11∗k1 = Dmℓ11k1(ωj)tjn(ωj) and another comprised of the truefull-sky spin spℓectra, Cℓss′ℓde- Xj finedinequation(21): Using th=ejdse2fiℓX2nmiti2oDkn2mℓ1o1fk1th(eωhj)itDcmℓu2b2∗ek2W(ω(jω)b)∗s=2ℓ2k2jaδs(2ωℓ2m−2ωn(jω)jw)e. CC˜ii == ((CC˜ℓℓ0000,,CC˜ℓℓ0022,,CC˜ℓℓ00−−22,,CC˜ℓℓ2222,,CC˜ℓℓ22−−22,,CC˜ℓℓ−−22−−22))TT. ((2287)) deducethat Eachofthesearevectorsoflength6(ℓ +1).Usingthesedefi- max P nitionswecanwriteouroverallcouplingmatrixequationas Tℓ1∗ = b∗ a Kℓ1ℓ2 , (18) m1k1 s2ℓX2m2k2s2ℓ2k2 s2ℓ2m2 m1k1m2k2 C˜i1 = Oi1i2Ci2. (29) whereinthelastlinewehaveintroducedthecouplingkernel, Xi2 Kℓ1ℓ2 ≡ d3ωDℓ1 (ω)Dℓ2∗ (ω)W(ω)n(ω). (19) WewritetheoverallcouplingoperatorOi1i2 explicitlyintermsof m1k1m2k2 m1k1 m2k2 the individual O-matrices of equation (24) in Appendix D. Once We are now in aRposition to calculate the coupling operator. We this operator has been calculated, equation (29) can be inverted startfromthedefinitionofC˜ℓk1k1′, to recover the true spin spectra Cℓss′, properly deconvolved for both the mask and the asymmetric beam. A further simple trans- C˜ℓk11k1′ ≡ Xm1 Tmℓ11∗k1Tmℓ11k1′ fthoermfiantaiolne,stwimhiacthesisofextphleicsiitxlypwosrsititbelnedCoMwBnipnoAwperpesnpdeicxtrEa,,CyiℓXelYds. = b∗ a Kℓ1ℓ2 Note that, as with normal pseudo-Cℓ estimators, in the presence m1 s2ℓ2k2 s2ℓ2m2 m1k1m2k2 of a severe sky cut, the matrix, Oi1i2 will be singular and must s2ℓX2m2k2 thereforebebinnedbeforeitcanbeinverted.Thisisstandardprac- s3ℓ3m3k3 ticewithpseudo-C powerspectrumestimators(Hivonetal.2002; × bs3ℓ3k3a∗s3ℓ3m3Kmℓ11ℓk31′∗m3k3. (20) Brown,Castro,&Tℓaylor2005). IfwenowassumethattheCMBtemperatureandpolarizationfluc- tuationsareGaussiandistributedwithisotropicvariance, thenwe canwritehasℓma∗s′ℓ′m′i=Cℓss′δℓℓ′δmm′ wherewehavedefined 3.4 Includingnoise Cℓss′ = 2ℓ1+1 asℓma∗s′ℓm. (21) Amnuystuaslesfoulbealgabolreithtomdfeoarlrwemithoviinnsgtruthmeeenftfaelctnsooisfeb.eSaimncaesoyumrmalegtroy- m X rithmworkswithintheframeworkofthestandardpseudo-C tech- Usingthisresult,equation (20)simplifiesto ℓ nique,wecanuseexactlythesameapproachtoremovethenoise hC˜ℓk11k1′i = m1 b∗s2ℓ2k2Kmℓ11ℓk21′m2k2bs3ℓ2k3Kmℓ11ℓk21∗′m2k3Cℓs22s3 bTiOasDaesleismaednotpintecdluidnintghenositsaendcaarndbaenwalryitstiesn(aHsivonetal. 2002). A s2ℓX2m2k2 s3k3 tj = Dmℓ∗k(ωj)b∗slkaslm+nj. (30) = b∗s2ℓ2k2bs3ℓ2k3Mkℓ11kℓ21′k2k3Cℓs22s3, (22) sXlmk ss2X3ℓ2kk32 Ifweassumethatthenoiseisnotcorrelatedwiththepointingdi- rectionofthetelescopethen where,inthesecondstep,wehaveusedtheproductoftwocoupling kernels,Mkℓ11kℓ21′k2k3,derivedinAppendixB.Wecannowidentify (C˜ℓkk′)SN =(C˜ℓkk′)S+Nℓkk′, (31) Removing beamasymmetrybiasinCMB experiments 5 wheretheSNandSsuperscriptsdenotethesignal-plus-noiseand where we have used the orthogonality of the Wigner D-matrices thesignal-only pseudo-C spectrarespectively. Anunbiased esti- (Goldbergetal. 1967). Equation (37) shows that the asymmetry ℓ mate of the noise power spectra, Nkk′, can be obtained by per- willcoupletemperautretopolarizationeveninthecaseofanideal ℓ formingasetofsimulationscontainingonlyinstrumentnoiseand scanstrategy.Thiswastobeexpected,sinceboththeCMBpolari- calculatingC˜kk′ foreachasbeforeusingequation(16).Thenoise sationfieldandtheconvolutionofthetemperaturefluctuationswith ℓ biasisthenestimatedastheaverageoverthesetofnoiserealisa- thek = ±2termofthebeamarespin-±2quantities.Fromequa- tions,Nkk′ = hCkk′i.Thefinalestimatorforthefull-sky,noise- tions(33)and(34),theeffectonthemeasuredtheE-andB-mode ℓ ℓ polarisationis debiased and asymmetry-cleaned spin power spectra can then be writtenas 4π2 ∆Tℓ = − (b +b )a∗ and (38) Ci1 = O−i11i2(C˜i2 −hNi2i), (32) mE 2ℓ+1 0ℓ2 0ℓ−2 0ℓm wherehXNi2i2iisavectoroflength6(ℓmax+1)comprisedofallof ∆TmℓB = −i(24ℓπ+21)(b0ℓ2−b0ℓ−2)a∗0ℓm. (39) theindividualnoisebiasspectra,constructedinananalgousfashion For the coupling from