Mon.Not.R.Astron.Soc.000,1–18(2014) Printed17March2015 (MNLATEXstylefilev2.2) Removing beam asymmetry bias in precision CMB temperature and polarisation experiments 5 1 1⋆ 1 1 Christopher G. R. Wallis , Michael L. Brown , Richard A. Battye , 0 1 2 2 Giampaolo Pisano and Luca Lamagna r a 1JodrellBankCentreforAstrophysics,SchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL M 2DipartimentodiFisica,SapienzaUniversita`diRoma,PiazzaleAldoMoro5,00185Roma,Italy 6 1 Accepted2014XXXXXXX.Received2014XXXXXXX;inoriginalform2014XXXXXXX ] O ABSTRACT C Asymmetric beamscan create significantbias in estimates of the power spectra from CMB . experiments.Withthetemperaturepowerspectrummanyordersofmagnitudestrongerthan h theB-modepowerspectrumanysystematicerrorthatcouplesthetwomustbecarefullycon- p trolled and/or removed. Here, we derive unbiased estimators for the CMB temperature and - o polarisationpowerspectratakingintoaccountgeneralbeamsandgeneralscanstrategies.A r simpleconsequenceofasymmetricbeamsisthat,evenwithanidealscanstrategywhereevery t s skypixelisseenateveryorientation,therewillberesidualcouplingfromtemperaturepower a toB-modepoweriftheorientationofthebeamasymmetryisnotalignedwiththeorientation [ of the co-polarisation.We test our correctionalgorithm on simulations of two temperature- 2 onlyexperimentsanddemonstratethatitisunbiased.Thesimulatedexperimentsuserealistic v scan strategies, noise levels and highly asymmetric beams. We also develop a map-making 5 algorithmthatiscapableofremovingbeamasymmetrybiasatthemaplevel.Wedemonstrate 7 itsimplementationusingsimulationsandshowthatitiscapableofaccuratelycorrectingboth 0 temperature and polarisation maps for all of the effects of beam asymmetry including the 2 effectsoftemperaturetopolarisationleakage. . 1 Key words: methods: data analysis - methods: statistical - cosmology:cosmic microwave 0 4 back-ground-cosmology:large-scalestructureofUniverse 1 : v i X 1 INTRODUCTION fainter B-mode signal presents a much greater challenge for ex- r perimentalists,thoughthefirsttentativedetectionsofB-modepo- a The cosmic microwave background (CMB) has proved to be an larization on small scales are now being made through cross- incrediblyusefultoolfortestingcosmological models. TheCMB correlations (Hansonetal. 2013; PolarbearCollaborationetal. two-point correlation functions, or alternatively in Fourier space 2013). thepowerspectra,ofthetemperatureandpolarisationfluctuations TheE-modepowerspectrumisapproximatelytwoordersof areofparticular interest.Therehasbeen awealthofexperiments magnitudefainterthanthetemperaturepower spectrumwhilethe whichhavebeensuccessfulatcharacterisingtheCMBpowerspec- traandtheseobservationsareconsistentwiththestandardΛCDM B-modepowerspectrumisexpectedtobeatleast2ordersofmag- nitudefainterstill(Challinor2013).Thismeansthatinanyexperi- cosmological model (see e.g. PlanckCollaborationetal. 2013c). mentaimedatdetectingB-modes,systematiceffectsthatcouldpo- The temperature power spectrum is now extremely well charac- terised(PlanckCollaborationetal.2013a)andongoingandfuture tentiallycouplethetemperatureorE-modesignaltotheB-mode power spectrummust bestrictlycontrolled. Onesourceofpoten- experimentswillfocusoncharacterisingthepolarizationmoreac- tialerrorisanasymmetricopticalresponsefunction(i.e.theexper- curately. imentalbeam).DuringthedataanalysisforCMBexperiments,one The polarisation of the CMB, being a spin-2 field, can be oftenassumesthatthebeamisaxisymmetricsothatitseffectisto decomposed intocurl-free(E-mode) andgradient-free (B-mode) simply(andisotropically)smooththesky.Thisassumptioncanre- components. E-modes have been successfully detected and char- sultinabiasinsubsequentpowerspectrumestimatesif,asisoften acterised, and have helped to constrain cosmology (Kovacetal. thecaseinreality,thebeamisnotperfectlyaxisymmetric. 2002; Readheadetal. 2004; Montroyetal. 2006; Brownetal. 2009; Chiangetal. 2010; QUIETCollaborationetal. 2012). The AtpresentthishasnotbeencrucialinextractingCMBpower spectra,butwithincreasedsensitivityofinstruments,thisbiaswill beimportantforfutureexperiments. Currentlytherearethreeap- ⋆ E-mail:[email protected] proachesintheliteraturethatattempttodealwiththiseffect.The 2 ChristopherG.R. Walliset al. first is simply to quantify the systematic error on the cosmologi- modesproposedforfutureCMBsatelliteexperimentssuchasthose calparameterscausedbytheasymmetryandbesatisfiedthatthey describedinBocketal.(2009). are below the statistical uncertainty. This can be done by simu- Removingtheasymmetryatthemaplevelhastwomainben- latingan experiment’s full beam response (Mitraetal. 2011) and efits.Firstly,incontrasttothecaseofthepseudo-C approach,the ℓ propagatingtheerror(PlanckCollaborationetal.2013b).Thisap- polarisationpowerspectrumestimatorerrorbarsarenotaffectedby proach is effective as the error in the maps can be estimated. In thesamplevarianceofthetemperaturepowerspectrum.Secondly, their analysis the Planck team accounted for the effects of beam theresultingbias-freetemperatureandpolarisationmapscanalso asymmetry by finding the most suitable axisymmetric effective be used for science other than power spectrum estimation. Fore- beam transfer function to deconvolve the recovered power spec- groundscanberemovedafterthemap-makinghasbeenperformed trum. Any further asymmetry bias was shown to have little to meaningthatcurrentcomponent separationtechniquescanbeap- no effect on the science (PlanckCollaborationetal. 2013a). The plied. second method investigated attempts a full deconvolution of the The paper is organized as follows. We begin in Section 2 TimeOrderedData(TOD)fromaCMBexperimenttoremovethe where we present some basic definitions and develop the mathe- effect completely (Wandelt&Go´rski 2001; Challinoretal. 2000; maticalformalismonwhichouralgorithmsarebased.InSection3, Keiha¨nen&Reinecke2012).Theresultsofthismethodareencour- wepresent thepseudo-C based approach tocorrecting forbeam ℓ agingbutitisnotabletodealwithcertainunavoidablereal-world asymmetry.Section4discussesthepotentialimpactofbeamasym- complications. In particular when noise is added to the TOD the metries on CMB polarization experiments, if they are left uncor- deconvolutionnolongerworksforhighmultipoles.Inaddition,the rected.InSection5,wepresentatechniquetocorrectfortheeffects deconvolutiononlyworksiftheexperimentobservestheentiresky. ofbeamasymmetryinthemapdomain.Section6discussessome Thisisnotasignificantproblemforsatellite-basedexperimentsbut detailsofthedecompositionofthebeamwhichisrequiredforboth for ground- or balloon-based experiments this will obviously not ofourapproaches.Wedemonstrateourtechniquesonsimulations bethecase. inSections7&8andourconclusionsarepresentedinSection9. A third approach is to calculate, and subsequently correct for, the asymmetry bias on the measured pseudo-C in an ex- ℓ periment (Ramamonjisoaetal. 2013; Souradeepetal. 2006). As 2 BASICDEFINITIONSANDPRELIMINARIES presentlyformulatedthisisunabletodeal withacut skywithout Ourobjectiveistoconstructestimatorsforthetemperatureandpo- apodisingtheazimuthaldependence ofthemask.Thisinturnre- larisationfluctuationpowerspectragivenaTOD.Weassumethat sultsinareductionofthecosmologicalinformationcontentofthe anynon-astrophysical signalsintheTODhavebeenflagged and, TODwhichissomethingthatwewouldliketoavoid.Inaddition, forthepseudo-C approach, thatforegroundshavebeenremoved ℓ theseauthorsassumethateachskypixelisseeninasingleorien- and/or masked. We consider an asymmetric beam and a general tationonly,whereas,ingeneral,experimentswillobserveeachsky scanstrategy.Webeginbydefiningsomerelevantquantities. pixelinanumberofdifferentorientations. The CMB temperature and polarisation fluctuations, In this paper, we present two methods to remove the effect ∆T(θ,φ),Q(θ,φ) and U(θ,φ), can be decomposed into spin- of asymmetry bias. The firstisan algorithm to recover theCMB weightedsphericalharmonics powerspectrausingthepseudo-C approach.Wemakenoassump- ℓ tions about the beam or the scan strategy indeveloping unbiased a0ℓm = dΩ0Yℓ∗m(Ω)∆T(Ω) and (1) estimators for the underlying CMB temperature and polarisation Z power spectra. We also show that noise can be easily accommo- a = dΩ Y∗ (Ω)[Q(Ω)∓iU(Ω)], (2) ±2ℓm ±2 ℓm dated.Thepseudo-Cℓ estimatorthatweproposeisbasedonacal- Z culation similar to one presented in Hanson,Lewis,&Challinor wheresYℓm arethespinweightedspherical harmonics.Thetem- (2010). Here, we extend the analysis to polarisation and demon- perature,E-modeandB-modeharmoniccoefficientsarerelatedto strate its implementation on simulated temperature-only experi- theseby ments.Sincetheestimatorworksdirectlyonthetimeordereddata aT = a , (3) (TOD),it is sub-optimal for polarization experiments that do not ℓm 0ℓm 1 directlymeasurebothQandU Stokesparametersinthetimeline aE = − (a +a ), (4) ℓm 2 2ℓm −2ℓm (e.g.viadetectordifferencing).Forsuchexperiments,theestima- 1 torwillperformthedecompositionintoQandU atthelevelofthe aB = − (a −a ). (5) ℓm 2i 2ℓm −2ℓm powerspectrumwhichwillcontributetothestatisticalerror.How- ever,thisestimatoriswellsuitedtoanexperimentsuchasPlanck Weareinterestedinobtainingunbiasedestimatesforthepowerand whichhas both instrument-Q andinstrument-U detector pairson crossspectraoftheCMBdefinedas itsfocalplane. ℓ 1 Inadditiontothepseudo-Cℓapproach,wepresentanewmap- CℓXY = 2ℓ+1 aXℓmaYℓm∗, (6) makingalgorithmthatiscapableofmakingtemperatureandpolar- mX=−ℓ isation maps cleaned of asymmetry bias. The map-making algo- whereX,Y={T,E,B}. rithmproducesmapscontainingtheskysignalsmoothedwithjust Theresponse of atelescope tothe Stokesparameters on the theaxisymmetriccomponentsofthebeamandnoise.Notethatthis sky(T,Q,U)canbedescribedbysomeresponse(beam)functions map-makingschemerequiresasuitablescanstrategy—ingeneral, (T˜,Q˜,U˜).Thetotaldetectedpoweris the more complex the beam asymmetry is, the more redundancy (in termsof polarization angle covereage) isrequired in the scan W ∝ (TT˜+QQ˜+UU˜)dΩ. (7) strategy. For the asymmetric beams that we have investigated in Z thispaper,thescanstrategyrequirementsarefullymetbyscanning For details of how polarised detectors respond to the CMB see Removing beamasymmetrybiasinCMB experiments 3 Challinoretal.(2000).OneelementoftheTODisthenthispower TheWignerD-matricesprovideacompleteorthogonal basis W integratedoverthetimeintervalbetweentwosamples.Wede- forthisspace,soweusethemtodecomposeboththeTODandthe finethespinweightedsphericalharmonictransformsofthebeam hitcubeas tobe Tℓ∗ = d3ωDℓ (ω)t˜(ω)n(ω) and (13) mk mk b0ℓk = dΩ0Yℓ∗k(Ω)T˜(Ω) and (8) Z 2ℓ+1 Z wℓ = d3ωDℓ∗ (ω)W(ω)n(ω). (14) b±2ℓk = dΩ±2Yℓ∗k(Ω)[Q˜(Ω)∓iU˜(Ω)], (9) mk 8π2 Z mk Z Here, we have introduced the weighting function n(ω), which whenthebeamispointinginthez-directioninafiducialorientation rangesfrom0to1.Weusethisfunctiontodown-weightnoisypix- suchthattheco-polarisationisalignedwiththey-direction.Note els,applyaforegroundmaskand/orapodisethehitcubesothatis thatthisformalismcandescribeallaspectsofadetector’sresponse canbedescribedwellwithinourexpansion.1Weusetheprefactor function.Forexample,wecanincludeboththeasymmetryofthe inequation(14)tocorrectlynormalisethecoefficientssothatwe beam and any cross-polarisation response. This will allow us to canwrite remove any bias that these beam imperfections would impart on W(ω)n(ω)= wℓ Dℓ (ω). (15) theestimatedpowerspectra. mk mk We truncate our expansion of both the beam and the sky at ℓXmk somemaximummultipole,ℓ .Wealsocaptheexpansionofthe Forthisreconstruction of thehit cube to beexact, one would re- max beaminkatsomemaximumvalue,kmax.Thisisareasonableap- quirektorangefrom−ℓtoℓ,notaswehaveherefrom−kmaxto