temperature to B-mode polarisation to be toequations(27)and(28).Asbefore,thesixCMBpowerspectra non-zerointhiscase,thenb mustbecomplex.Thiswillonly 0ℓ±2 arethenrecoveredtriviallyusingtherelationinAppendixE. bethecaseifthebeamasymmetryisorientatedatanangletothe polarizationsensitivitydirectiondefinedbytheco-polarresponse, whichwillnotbethecaseingeneral. This result was first found by ?, where they examined sta- 4 IMPACTOFBEAMASYMMETRIESONCMB tistically varying systematic errors. A statistically varying dif- POLARIZATIONEXPERIMENTS ferential beam ellipticity between a detector pair would couple temperature to polarisation just as our constant ellipticity has. Withtheanaysisoftheprevioustwosectionsinplace,wecannow O’Dea,Challinor,&Johnson(2007)alsostudiedthesystematicer- examinetheeffectthatbeamasymmetrieswillhaveontheE-and rors induced when an elliptical Gaussian beam is used in a B- B-modepolarizationpowerspectra.Webeginbynotingagainthat mode experiment. They considered a specific type of ellipticity: the Tℓ of equation (13) are closely related to the spin-2 har- m±2 onewherethebeamiseitherperturbed alongthedirectionofthe moniccoefficientsa ofQandU mapsconstructedfromthe ±2ℓm polarisation, or perpendicular to it. This type of perturbation has sameTOD.Inanalogywithequations(4)and(5),wecantherefore theuniquepropertyofhavingadecompositionwhereb isreal, definethefollowingE-mode-likeandB-mode-likelinearcombi- 0ℓ±2 andthereforesuchanasymmetrycannotcoupletemperaturefluc- nationsandtwo-pointcorrelationsoftheTℓ : m±2 tuationstoB-modefluctuations.AsO’Dea,Challinor,&Johnson Tℓ ≡ −1 Tℓ +Tℓ (33) (2007)shows,ifthebeamisperturbedinanyotherwaythanthis mE 2 m2 m−2 special case, then temperature fluctuations will be coupled to B- Tℓ ≡ −1(cid:16) Tℓ −Tℓ (cid:17) and (34) modefluctuationseven inthecaseof anidealscan strategy.This mB 2i m2 m−2 resultisinagreementwiththefindingsofShimonetal.(2008)who =⇒ C˜EE = 1 C˜(cid:16)22+C˜−2−2+(cid:17)C˜−22+C˜2−2 (35) alsoconsideredthecouplingbetweentemperatureandB-modepo- ℓ 4 ℓ ℓ ℓ ℓ larisationduetobeamasymmetryeffects. 1(cid:16) (cid:17) =⇒ C˜BB = − C˜22+C˜−2−2−C˜−22−C˜2−2 (36) ℓ 4 ℓ ℓ ℓ ℓ (cid:16) (cid:17) In Appendix A, we show that the quantities defined in equa- tions(33) and(34) aresimilartothe standard pseudo-C E- and ℓ B-modes defined in Brown,Castro,&Taylor (2005). These rela- tionscanthenbeusedtoinvestigatetheimpactofbeamasymme- 5 BEAMASYMMETRYCORRECTIONDURING triesand/oranon-zerocross-polarbeamresponsefunction. MAP-MAKING Of particular concern is the potential coupling between the temperature power spectrum and the B-mode polarization power In some cases, the approach to correcting for beam asymmetry spectrum. As the temperature power spectrum is known to be at presented in Section 3 will be sub-optimal. For example, in the least four orders of magnitude stronger than the B-mode power, casewhereonecorrectsforsignificanttemperature-to-polarization anycouplingbetweenthetwocouldbecatastrophicifnotproperly leakage, there will be a contribution to the error-bars on the re- accountedfor.Hereweshowhowthemostprominentasymmetric constructedpolarizationpowerspectraduetothesamplevariance modesofthebeamcanpotentiallycreatesuchacoupling. associatedwiththeleakedtemperaturesignal.Inaddition,forpo- As described in Section 6 (see Figs. 1 and 2), the k = ±2 larizationexperimentsthatdonotmeasureQandUsimultaneously modeisbyfarthemostprominentasymmetrictermfortherepre- inthetime-stream,theB-modepowerspectrumerrorswillbeaf- sentativebeamsthatweconsiderlaterinthispaper.Toexaminethe fectedbythesamplevarianceassociatedwiththemuchlargerE- impactofthek = ±2asymmetry, weconsider asituationwhere modepolarisation.Atechniquethatcorrectsforbeamasymmetry all possible orientations are observed, i.e. where