proximationtomakeasbeamresponsefunctionsaretypicallyclose kmax.Thisisnotaproblemforourproposedtechniquessince,as toaxisymmetric.InSection6wewillexaminethisassumptionfor weshallseelater,weonlyneedtocapturethefeaturesintheψdi- somespecificcases.Thebeamisthenrotatedaroundtheskyina rectionwithFouriermodesuptosomekmax,thevalueofwhichis scan to measure the CMB. We describe this rotation using Euler determinedbythecomplexityofthebeamasymmetry.Thisisanal- anglesω=[φ,θ,ψ].Thisisreallythreeactiverotations.Theyare ogoustotheaxisymmetriccase,wheretorecoverthetemperature active as the beam moves with respect to the coordinate system. fluctuationpowerspectrumtheanalysisusesthehitmap,whichis Thefollowingseriesofstepsdescribehowtorotatethebeamfrom justthek=0Fouriermodeofthehitcube.Sowhilewecannotfully thefiducialorientationtotheorientationdescribedbyω,allrota- recoverthecompletehitcubewedorecoveritsimportantfeatures. tionsbeingperfomedanticlockwisewhenlookingdowntheaxisby whichtheyaredefined. 3 BEAMASYMMETRYCORRECTIONWITHINTHE (i) Thebeamisrotatedaroundthezaxisbyψ. PSEUDO-C FRAMEWORK (ii) Thebeamisrotatedbyθaroundtheyaxis. ℓ (iii) Thebeamisrotatedaroundthezaxisagainbyφ. In this section, we develop a technique to correct for the effects The Wigner D-matrix, Dℓ (ω), performs the required ro- of beam asymmetry within the framework of pseudo-Cℓ power mk spectrum estimators (Hivonetal. 2002; Brown,Castro,&Taylor tations on the spherical harmonic decomposition of a function. 2005). As described earlier, thisapproach to correcting for beam ThereforewecanwriteoneelementoftheTOD(tj)as asymmetries is well suited to experiments that can measure the tj = Dmℓ∗k(ωj)b∗sℓkasℓm. (10) Q and U Stokes parameters simultaneously in the timestream (e.g. differencing experiments). In Appendix A we show that for sℓmk X such an experiment the pseudo-C presented here is similar to For simplicity, in this paper, we only write the index which is ℓ thatofthestandardpseudo-C approach(Brown,Castro,&Taylor being summed over and not the ranges. For the rest of this pa- ℓ 2005). per one should assume ℓ ranges from 0 to ℓ , m from −ℓ to max ℓands=0,±2. Theindexk rangesfrom−k tok ,unless max max ℓ<k ,inwhichcasetherangeisthesameasform. max 3.1 Definitionofthepseudo-C spectra ℓ Beforewecangofurtherwemustdefinesomemoremathe- maticalconstructs.Thefirstisthe“hitcube”,W(ω)≡ δ(ω− We wish to define a two-point statistic that contains the relevant j ωj),whichdescribeswhichskypositionstheexperiment hasob- information from the TOD and which can also be related to the served, and in which orientations. W(ω) isdefined onPthe space powerspectradefinedinequation(6)viaacouplingmatrix.Asthe running from0toπ inθ andfrom0to2π inbothφandψ.The quantityTmℓk containsallof theinformationpresent intheTOD, infinitesimalvolumeelementofthisspaced3ω=sinθdθdφdψ. itmustthereforecontainalloftheinformationrequiredtorecover Theconvolutionoftheskywiththebeamt(ω)isacontinuous theCMBspectra.Wedefinethepseudo-Cℓspectraas functionwhichweonlyhavelimitedknowledgeof.Theknowledge wcuebhe.avFeorismdailclytawteedhbayvtehescanstrategy,orinthisformalismthehit C˜ℓkk′ ≡ Tmℓ∗kTmℓk′, (16) m X t(ω) = Dℓ∗ (ω)b∗ a , (11) mk sℓk sℓm sXℓmk 1 Specificallyweconsideraweightingfunctionthatopenlydependsonθ t˜(ω) = W(ω)t(ω). (12) andφ.Ourchoiceofnormalisedweightingfunctionforagivenskypixel t˜(ω)isafunctionwhichcontainsalloftheastrophysicalinforma- isn(p)=m(p)/Nhits(p),wherem(p)isthemaskappliedtopixelpand Nhits(p)isthenumberofhits thatpixel preceives inthescanstrategy. tionpresentintheexperiment.ItissimplyarewritingoftheTOD, WeightingaTODelementwithafactorof1/Nhits(p)isequivalenttothe whereeachelementisdecribedbyaδ-functionattherelevantori- weighttheelementreceiveswhenmakingabinnedmapandshouldnotbe entationω. consideredtobedownweightinghighsignaltonoiseregionsofthemap. 4 ChristopherG.R. Walliset al. whichcan becomputed directlyfromtheTOD.Theappropriate- the coupling operator that describes the contribution of each sky ness of this choice becomes clear when we write the Wigner D- spectrumCs1s2 toeachoftheC˜kk′,i.e.wecanwrite ℓ ℓ matricesintermsofthespinweightedspherical harmonics, from equation(3.10)inGoldbergetal.(1967): hC˜k1k1′i = Ok1k1′s1s2Cs2s3, (23) ℓ1 ℓ1ℓ2 ℓ2 4π ℓ2Xs2s3 Dmℓ k(φ,θ,ψ)= 2ℓ+1eikψ−kYℓm(θ,φ). (17) where, r WeseethatTmℓ0willbesimilartothea0ℓmcoefficientsofabinned Oℓk11ℓk21′s1s2 = b∗s2ℓ2k2bs3ℓ2k3Mkℓ11kℓ21′k2k3. (24) mapmadefromtheTODwhileTmℓ,±2willbesimilartothea±2ℓm kX2k3 coefficients.ThisisduetothefactthattheWignerD-matricesare Certainsymmetries can be used to reduce the number of M ma- decomposingthe3Dspace,ω,withbasisfunctionsovertheθand tricesrequiredtoevaluateequation(24).Thesesymmetries,which φdimensionswhicharethespinweightedsphericalharmonics. arederivedinAppendixC,are Mkℓ11kℓ21′k2k3 = Mkℓ1′1kℓ21∗k3k2, (25) 3H.e2rewCealaciumlattoinfigntdhaencoanuapllyitnicgeoxpperreastsoiornfortheC˜kk′ definedin Mkℓ11kℓ21′k2k3 = (−1)k2−k1+k3−k1′M−ℓ1kℓ12−∗k1′−k2−k3. (26) ℓ equation(16)intermsofthetrueskyspectraandacouplingmatrix thatdependsonlyonthescanstrategyandthebeam.Webeginby 3.3 RecoveringthetrueCMBspectra re-writingthedecompositionoftheTODusingequation(10)and thedefinitionofthewindowfunction.Wedothistoreplacethesum We are now in a position to obtain unbiased estimators for the overjwithanintegral, true CMB power spectra CℓXY defined in equation (6). We start bydefiningalargevectormadeupofthepseudo-C spectra,C˜kk′, Tmℓ11∗k1 = Dmℓ11k1(ωj)tjn(ωj) and another comprised of the truefull-sky spin spℓectra, Cℓss′ℓde- Xj finedinequation(21): Using th=ejdse2fiℓX2nmiti2oDkn2mℓ1o1fk1th(eωhj)itDcmℓu2b2∗ek2W(ω(jω)b)∗s=2ℓ2k2jaδs(2ωℓ2m−2ωn(jω)jw)e. CC˜ii == ((CC˜ℓℓ0000,,CC˜ℓℓ0022,,CC˜ℓℓ00−−22,,CC˜ℓℓ2222,,CC˜ℓℓ22−−22,,CC˜ℓℓ−−22−−22))TT. ((2287)) deducethat