W(ω)n(ω)=1, atthemaplevelwillbeimmunetotheseissuesandisthereforean forthenormalisationdescribedinsection2.Inthiscase,thecon- attractiveprospect.Here,wedevelopsuchamethodtocorrectfor tributiontoTℓ∗ fromthetemperaturefluctuationsis beamasymmetryeffectsduringthemap-makingstep. m±2 Webegin by recallingthat the convolution of the sky signal Tmℓ∗±2 = b∗0ℓ′k′a0ℓ′m′ d3ωDmℓ ±2(ω)Dmℓ′∗′k′(ω) withageneralbeamisgivenbyequation(11).Inanexperimenta ℓ′Xm′k′ Z telescopewillscanthesky,givingusasetofmeasurementsofthis 8π2 functiont(ω).Foreachpixelontheskywethereforehaveasetof = 2ℓ+1b∗0ℓ±2a0ℓm, (37) measurementsatvariousorientations. 6 ChristopherG.R. Walliset al. 5.1 Extractingthetemperatureandpolarisationofapixel cancalculatethetemperatureandpolarisationofthepixelfromthe inverseFouriertransformoftheestimatedS˜ as Thisdiscussionisconcerned withestimatingthetemperatureand k polarisationsignalatthepositionofasingleskypixel.Thedetected T = S˜ , (43) 0 signalatthepositionofapixelSwilldependontheinstrumentori- Q = 2ℜ(S˜ ), (44) 2 entationatthetimeofobservationψduetothepolarisationofthe U = 2ℑ(S˜ ). (45) skyandthebeamasymmetry.Ifthebeamwasaxisymmtricandhad 2 no polarised response then S(ψ) would be constant and equal to Performingthisprocedureforallobservedpixels,wewillthenhave thebeam-smoothedCMBtemperatureatthepixellocation.2This estimatesoftheT,QandUmapswhicharefreeofsystematicsthat can be seen from equation (11) by setting bsℓk=b0ℓ0δk0δs0 and haveadifferentspintoourdesiredquantity.Notewewillhavenot noticingthattheψdependenceoft(ω)comesfromtheWignerD removedsystematicsthathavethesamespin.Specificallythecou- matrices.ForapolariseddetectorS(ψ)wouldthencontaink=±2 plingfromtemperaturetopolarisationduetotheasymmetryinthe Fouriermodes,duetothespin-2natureofpolarisation.Thisprop- beamdiscussedinSection4willstillcontaminateourestimatesof ertyisexploitedbymap-makingalgorithmstofindthetemperature QandU.Wewillconsiderthisprobleminthefollowingsubsec- andpolarisationofapixel.Inthesealgorithmstheψdependenceof tion.AsweshowinthesimulationtestsinSection8therewillbea thedetectedsignalisassumedtobeduetothepolarisationsignal. noisepenaltyassociatedwiththiseffectivere-weightingofthedata. Here, we relax this assumption and develop a map-making algo- Forthisreasonk shouldbeaslargeasitneedstobetocapture max rithmthatprovidesestimatesofthetemperatureandpolarisationof alltheasymmetryinthebeambutnolargerasthiswillincreasethe apixelthatarefreeofsystematicsofdifferentspins. noiseinthemap. We represent the orientations at which a pixel is seen in an Thismethod issimilar tothe re-weighting of the data tore- experimentbydefiningawindowfunctionh(ψ)≡ 1 δ(ψ− movesystematicsofdifferentspinpresentedinBocketal.(2009). nhits j ψj),wherenhits isthenumber of hitsonthepixel.h(Pψ)willbe NotehoweverthatinBocketal.(2009)studysuggestsdescarding differentforeachpixelandwillbedependantonthescanstrategy. (ordownweighting)alldatathatdoesnothavea”counterpart”that ThedetectedsignalSd(ψ)istherefore couldbeusedtoaveragesystematicstozero.Forexample,aspin- 1systematiccanberemovedifeveryTODelementhasacounter Sd(ψ)=h(ψ)S(ψ). (40) part where the pixel was hit with ψ orientation π away from the InFourierspace3thismultiplicationtakestheformofaconvolution first.Conversely, themethodweproposeinthispapercanuseall ofthedatatocharacterisethespin-1systematicandremoveit. ∞ S˜kd = Hkk′S˜k′, (41) k′X=−∞ 5.2 Removingtheleakagefromtemperaturetopolarisation wherewehavedefinedHkk′≡h˜k−k′.Therefore, ifwecaninvert thematrixHkk′ thenwecanrecoverthetrueS˜k.Recoveringthe WeshowedinSection4thattheasymmetryofthebeamwillleak spin-0 and spin-2 features of S(ψ) isthe main goal of this work temperaturefluctuationstopolarisationregardlessofthescanstrat- sincethesearetheCMBtemperatureandpolarisationofthepixel. egy.Thisisduetothespin-2dependenceofthetemperatureofthe Therefore,wewouldliketoobtainestimatesforS˜ andS˜ . CMBconvolvedwiththek=±2modeofthebeamresponsefunc- 0 ±2 Inverting the matrix Hkk′ as it is written in equation (41) tion. The polarisation maps made using the map-making method wouldbeimpossible:firstlyitisinfinitelylarge,andsecondlyfor describedabovewillstillcontainthisspin-2leakagefromtemper- any realistic h(ψ) the matrix will be singular.4 However, if we aturetopolarisation.However,sinceweknowthatthisleakageis maketheassumptionthatS˜ cutsoffatasmallvalueofk andif fromthetemperaturefluctuationscouplingtothek=±2asymme- k max theψanglecoverageofthatpixelissufficentsuchthatthisreduced tryinthebeam,andsincewealsonowhaveanunbiasedestimate matrixisinvertiblethenwecanusetheapproximation, ofthetemperaturemap,wecanthereforecalculateandremovethis leakage. kmax Westartfromtheestimatedtemperaturemap.Ifwehaveob- S˜k = Hk−k1′S˜kd′. (42) servedonlypartoftheskyitisnecessarytoapodisethemapsuch k′=X−kmax thattherearenofeaturesduetothemaskthataresmallerthanthe We can choose k by measuring the azimuthal dependence of beamscale.Wethentakethesphericalharmonictransformofthis max thebeamandensuringthatweincludeenoughk-modestocapture map, alloftheFouriermodesinS(ψ).Asinthecaseofthepseudo-C ℓ approach (Section 3), the kmax should chosen so that the asym- a˜0ℓm = dΩ0Yℓ∗m(Ω)T˜(Ω). (46) metryofthebeamisfullycaptured.Wereturntothisissueinthe Z followingsectionwhereweexaminetheharmonicdecomposition Wecannowcalculatethepolarizationleakageusingequations(38) ofsomerepresentativeasymmetricbeams. and (39). Onecan show that thespherical harmonic transformof AdoptingtheHEALPix5definitionoftheStokesparameters,we thetemperatureleakageisgivenby b ∆aE = 2ℜ 0ℓ2 a˜ , (47) ℓm b 0ℓm 2 Thedectectedsignalforapixeliisrelatedtoourpreviousnotationby (cid:18) 0ℓ0(cid:19) Si(ψ)=t(ψ,θ=θi,φ=φi) ∆aB = 2iℑ b0ℓ2 a˜ . (48) 3 WedefinetheFouriertransformoff(ψ)andtheinversetransformtobe ℓm b 0ℓm 4f˜kN=ote21πthaRt02“πredalψiseti−c”ikiψnfth(iψsc)oanntdexft(eψxp)li=citPlye∞kx=c−lu∞deseitkhψecf˜aks.eofanideal Upontransforming(cid:18)ba0cℓk0(cid:19)torealspace,thesetermscanthenbere- scanstrategyforwhichh(ψ)=1. moved from the polarisation maps. Note that the regions within 5 Seehttp://healpix.sourceforge.net a beam-scale of the locations where the temperature map was Removing beamasymmetrybiasinCMB experiments 7 -40 -30 -20 -10 0 -40 -30 -20 -10 0 -40 -30 -20 -10 0 B(x,y)/dB R(x,y)/dB |B(x,y)-R(x,y)|/dB 222 222 222 111 111 111 s s s e e e e e e gr 000 gr 000 gr 000 e e e d d d y/ y/ y/ ---111 ---111 ---111 ---222 ---222 ---222 ---222 ---111 000 111 222 ---222 ---111 000 111 222 ---222 ---111 000 111 222 x/degrees x/degrees x/degrees Figure1.Leftpanel:Thesimulatedbeamofa17modedhornplannedtobeonboardtheLSPEballoonexperiment.Centrepanel:thereconstructionofthe beamretainingonlymodeswithk=0,±2.Rightpanel:Theabsoluteerrorbetweenthesimulatedbeamandthereconstruction. aposidedshouldbedisregardedastheleakagewillnothavebeen resultsinacomplicated and potentiallyasymmetricoverall beam removedintheseregions. shape.Notethatthenumericalsimulationusedhereisofthehorn onlyandasimplescalingoftheoverallbeamsizehasbeenapplied toroughlyapproximatetheeffectofthetelescopelens. 6 EVALUATINGTHEPARAMETERk FORA We note that the LSPE experiment will also include a half- max TEMPERATUREONLYEXPERIMENT waveplate(HWP)infrontoftheopticswhichwillbeusedtoin- creasethepolarizationanglecoverageoftheexperiment.However, Both the pseudo-Cℓ technique and the map-making approach for forthepurposesofthisdemonstration,weconsideratemperature- removingbeamasymmetriesrequireustoimposeacaponthehar- onlyexperimentandwethereforeignoretheeffectoftheHWP. monic expansion of the beam, kmax. We now look at a realistic Upon performing the spin-0 decomposition of the beam, set