Eachofthesearevectorsoflength6(ℓ +1).Usingthesedefi- max P nitionswecanwriteouroverallcouplingmatrixequationas Tℓ1∗ = b∗ a Kℓ1ℓ2 , (18) m1k1 s2ℓX2m2k2s2ℓ2k2 s2ℓ2m2 m1k1m2k2 C˜i1 = Oi1i2Ci2. (29) whereinthelastlinewehaveintroducedthecouplingkernel, Xi2 Kℓ1ℓ2 ≡ d3ωDℓ1 (ω)Dℓ2∗ (ω)W(ω)n(ω). (19) WewritetheoverallcouplingoperatorOi1i2 explicitlyintermsof m1k1m2k2 m1k1 m2k2 the individual O-matrices of equation (24) in Appendix D. Once We are now in aRposition to calculate the coupling operator. We this operator has been calculated, equation (29) can be inverted startfromthedefinitionofC˜ℓk1k1′, to recover the true spin spectra Cℓss′, properly deconvolved for both the mask and the asymmetric beam. A further simple trans- C˜ℓk11k1′ ≡ Xm1 Tmℓ11∗k1Tmℓ11k1′ fthoermfiantaiolne,stwimhiacthesisofextphleicsiitxlypwosrsititbelnedCoMwBnipnoAwperpesnpdeicxtrEa,,CyiℓXelYds. = b∗ a Kℓ1ℓ2 Note that, as with normal pseudo-Cℓ estimators, in the presence m1 s2ℓ2k2 s2ℓ2m2 m1k1m2k2 of a severe sky cut, the matrix, Oi1i2 will be singular and must s2ℓX2m2k2 thereforebebinnedbeforeitcanbeinverted.Thisisstandardprac- s3ℓ3m3k3 ticewithpseudo-C powerspectrumestimators(Hivonetal.2002; × bs3ℓ3k3a∗s3ℓ3m3Kmℓ11ℓk31′∗m3k3. (20) Brown,Castro,&Tℓaylor2005). IfwenowassumethattheCMBtemperatureandpolarizationfluc- tuationsareGaussiandistributedwithisotropicvariance, thenwe canwritehasℓma∗s′ℓ′m′i=Cℓss′δℓℓ′δmm′ wherewehavedefined 3.4 Includingnoise Cℓss′ = 2ℓ1+1 asℓma∗s′ℓm. (21) Amnuystuaslesfoulbealgabolreithtomdfeoarlrwemithoviinnsgtruthmeeenftfaelctnsooisfeb.eSaimncaesoyumrmalegtroy- m X rithmworkswithintheframeworkofthestandardpseudo-C tech- Usingthisresult,equation (20)simplifiesto ℓ nique,wecanuseexactlythesameapproachtoremovethenoise hC˜ℓk11k1′i = m1 b∗s2ℓ2k2Kmℓ11ℓk21′m2k2bs3ℓ2k3Kmℓ11ℓk21∗′m2k3Cℓs22s3 bTiOasDaesleismaednotpintecdluidnintghenositsaendcaarndbaenwalryitstiesn(aHsivonetal. 2002). A s2ℓX2m2k2 s3k3 tj = Dmℓ∗k(ωj)b∗slkaslm+nj. (30) = b∗s2ℓ2k2bs3ℓ2k3Mkℓ11kℓ21′k2k3Cℓs22s3, (22) sXlmk ss2X3ℓ2kk32 Ifweassumethatthenoiseisnotcorrelatedwiththepointingdi- rectionofthetelescopethen where,inthesecondstep,wehaveusedtheproductoftwocoupling kernels,Mkℓ11kℓ21′k2k3,derivedinAppendixB.Wecannowidentify (C˜ℓkk′)SN =(C˜ℓkk′)S+Nℓkk′, (31) Removing beamasymmetrybiasinCMB experiments 5 wheretheSNandSsuperscriptsdenotethesignal-plus-noiseand where we have used the orthogonality of the Wigner D-matrices thesignal-only pseudo-C spectrarespectively. Anunbiased esti- (Goldbergetal. 1967). Equation (37) shows that the asymmetry ℓ mate of the noise power spectra, Nkk′, can be obtained by per- willcoupletemperautretopolarizationeveninthecaseofanideal ℓ formingasetofsimulationscontainingonlyinstrumentnoiseand scanstrategy.Thiswastobeexpected,sinceboththeCMBpolari- calculatingC˜kk′ foreachasbeforeusingequation(16).Thenoise sationfieldandtheconvolutionofthetemperaturefluctuationswith ℓ biasisthenestimatedastheaverageoverthesetofnoiserealisa- thek = ±2termofthebeamarespin-±2quantities.Fromequa- tions,Nkk′ = hCkk′i.Thefinalestimatorforthefull-sky,noise- tions(33)and(34),theeffectonthemeasuredtheE-andB-mode ℓ ℓ polarisationis debiased and asymmetry-cleaned spin power spectra can then be writtenas 4π2 ∆Tℓ = − (b +b )a∗ and (38) Ci1 = O−i11i2(C˜i2 −hNi2i), (32) mE 2ℓ+1 0ℓ2 0ℓ−2 0ℓm wherehXNi2i2iisavectoroflength6(ℓmax+1)comprisedofallof ∆TmℓB = −i(24ℓπ+21)(b0ℓ2−b0ℓ−2)a∗0ℓm. (39) theindividualnoisebiasspectra,constructedinananalgousfashion For the coupling from temperature to B-mode polarisation to be toequations(27)and(28).Asbefore,thesixCMBpowerspectra non-zerointhiscase,thenb mustbecomplex.Thiswillonly 0ℓ±2 arethenrecoveredtriviallyusingtherelationinAppendixE. bethecaseifthebeamasymmetryisorientatedatanangletothe polarizationsensitivitydirectiondefinedbytheco-polarresponse, whichwillnotbethecaseingeneral. This result was first found by ?, where they examined sta- 4 IMPACTOFBEAMASYMMETRIESONCMB tistically varying systematic errors. A statistically varying dif- POLARIZATIONEXPERIMENTS ferential beam ellipticity between a detector pair would couple temperature to polarisation just as our constant ellipticity has. Withtheanaysisoftheprevioustwosectionsinplace,wecannow O’Dea,Challinor,&Johnson(2007)alsostudiedthesystematicer- examinetheeffectthatbeamasymmetrieswillhaveontheE-and rors induced when an elliptical Gaussian beam is used in a B- B-modepolarizationpowerspectra.Webeginbynotingagainthat mode experiment. They considered a specific type of ellipticity: the Tℓ of equation (13) are closely related to the spin-2 har- m±2 onewherethebeamiseitherperturbed alongthedirectionofthe moniccoefficientsa ofQandU mapsconstructedfromthe ±2ℓm polarisation, or perpendicular to it. This type of perturbation has sameTOD.Inanalogywithequations(4)and(5),wecantherefore theuniquepropertyofhavingadecompositionwhereb isreal, definethefollowingE-mode-likeandB-mode-likelinearcombi- 0ℓ±2 andthereforesuchanasymmetrycannotcoupletemperaturefluc- nationsandtwo-pointcorrelationsoftheTℓ : m±2 tuationstoB-modefluctuations.AsO’Dea,Challinor,&Johnson Tℓ ≡ −1 Tℓ +Tℓ (33) (2007)shows,ifthebeamisperturbedinanyotherwaythanthis mE 2 m2 m−2 special case, then temperature fluctuations will be coupled to B- Tℓ ≡ −1(cid:16) Tℓ −Tℓ (cid:17) and (34) modefluctuationseven inthecaseof anidealscan strategy.This mB 2i m2 m−2 resultisinagreementwiththefindingsofShimonetal.(2008)who =⇒ C˜EE = 1 C˜(cid:16)22+C˜−2−2+(cid:17)C˜−22+C˜2−2 (35) alsoconsideredthecouplingbetweentemperatureandB-modepo- ℓ 4 ℓ ℓ ℓ ℓ larisationduetobeamasymmetryeffects. 