up for a CMB experiment in order to ascertain how large the (equation8),wefindthatonlyafewazimuthalmodesarerequired requiredkmaxislikelytobeforrealexperiments.Wemakenoas- toaccuratelymodelwhatmightbeconsideredaratherasymmetric sumptiononthescanstrategy.However,beamshapesaregenerally beam.Fig.1showstheoriginalsimulatedbeamalongsidearepre- designed to be as axisymmetric as possible. We expect therefore sentationofitretainingonlythetwomostsignificantmodes(k=0 that the beam expansion can be truncated after only a few terms andk=±2)ofthedecomposition.Themajorfeaturesofthebeam with minimal loss of accuracy. We note that the pseudo-Cℓ cor- asymmetry are clearly well captured using this heavily truncated rectiontechnique caninprinciplebeappliedforanykmax thatis expansion.Wethereforechoosetosetk =2.Thebeamsshown max deemed necessaryinorder toachieve therequiredaccuracy. This hereareinvariantwhenrotatedbyπ,thereforetheoddazimuthal will come with the obvious computational cost of increasing the terms will be zero. Explicitly the truncated decomposition of the numberofsummationsrequiredtoevaluateequation(24).Incon- beamcanbewrittenas(nowwritingb =b etc.forclarity) 0lk lk trast,forthemap-makingapproach,therewillbesomemaximum valueofkmax forwhichthematrixHkk′ ofequation(42)willbe blk =bl0δk0+bl+2δk,+2+bl−2δk,−2. (49) invertible.Wealsonotethatincreasingk willincreasethesta- max InFig.1wealsoshowtheresidualsbetweenthefullbeamandthis tisticalerror on therecovered map. It should thereforebe chosen representationwhichisseentobeagoodapproximation. Wecan to be only as largeas isrequired by the asymmetry in the beam. immediatelyseefromequation(22)thatthiswillgreatlysimplify Inpractice,whetherthemap-makingapproachwillbeappropriate thepseudo-C couplingmatrixcalculationbylimitingthesumover ℓ for any given experiment will depend on both the complexity of k andk toonlyincludethek ,k =0,±2modes. 2 3 2 3 thebeamasymmetryandonthepolarizationanglecoverageofthe WealsoexamineageneralellipticalGaussianbeamdescribed experiment. by 6.1 Beamdecompositionsforsomerepresentativecases B(θ,φ)= 2π1qσ2e−2θσ22(cos2φ+q−1sin2φ), (50) As a demonstration of how a realistic and asymmetric beam where q is a parameter that defines the asymmetry of the beam can be represented using just a few k-modes, we consider a and the full with at half maximum (FWHM) θ = 2.35σ. FWHM numerical simulation of an instrumental beam corresponding to If q=1 then the beam is axisymmetric. To test the expansion we the multi-moded 145 GHz feed horns planned to be flown on- choose θ =7 arcmin and q=1.5, which represents a highly FWHM boardtheballoon-borneLargeScalePolarisationExplorer(LSPE, ellipticalbeam,significantlymoreellipticalthanonemightexpect TheLSPEcollaborationetal. 2012). By coupling 17 wave-guide inarealCMBexperiment.Thissimulatedbeamthereforeprovides modes,thesensitivityofasingleLSPEhorn+detectormoduleis a stringent test of our correction algorithms. We plot the spin-0 greatlyincreased.However,thelargenumberofpropagatedmodes decompositionofthisbeaminFig.2.Itisencouragingtoseethat 8 ChristopherG.R. Walliset al. Howeverinthecasewherethepowerinthemaskextendsto highℓthesecrossspectratermscanbecomesignificant.Thisresults inasignificantcontributiontotheoperatorbyatermoftheform b∗ b Mℓ1ℓ2 ,wherek 6=k .Thisadditionalcontribution 0ℓ2k2 0ℓ2k3 00k2k3 2 3 couldpotentiallybelargerthanthek =k termif|b |≫|b |. 