1(cid:16) (cid:17) =⇒ C˜BB = − C˜22+C˜−2−2−C˜−22−C˜2−2 (36) ℓ 4 ℓ ℓ ℓ ℓ (cid:16) (cid:17) In Appendix A, we show that the quantities defined in equa- tions(33) and(34) aresimilartothe standard pseudo-C E- and ℓ B-modes defined in Brown,Castro,&Taylor (2005). These rela- tionscanthenbeusedtoinvestigatetheimpactofbeamasymme- 5 BEAMASYMMETRYCORRECTIONDURING triesand/oranon-zerocross-polarbeamresponsefunction. MAP-MAKING Of particular concern is the potential coupling between the temperature power spectrum and the B-mode polarization power In some cases, the approach to correcting for beam asymmetry spectrum. As the temperature power spectrum is known to be at presented in Section 3 will be sub-optimal. For example, in the least four orders of magnitude stronger than the B-mode power, casewhereonecorrectsforsignificanttemperature-to-polarization anycouplingbetweenthetwocouldbecatastrophicifnotproperly leakage, there will be a contribution to the error-bars on the re- accountedfor.Hereweshowhowthemostprominentasymmetric constructedpolarizationpowerspectraduetothesamplevariance modesofthebeamcanpotentiallycreatesuchacoupling. associatedwiththeleakedtemperaturesignal.Inaddition,forpo- As described in Section 6 (see Figs. 1 and 2), the k = ±2 larizationexperimentsthatdonotmeasureQandUsimultaneously modeisbyfarthemostprominentasymmetrictermfortherepre- inthetime-stream,theB-modepowerspectrumerrorswillbeaf- sentativebeamsthatweconsiderlaterinthispaper.Toexaminethe fectedbythesamplevarianceassociatedwiththemuchlargerE- impactofthek = ±2asymmetry, weconsider asituationwhere modepolarisation.Atechniquethatcorrectsforbeamasymmetry all possible orientations are observed, i.e. where W(ω)n(ω)=1, atthemaplevelwillbeimmunetotheseissuesandisthereforean forthenormalisationdescribedinsection2.Inthiscase,thecon- attractiveprospect.Here,wedevelopsuchamethodtocorrectfor tributiontoTℓ∗ fromthetemperaturefluctuationsis beamasymmetryeffectsduringthemap-makingstep. m±2 Webegin by recallingthat the convolution of the sky signal Tmℓ∗±2 = b∗0ℓ′k′a0ℓ′m′ d3ωDmℓ ±2(ω)Dmℓ′∗′k′(ω) withageneralbeamisgivenbyequation(11).Inanexperimenta ℓ′Xm′k′ Z telescopewillscanthesky,givingusasetofmeasurementsofthis 8π2 functiont(ω).Foreachpixelontheskywethereforehaveasetof = 2ℓ+1b∗0ℓ±2a0ℓm, (37) measurementsatvariousorientations. 6 ChristopherG.R. Walliset al. 5.1 Extractingthetemperatureandpolarisationofapixel cancalculatethetemperatureandpolarisationofthepixelfromthe inverseFouriertransformoftheestimatedS˜ as Thisdiscussionisconcerned withestimatingthetemperatureand k polarisationsignalatthepositionofasingleskypixel.Thedetected T = S˜ , (43) 0 signalatthepositionofapixelSwilldependontheinstrumentori- Q = 2ℜ(S˜ ), (44) 2 entationatthetimeofobservationψduetothepolarisationofthe U = 2ℑ(S˜ ). (45) skyandthebeamasymmetry.Ifthebeamwasaxisymmtricandhad 2 no polarised response then S(ψ) would be constant and equal to Performingthisprocedureforallobservedpixels,wewillthenhave thebeam-smoothedCMBtemperatureatthepixellocation.2This estimatesoftheT,QandUmapswhicharefreeofsystematicsthat can be seen from equation (11) by setting bsℓk=b0ℓ0δk0δs0 and haveadifferentspintoourdesiredquantity.Notewewillhavenot noticingthattheψdependenceoft(ω)comesfromtheWignerD removedsystematicsthathavethesamespin.Specificallythecou- matrices.ForapolariseddetectorS(ψ)wouldthencontaink=±2 plingfromtemperaturetopolarisationduetotheasymmetryinthe Fouriermodes,duetothespin-2natureofpolarisation.Thisprop- beamdiscussedinSection4willstillcontaminateourestimatesof ertyisexploitedbymap-makingalgorithmstofindthetemperature QandU.Wewillconsiderthisprobleminthefollowingsubsec- andpolarisationofapixel.Inthesealgorithmstheψdependenceof tion.AsweshowinthesimulationtestsinSection8therewillbea thedetectedsignalisassumedtobeduetothepolarisationsignal. noisepenaltyassociatedwiththiseffectivere-weightingofthedata. Here, we relax this assumption and develop a map-making algo- Forthisreasonk shouldbeaslargeasitneedstobetocapture max rithmthatprovidesestimatesofthetemperatureandpolarisationof alltheasymmetryinthebeambutnolargerasthiswillincreasethe apixelthatarefreeofsystematicsofdifferentspins. noiseinthemap. We represent the orientations at which a pixel is seen in an Thismethod issimilar tothe re-weighting of the data tore- experimentbydefiningawindowfunctionh(ψ)≡ 1 δ(ψ− movesystematicsofdifferentspinpresentedinBocketal.(2009). nhits j ψj),wherenhits isthenumber of hitsonthepixel.h(Pψ)willbe NotehoweverthatinBocketal.(2009)studysuggestsdescarding differentforeachpixelandwillbedependantonthescanstrategy. (ordownweighting)alldatathatdoesnothavea”counterpart”that ThedetectedsignalSd(ψ)istherefore couldbeusedtoaveragesystematicstozero.Forexample,aspin- 1systematiccanberemovedifeveryTODelementhasacounter Sd(ψ)=h(ψ)S(ψ). (40) part where the pixel was hit with ψ orientation π away from the InFourierspace3thismultiplicationtakestheformofaconvolution first.Conversely, themethodweproposeinthispapercanuseall ofthedatatocharacterisethespin-1systematicandremoveit. ∞ S˜kd = Hkk′S˜k′, (41) k′X=−∞ 5.2 Removingtheleakagefromtemperaturetopolarisation wherewehavedefinedHkk′≡h˜k−k′.Therefore, ifwecaninvert thematrixHkk′ thenwecanrecoverthetrueS˜k.Recoveringthe WeshowedinSection4thattheasymmetryofthebeamwillleak spin-0 and spin-2 features of S(ψ) isthe main goal of this work temperaturefluctuationstopolarisationregardlessofthescanstrat- sincethesearetheCMBtemperatureandpolarisationofthepixel. egy.Thisisduetothespin-2dependenceofthetemperatureofthe Therefore,wewouldliketoobtainestimatesforS˜ andS˜ . CMBconvolvedwiththek=±2modeofthebeamresponsefunc- 0 ±2 Inverting the matrix Hkk′ as it is written in equation (41) tion. The polarisation maps made using the map-making method wouldbeimpossible:firstlyitisinfinitelylarge,andsecondlyfor describedabovewillstillcontainthisspin-2leakagefromtemper- any realistic h(ψ) the matrix will be singular.4 However, if we aturetopolarisation.However,sinceweknowthatthisleakageis maketheassumptionthatS˜ cutsoffatasmallvalueofk andif fromthetemperaturefluctuationscouplingtothek=±2asymme- k max theψanglecoverageofthatpixelissufficentsuchthatthisreduced tryinthebeam,andsincewealsonowhaveanunbiasedestimate matrixisinvertiblethenwecanusetheapproximation, ofthetemperaturemap,wecanthereforecalculateandremovethis leakage. kmax Westartfromtheestimatedtemperaturemap.Ifwehaveob- S˜k = Hk−k1′S˜kd′. (42) servedonlypartoftheskyitisnecessarytoapodisethemapsuch k′=X−kmax thattherearenofeaturesduetothemaskthataresmallerthanthe We can choose k by measuring the azimuthal dependence of beamscale.Wethentakethesphericalharmonictransformofthis max thebeamandensuringthatweincludeenoughk-modestocapture map, alloftheFouriermodesinS(ψ).Asinthecaseofthepseudo-C ℓ approach (Section 3), the kmax should chosen so that the asym- a˜0ℓm = dΩ0Yℓ∗m(Ω)T˜(Ω). (46) metryofthebeamisfullycaptured.Wereturntothisissueinthe Z followingsectionwhereweexaminetheharmonicdecomposition Wecannowcalculatethepolarizationleakageusingequations(38) ofsomerepresentativeasymmetricbeams. and (39). Onecan show that thespherical harmonic transformof AdoptingtheHEALPix5definitionoftheStokesparameters,we thetemperatureleakageisgivenby b ∆aE = 2ℜ 0ℓ2 a˜ , (47) ℓm b 0ℓm 2 Thedectectedsignalforapixeliisrelatedtoourpreviousnotationby (cid:18) 0ℓ0(cid:19) Si(ψ)=t(ψ,θ=θi,φ=φi) ∆aB = 2iℑ b0ℓ2 a˜ . (48) 3 WedefinetheFouriertransformoff(ψ)andtheinversetransformtobe ℓm b 0ℓm 4f˜kN=ote21πthaRt02“πredalψiseti−c”ikiψnfth(iψsc)oanntdexft(eψxp)li=citPlye∞kx=c−lu∞deseitkhψecf˜aks.eofanideal Upontransforming(cid:18)ba0cℓk0(cid:19)torealspace,thesetermscanthenbere- scanstrategyforwhichh(ψ)=1. moved from the polarisation maps. Note that the regions within 5 Seehttp://healpix.sourceforge.net a beam-scale of the locations where the temperature map was Removing beamasymmetrybiasinCMB experiments 7 -40 -30 -20 -10 0 -40 -30 -20 -10 0 -40 -30 -20 -10 0 B(x,y)/dB R(x,y)/dB |B(x,y)-R(x,y)|/dB 222 222 222 111 111 111 s s s e e e e e e gr 000 gr 000 gr 000 e e e d d d y/ y/ y/ ---111 ---111 ---111 ---222 ---222 ---222 ---222 ---111 000 111 222 ---222 ---111 000 111 222 ---222 ---111 000 111 222 x/degrees x/degrees x/degrees Figure1.Leftpanel:Thesimulatedbeamofa17modedhornplannedtobeonboardtheLSPEballoonexperiment.Centrepanel:thereconstructionofthe beamretainingonlymodeswithk=0,±2.Rightpanel:Theabsoluteerrorbetweenthesimulatedbeamandthereconstruction. aposidedshouldbedisregardedastheleakagewillnothavebeen resultsinacomplicated and potentiallyasymmetricoverall beam removedintheseregions. shape.Notethatthenumericalsimulationusedhereisofthehorn onlyandasimplescalingoftheoverallbeamsizehasbeenapplied toroughlyapproximatetheeffectofthetelescopelens. 6 EVALUATINGTHEPARAMETERk FORA We note that the LSPE experiment will also include a half- max TEMPERATUREONLYEXPERIMENT waveplate(HWP)infrontoftheopticswhichwillbeusedtoin- creasethepolarizationanglecoverageoftheexperiment.However, Both the pseudo-Cℓ technique and the map-making approach for forthepurposesofthisdemonstration,weconsideratemperature- removingbeamasymmetriesrequireustoimposeacaponthehar- onlyexperimentandwethereforeignoretheeffectoftheHWP. monic expansion of the beam, kmax. We now look at a realistic Upon performing the spin-0 decomposition of the beam, set up for a CMB experiment in order to ascertain how large the (equation8),wefindthatonlyafewazimuthalmodesarerequired requiredkmaxislikelytobeforrealexperiments.Wemakenoas- toaccuratelymodelwhatmightbeconsideredaratherasymmetric sumptiononthescanstrategy.However,beamshapesaregenerally beam.Fig.1showstheoriginalsimulatedbeamalongsidearepre- designed to be as axisymmetric as possible. We expect therefore sentationofitretainingonlythetwomostsignificantmodes(k=0 that the beam expansion can be truncated after only a few terms andk=±2)ofthedecomposition.Themajorfeaturesofthebeam with minimal loss of accuracy. We note that the pseudo-Cℓ cor- asymmetry are clearly well captured using this heavily truncated rectiontechnique caninprinciplebeappliedforanykmax thatis expansion.Wethereforechoosetosetk =2.Thebeamsshown max deemed necessaryinorder toachieve therequiredaccuracy. This hereareinvariantwhenrotatedbyπ,thereforetheoddazimuthal will come with the obvious computational cost of increasing the terms will be zero. Explicitly the truncated decomposition of the numberofsummationsrequiredtoevaluateequation(24).Incon- beamcanbewrittenas(nowwritingb =b etc.forclarity) 0lk lk trast,forthemap-makingapproach,therewillbesomemaximum valueofkmax forwhichthematrixHkk′ ofequation(42)willbe blk =bl0δk0+bl+2δk,+2+bl−2δk,−2. (49) invertible.Wealsonotethatincreasingk willincreasethesta- max InFig.1wealsoshowtheresidualsbetweenthefullbeamandthis tisticalerror on therecovered map. It should thereforebe chosen representationwhichisseentobeagoodapproximation. Wecan to be only as largeas isrequired by the asymmetry in the beam. immediatelyseefromequation(22)thatthiswillgreatlysimplify Inpractice,whetherthemap-makingapproachwillbeappropriate thepseudo-C couplingmatrixcalculationbylimitingthesumover ℓ for any given experiment will depend on both the complexity of k andk toonlyincludethek ,k =0,±2modes. 2 3 2 3 thebeamasymmetryandonthepolarizationanglecoverageofthe WealsoexamineageneralellipticalGaussianbeamdescribed experiment. by 6.1 Beamdecompositionsforsomerepresentativecases B(θ,φ)= 2π1qσ2e−2θσ22(cos2φ+q−1sin2φ), (50) As a demonstration of how a realistic and asymmetric beam where q is a parameter that defines the asymmetry of the beam can be represented using just a few k-modes, we consider a and the full with at half maximum (FWHM) θ = 2.35σ. FWHM numerical simulation of an instrumental beam corresponding to If q=1 then the beam is axisymmetric. To test the expansion we the multi-moded 145 GHz feed horns planned to be flown on- choose θ =7 arcmin and q=1.5, which represents a highly FWHM boardtheballoon-borneLargeScalePolarisationExplorer(LSPE, ellipticalbeam,significantlymoreellipticalthanonemightexpect TheLSPEcollaborationetal. 