2 3 0ℓk2 0ℓk3 |bLk|2 The 7 TESTINGTHEPSEUDO-C ONSIMULATIONS ℓ Inthissection,wedemonstratetheimplementationofthepseudo- C techniquedeveloped inSection3onnumerical simulationsof ℓ tworepresentativetypesofCMBexperiment–agenericballoon- borneexperiment andafuturesatellitemission.Notethatwetest theperformanceofthealgorithminthetemperature-onlycase.The Figure2.Theamplitudesofthek=0,2,4,6,8,10termsofthebeamex- implementationofourtechniqueforpolarizationexperimentswill pansion,|bℓk|2,asafunctionofmultipole,ℓforanellipticalGaussianbeam bepresentedinafuturepaper.Foratemperature-onlyanalysis,the asdefinedinequation(50)withσ=3arcmincorespondingtoaθFWHM=7 couplingisreducedto arcminandellipticityparameter,q=1.5. C˜00 = O0000C00 with, (53) ℓ1 ℓ1ℓ2 ℓ2 Xℓ2 onceagain,wecandescribethebeamasymmetryusingarelatively O0000 = b∗ b Mℓ1ℓ2 (54) smallnumberofterms. ℓ1ℓ2 0ℓ2k2 0ℓ2k3 00k2k3 kX2k3 Themainstagesofthesimulationpipelineareasfollows: 6.2 Usingthenoisepowertosetk inatemperatureonly max (i) WeusetheHEALPixpackagetocreatesimulationsoftheCMB experiment temperaturefieldbasedonthetheoreticalCMBpowerspectrumfor Fromtheabovedemonstration,itappearsthatonlyasmallnumber theconcordanceΛCDMcosmologicalmodel. oftermsintheharmonicexpansionofthebeamneedtoberetained (ii) WethencreateaTODbyconvolvingtheCMBwiththetele- inordertocapturetheglobalfeaturesofthebeamresponseinclud- scopebeamintheappropriateorientationgiventhescanstrategy. ingtheeffectsofasymmetry. (iii) WethencalculatetheC˜ℓ00usingequation(16). However,tobetrulyconfidentthatthetruncatedexpansionis (iv) Thecouplingoperatoriscalculatedusingtheexpressionin anaccurateenoughrepresentationofthebeam,onewouldideally equation(54). choosethevalueofkmaxsuchthattheanyresidualerrorfrommis- (v) WiththeoperatorOℓ010ℓ020 calculated,wetheninvertittore- representingthebeamissmaller(tosometolerancelevel)thanthe cover an estimate of the full-sky and beam-deconvolved power statisticalerror inanexperiment. Foraparticularasymmetricex- spectrum. pansiontermtheleadingordercontributiontoC˜00is∼|˜b |2C00, ℓ 0ℓk ℓ Notethatweusetwodifferentconvolutioncodesforthetwo where˜b0ℓk=b0ℓk 2ℓ4+π1.Thereforewecansaythattheasymmet- classes of experiment that we simulate. For the balloon-like test rictermshouldbeqincludedif we calculate each element of the TOD using equation (10). The HEALPixROTATEALMSroutineoperatesonthebeammultipoleco- hpkipix|˜b0ℓk|2Cℓ00 >fhNℓ00iσ, (51) efficients. Thisfunction uses the Wigner D-matricesto rotatethe wheref isatoleranceleveltowhichwerequireoursystematicer- beamcoefficientsbyasetofEuleranglesgivenoninput.TheTOD rorstobebelow thestatisticalerror.Areasonable choicemaybe elementcanthenbecalculatedusing, f=0.1,toensurethatthesystematicerroris10%ofthenoisesta- tisticalerror.hNℓ00iσ isthestandarddeviationofthenoisepower, tj = bjlm∗alm, (55) lm seeequation(31),whichisthedominatingsourceofstatisticalerror X athighℓ.Thetermhp i isthekthmodeoftheψanglecoverage wherebj∗ isthemultipoleexpansionofthebeamwhenithasbeen k pix lm qualityofthescanstrategydefinedas rotatedthroughtheEuleranglesωj.InthiswaythewholeTODcan becreated.Whilethisisaccurateandsimpleitwouldbeimpossible 2 hp i = 1 eikψi , (52) tousethisapproachinthesatellite-likeexperimentasthenumber k pix *n2hits (cid:12)(cid:12)(cid:12)Xi (cid:12)(cid:12)(cid:12) +pix toifonTaOllDyienlfeemaseinbtlse.aTnodctrheeatreetqhueirseidmuℓmlaatexdwToOuDldimnathkeesiatteclolmitep-ulitkae- wherehipix denote(cid:12)(cid:12)sanaverag(cid:12)(cid:12)eoverallpixelsonthesky,nhits is case,weuseamethodsimilartotheFEBeCoPapproach(Mitraetal. thenumberofhitsapixelreceivesandthesumovertheindexiis 2011)exceptthatdonotcalculatetheeffectivebeamsbutratherwe over allobservations of aparticularpixel.Thelower thevalueof producetheindividual TODelements. Theconvolution issimpli- hpkipix,thebetterthescanstrategyisatremovingthebiascreated fiedbydescribingthebeaminpixelspaceandweonlycalculatethe bythebeamasymmetryduetothekthazimuthalmode. valueofthebeamonasetofneighbouring pixelscentredaround Theruleofthumbinequation(51)becomesproblematicwhen thepointingcentreof thebeam. Weusepixelswithin5σq of the theskycoverageissmallandinthepresenceofahighlyasymmet- centreofthebeam(seeequation50)todescribethebeamoverthis