2012). By coupling 17 wave-guide inarealCMBexperiment.Thissimulatedbeamthereforeprovides modes,thesensitivityofasingleLSPEhorn+detectormoduleis a stringent test of our correction algorithms. We plot the spin-0 greatlyincreased.However,thelargenumberofpropagatedmodes decompositionofthisbeaminFig.2.Itisencouragingtoseethat 8 ChristopherG.R. Walliset al. Howeverinthecasewherethepowerinthemaskextendsto highℓthesecrossspectratermscanbecomesignificant.Thisresults inasignificantcontributiontotheoperatorbyatermoftheform b∗ b Mℓ1ℓ2 ,wherek 6=k .Thisadditionalcontribution 0ℓ2k2 0ℓ2k3 00k2k3 2 3 couldpotentiallybelargerthanthek =k termif|b |≫|b |. 2 3 0ℓk2 0ℓk3 |bLk|2 The 7 TESTINGTHEPSEUDO-C ONSIMULATIONS ℓ Inthissection,wedemonstratetheimplementationofthepseudo- C techniquedeveloped inSection3onnumerical simulationsof ℓ tworepresentativetypesofCMBexperiment–agenericballoon- borneexperiment andafuturesatellitemission.Notethatwetest theperformanceofthealgorithminthetemperature-onlycase.The Figure2.Theamplitudesofthek=0,2,4,6,8,10termsofthebeamex- implementationofourtechniqueforpolarizationexperimentswill pansion,|bℓk|2,asafunctionofmultipole,ℓforanellipticalGaussianbeam bepresentedinafuturepaper.Foratemperature-onlyanalysis,the asdefinedinequation(50)withσ=3arcmincorespondingtoaθFWHM=7 couplingisreducedto arcminandellipticityparameter,q=1.5. C˜00 = O0000C00 with, (53) ℓ1 ℓ1ℓ2 ℓ2 Xℓ2 onceagain,wecandescribethebeamasymmetryusingarelatively O0000 = b∗ b Mℓ1ℓ2 (54) smallnumberofterms. ℓ1ℓ2 0ℓ2k2 0ℓ2k3 00k2k3 kX2k3 Themainstagesofthesimulationpipelineareasfollows: 6.2 Usingthenoisepowertosetk inatemperatureonly max (i) WeusetheHEALPixpackagetocreatesimulationsoftheCMB experiment temperaturefieldbasedonthetheoreticalCMBpowerspectrumfor Fromtheabovedemonstration,itappearsthatonlyasmallnumber theconcordanceΛCDMcosmologicalmodel. oftermsintheharmonicexpansionofthebeamneedtoberetained (ii) WethencreateaTODbyconvolvingtheCMBwiththetele- inordertocapturetheglobalfeaturesofthebeamresponseinclud- scopebeamintheappropriateorientationgiventhescanstrategy. ingtheeffectsofasymmetry. (iii) WethencalculatetheC˜ℓ00usingequation(16). However,tobetrulyconfidentthatthetruncatedexpansionis (iv) Thecouplingoperatoriscalculatedusingtheexpressionin anaccurateenoughrepresentationofthebeam,onewouldideally equation(54). choosethevalueofkmaxsuchthattheanyresidualerrorfrommis- (v) WiththeoperatorOℓ010ℓ020 calculated,wetheninvertittore- representingthebeamissmaller(tosometolerancelevel)thanthe cover an estimate of the full-sky and beam-deconvolved power statisticalerror inanexperiment. Foraparticularasymmetricex- spectrum. pansiontermtheleadingordercontributiontoC˜00is∼|˜b |2C00, ℓ 0ℓk ℓ Notethatweusetwodifferentconvolutioncodesforthetwo where˜b0ℓk=b0ℓk 2ℓ4+π1.Thereforewecansaythattheasymmet- classes of experiment that we simulate. For the balloon-like test rictermshouldbeqincludedif we calculate each element of the TOD using equation (10). The HEALPixROTATEALMSroutineoperatesonthebeammultipoleco- hpkipix|˜b0ℓk|2Cℓ00 >fhNℓ00iσ, (51) efficients. Thisfunction uses the Wigner D-matricesto rotatethe wheref isatoleranceleveltowhichwerequireoursystematicer- beamcoefficientsbyasetofEuleranglesgivenoninput.TheTOD rorstobebelow thestatisticalerror.Areasonable choicemaybe elementcanthenbecalculatedusing, f=0.1,toensurethatthesystematicerroris10%ofthenoisesta- tisticalerror.hNℓ00iσ isthestandarddeviationofthenoisepower, tj = bjlm∗alm, (55) lm seeequation(31),whichisthedominatingsourceofstatisticalerror X athighℓ.Thetermhp i isthekthmodeoftheψanglecoverage wherebj∗ isthemultipoleexpansionofthebeamwhenithasbeen k pix lm qualityofthescanstrategydefinedas rotatedthroughtheEuleranglesωj.InthiswaythewholeTODcan becreated.Whilethisisaccurateandsimpleitwouldbeimpossible 2 hp i = 1 eikψi , (52) tousethisapproachinthesatellite-likeexperimentasthenumber k pix *n2hits (cid:12)(cid:12)(cid:12)Xi (cid:12)(cid:12)(cid:12) +pix toifonTaOllDyienlfeemaseinbtlse.aTnodctrheeatreetqhueirseidmuℓmlaatexdwToOuDldimnathkeesiatteclolmitep-ulitkae- wherehipix denote(cid:12)(cid:12)sanaverag(cid:12)(cid:12)eoverallpixelsonthesky,nhits is case,weuseamethodsimilartotheFEBeCoPapproach(Mitraetal. thenumberofhitsapixelreceivesandthesumovertheindexiis 2011)exceptthatdonotcalculatetheeffectivebeamsbutratherwe over allobservations of aparticularpixel.Thelower thevalueof producetheindividual TODelements. Theconvolution issimpli- hpkipix,thebetterthescanstrategyisatremovingthebiascreated fiedbydescribingthebeaminpixelspaceandweonlycalculatethe bythebeamasymmetryduetothekthazimuthalmode. valueofthebeamonasetofneighbouring pixelscentredaround Theruleofthumbinequation(51)becomesproblematicwhen thepointingcentreof thebeam. Weusepixelswithin5σq of the theskycoverageissmallandinthepresenceofahighlyasymmet- centreofthebeam(seeequation50)todescribethebeamoverthis ricbeamduetocouplingbetweenasymmetrictermsofdifferentk. localisedregionofsky. This coupling is suppressed in the all-sky case because the cross A second technical challenge was to obtain the Wigner D- spectraWkℓ2k3 aresmallfork26=k3,whichinturnmeansthecou- matrix transforms of the TOD and the window function. We plingmatrixMℓ1ℓ2 issmall. achieved this by implementing equations (13) and (14) using the 00k2k3 Removing beamasymmetrybiasinCMB experiments 9 expression for the Wigner D-matrix in terms of spin weighted spherical harmonics (equation 17). First, the integral over ψ was performed using a simple Newton-Cotes numerical integration method.TheHEALPixroutineMAP2ALMSPINwasthenusedtoper- formtheintegralsoverθandφ. 