ricbeamduetocouplingbetweenasymmetrictermsofdifferentk. localisedregionofsky. This coupling is suppressed in the all-sky case because the cross A second technical challenge was to obtain the Wigner D- spectraWkℓ2k3 aresmallfork26=k3,whichinturnmeansthecou- matrix transforms of the TOD and the window function. We plingmatrixMℓ1ℓ2 issmall. achieved this by implementing equations (13) and (14) using the 00k2k3 Removing beamasymmetrybiasinCMB experiments 9 expression for the Wigner D-matrix in terms of spin weighted spherical harmonics (equation 17). First, the integral over ψ was performed using a simple Newton-Cotes numerical integration method.TheHEALPixroutineMAP2ALMSPINwasthenusedtoper- formtheintegralsoverθandφ. 7.1 Balloon-likeexperiment ForourfirsttestweusethesimulatedLSPEbeamshowninFig.1 withamodification.Wegreatlyamplifythesizeoftheasymmetry in order to produce a more stringent test of the asymmetry cor- rection algorithm. The spherical harmonic decomposition of this exaggerated beam is related to the original LSPE decomposition by Figure4.Reconstructionofthepowerspectrumfortheballoon-likesimu- bexagg =bLSPEδ +bLSPEδ ×100. (56) lationusingthepseudo-Cℓ method.Theinputtheoreticalpowerspectrum 0ℓ,k 0ℓ,0 k0 0ℓ,±2 k±2 isplotted(black)alongwiththerecovered powerspectrum whentheex- WeusetheplannedscanstrategyforLSPEbutwestressthat agerratedbeamisused(red),averagedover1000realisations.Wealsoplot therecoveredpowerspectrumonewouldrecoveriftheaxisymmetricMAS- wehavenotincludedtheeffectsofthehalf-waveplate(HWP)that TER(Hivonetal.2002)analysiswasused(blue)andifthenoisewasig- LSPEwilluse. TheLSPEexperiment willincorporateaHWPin nored(yellow).Theverticalerrorbarsshowthestandarddeviationofthe frontoftheopticswhichwillbeusedtoincreasethepolarization realisationsfromthemean. angle coverage of the experiment. However, for the purposes of this demonstration where we consider a temperature-only exper- iment, we have ignored the (advantageous) effects of the HWP. σ=3 arcmin corresponding to a FWHMof 7 arcmin and q=1.5. LSPEwillbelaunchedatalatitudeof780Northandwillfollowa Thescanstrategyusedissimilartothatproposed for theExperi- jet stream around the globe staying at roughly the same latitude. mentalProbeofInflationaryCosmology(EPIC,Bocketal.2009). The payload will spin at 3 rpm and the telescope will perform In Fig. 5 we show the hit map, the p quality (equation 52) and constant allevation scans with regular (§daily) steps in elevation 2 theweightingfunctionthatwehaveusedtomaskthegalaxyand (TheLSPEcollaborationetal.2012). extragalactic sources. We use the same mask as was used by the We created a set of TOD following the above procedure in- Planck collaboration (PlanckCollaborationetal. 2013b) for their cludingwhitenoise.TheLSPEscanstrategycovers∼25%ofthe powerspectrumanalysis.Theweightingfunctionalsoapodisesthe skyandsoprovidesatestofthealgorithm’sabilitytoaccountfora hitmap.NotethattheEPICscanstrategywasdesignedtoimprove cutskyinadditiontotheeffectsofbeamasymmetry.Fig.3shows the2nd ψ coveragequalitydefinedinSection6.2.Thischoiceof anexampleofasimplebinnedmapcreatedfromoneofoursimu- scanstrategywillthereforebeeffectiveinmitigatingbeamasym- lations.Thisfigurealsoshowsthehitmapofthescanstrategy,the metriesevenintheabsenceofadedicatedcorrectionalgorithm.We 2ndψcoveragequalityp definedinSection6.2andtheweighting 2 thereforeexpectthebias,intheabsenceofadedicatedcorrection, functionthatweusetoapodisethehitmap.Weincludean(unre- tobemuch smallerthan seenintheprevious section (although it alisticallyhigh)noiselevelof1.6mK-arcmininoursimulationsin will still be non-zero). The mean recovered power spectra using order to test the removal of noise bias from the recovered power k =0,2areshowninthetoppanel ofFig.6.Thelowerpanel spectrum. max ofthisfigureshowsthefractionalresidualbiasinthepowerspec- The C˜00 for 1000 realisations were computed according to ℓ trumrecoveryanddemonstratesanunbiasedresulttohigh-ℓwhen equation(53)andthecouplingoperatorwascalculatedusingequa- k =2isused.Thesesimulationsincludedwhitenoisesuchthat tion(54).Inordertoinvertthecouplingmatrixweneededtobinthe max the error on the map is equivalent to 8.5µK-arcmin. We can see C˜00andthecouplingoperator,asinHivonetal.(2002).Thisbin- ℓ thatevenwithascanstrategydesignedtooptimisecrossingangles ningensuresthatthematrixisinvertibleandthattheresultingdata andtherebyreducetheasymmetrybias,thereremainsabiasatthe pointsareuncorrelated.Hereweuseabinsizeof∆ℓ=20.Acorrec- levelof∼1−2σwhentheaxisymmetricapproximationismade. tionfornoisebiaswasalsoimplementedfollowingtheprocedure The importance of this test is two-fold. It demonstrates that outlinedinSection3.4.Fig.4showsthemeanpowerspectrumre- the algorithm can deal with a more conventional elliptical Gaus- coveredfromthesimulationsincomparisontotheinputspectrum. sian beam and also that it can be extended to high-ℓ. The cou- In this figure, we also plot the mean power spectrum recovered plingoperatorwascalculatedin9hrsonone2.26GHzprocessor whenthebeamwasassumedtobeaxisymmetric,byincludingonly toℓ = 4000. Wecalculated the coupling operator to amuch the b term on the pseudo-C . This figureclearly demonstrates max 0ℓ0 ℓ higherℓthanthemaximummultipoleofinteresttoensurethatwe thatouralgorithmcansuccessfullyrecoverthepowerspectrumin did not miss any effects from the aliasing of power from higher asituationwheretheaxisymmetricapproximationclearlyfails.The multipoles. power spectrumobtainedinthecasewherethenoiseintheTOD was ignored is also shown demonstrating the ability of our algo- rithmtosuccessfullycorrectfornoisebias. 8 TESTINGTHEMAP-MAKINGALGORITHMON SIMULATIONS 7.2 Satellite-likeexperiment Wetest the map-making algorithm described inSection 5 in two Thesecondtestthatweperformisusingasatellite-likescanstrat- ways. First, we use the algorithm on multiple realisations of the egy.Forthistest,weuseabeamdescribedbeequation(50)with samesimulatedexperimentasdescribedinSection7.2toshowthat 10 ChristopherG. R. Walliset al. Figure3. Topleft: Anexample binned mapmadeinthe balloon-like test. Theexaggerated beam was usedwith aspherical harmonic decomposition as describedinequation(56).Thescanstrategyimplementedistypicalofaballoonbasedexperiment.Topright:Thehitmapfromonedayofobservationsfor theballoon-likeexperiment.Bottomleft:Thep2quality,definedinequation(52),ofthescanstrategy.WenoteagainthataHWPwasnotincludedwhichis whythepolarizationanglecoverageispoorforthissimulation.Bottomright:Theweightingfunctionappliedtoapodisethehitmap. thealgorithmcancorrectlyremovetheasymmetrybiasonthetem- 8.1 Removingtheasymmetrybiasonthetemperaturepower peraturepowerspectrum.Thesecondtestisperformedonasingle spectrum noise-free full sky simulation of the satelliteexperiment. We use this latter simulation to test if the algorithm can successfully re- AsinSection7.2,wecreate48TODrealisationsusingthesatellite- movetheasymmetrybiasdirectlyfromthetemperatureandpolar- like scan strategy, and using an elliptical Gaussian beam with isationmaps.WedonotincludeaCMBpolarisationsignalinour θFWHM=7 arcmin and q=1.5 (see equation 50). As before, the TODand so asuccessful asymmetry correction algorithm should TODincludedwhitenoiseequivalenttoamapnoiselevelof8.5µK recoverazeropolarisationsignal. arcmin. From the simulated TOD, we then compute both a simple binnedmapandamapconstructedusingthealgorithmpresented in Section 5 with k =2. We then apply the same galactic and max point source mask to these maps as used in Section 7.2. A stan-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.