7.1 Balloon-likeexperiment ForourfirsttestweusethesimulatedLSPEbeamshowninFig.1 withamodification.Wegreatlyamplifythesizeoftheasymmetry in order to produce a more stringent test of the asymmetry cor- rection algorithm. The spherical harmonic decomposition of this exaggerated beam is related to the original LSPE decomposition by Figure4.Reconstructionofthepowerspectrumfortheballoon-likesimu- bexagg =bLSPEδ +bLSPEδ ×100. (56) lationusingthepseudo-Cℓ method.Theinputtheoreticalpowerspectrum 0ℓ,k 0ℓ,0 k0 0ℓ,±2 k±2 isplotted(black)alongwiththerecovered powerspectrum whentheex- WeusetheplannedscanstrategyforLSPEbutwestressthat agerratedbeamisused(red),averagedover1000realisations.Wealsoplot therecoveredpowerspectrumonewouldrecoveriftheaxisymmetricMAS- wehavenotincludedtheeffectsofthehalf-waveplate(HWP)that TER(Hivonetal.2002)analysiswasused(blue)andifthenoisewasig- LSPEwilluse. TheLSPEexperiment willincorporateaHWPin nored(yellow).Theverticalerrorbarsshowthestandarddeviationofthe frontoftheopticswhichwillbeusedtoincreasethepolarization realisationsfromthemean. angle coverage of the experiment. However, for the purposes of this demonstration where we consider a temperature-only exper- iment, we have ignored the (advantageous) effects of the HWP. σ=3 arcmin corresponding to a FWHMof 7 arcmin and q=1.5. LSPEwillbelaunchedatalatitudeof780Northandwillfollowa Thescanstrategyusedissimilartothatproposed for theExperi- jet stream around the globe staying at roughly the same latitude. mentalProbeofInflationaryCosmology(EPIC,Bocketal.2009). The payload will spin at 3 rpm and the telescope will perform In Fig. 5 we show the hit map, the p quality (equation 52) and constant allevation scans with regular (§daily) steps in elevation 2 theweightingfunctionthatwehaveusedtomaskthegalaxyand (TheLSPEcollaborationetal.2012). extragalactic sources. We use the same mask as was used by the We created a set of TOD following the above procedure in- Planck collaboration (PlanckCollaborationetal. 2013b) for their cludingwhitenoise.TheLSPEscanstrategycovers∼25%ofthe powerspectrumanalysis.Theweightingfunctionalsoapodisesthe skyandsoprovidesatestofthealgorithm’sabilitytoaccountfora hitmap.NotethattheEPICscanstrategywasdesignedtoimprove cutskyinadditiontotheeffectsofbeamasymmetry.Fig.3shows the2nd ψ coveragequalitydefinedinSection6.2.Thischoiceof anexampleofasimplebinnedmapcreatedfromoneofoursimu- scanstrategywillthereforebeeffectiveinmitigatingbeamasym- lations.Thisfigurealsoshowsthehitmapofthescanstrategy,the metriesevenintheabsenceofadedicatedcorrectionalgorithm.We 2ndψcoveragequalityp definedinSection6.2andtheweighting 2 thereforeexpectthebias,intheabsenceofadedicatedcorrection, functionthatweusetoapodisethehitmap.Weincludean(unre- tobemuch smallerthan seenintheprevious section (although it alisticallyhigh)noiselevelof1.6mK-arcmininoursimulationsin will still be non-zero). The mean recovered power spectra using order to test the removal of noise bias from the recovered power k =0,2areshowninthetoppanel ofFig.6.Thelowerpanel spectrum. max ofthisfigureshowsthefractionalresidualbiasinthepowerspec- The C˜00 for 1000 realisations were computed according to ℓ trumrecoveryanddemonstratesanunbiasedresulttohigh-ℓwhen equation(53)andthecouplingoperatorwascalculatedusingequa- k =2isused.Thesesimulationsincludedwhitenoisesuchthat tion(54).Inordertoinvertthecouplingmatrixweneededtobinthe max the error on the map is equivalent to 8.5µK-arcmin. We can see C˜00andthecouplingoperator,asinHivonetal.(2002).Thisbin- ℓ thatevenwithascanstrategydesignedtooptimisecrossingangles ningensuresthatthematrixisinvertibleandthattheresultingdata andtherebyreducetheasymmetrybias,thereremainsabiasatthe pointsareuncorrelated.Hereweuseabinsizeof∆ℓ=20.Acorrec- levelof∼1−2σwhentheaxisymmetricapproximationismade. tionfornoisebiaswasalsoimplementedfollowingtheprocedure The importance of this test is two-fold. It demonstrates that outlinedinSection3.4.Fig.4showsthemeanpowerspectrumre- the algorithm can deal with a more conventional elliptical Gaus- coveredfromthesimulationsincomparisontotheinputspectrum. sian beam and also that it can be extended to high-ℓ. The cou- In this figure, we also plot the mean power spectrum recovered plingoperatorwascalculatedin9hrsonone2.26GHzprocessor whenthebeamwasassumedtobeaxisymmetric,byincludingonly toℓ = 4000. Wecalculated the coupling operator to amuch the b term on the pseudo-C . This figureclearly demonstrates max 0ℓ0 ℓ higherℓthanthemaximummultipoleofinteresttoensurethatwe thatouralgorithmcansuccessfullyrecoverthepowerspectrumin did not miss any effects from the aliasing of power from higher asituationwheretheaxisymmetricapproximationclearlyfails.The multipoles. power spectrumobtainedinthecasewherethenoiseintheTOD was ignored is also shown demonstrating the ability of our algo- rithmtosuccessfullycorrectfornoisebias. 8 TESTINGTHEMAP-MAKINGALGORITHMON SIMULATIONS 7.2 Satellite-likeexperiment Wetest the map-making algorithm described inSection 5 in two Thesecondtestthatweperformisusingasatellite-likescanstrat- ways. First, we use the algorithm on multiple realisations of the egy.Forthistest,weuseabeamdescribedbeequation(50)with samesimulatedexperimentasdescribedinSection7.2toshowthat 10 ChristopherG. R. Walliset al. Figure3. Topleft: Anexample binned mapmadeinthe balloon-like test. Theexaggerated beam was usedwith aspherical harmonic decomposition as describedinequation(56).Thescanstrategyimplementedistypicalofaballoonbasedexperiment.Topright:Thehitmapfromonedayofobservationsfor theballoon-likeexperiment.Bottomleft:Thep2quality,definedinequation(52),ofthescanstrategy.WenoteagainthataHWPwasnotincludedwhichis whythepolarizationanglecoverageispoorforthissimulation.Bottomright:Theweightingfunctionappliedtoapodisethehitmap. thealgorithmcancorrectlyremovetheasymmetrybiasonthetem- 8.1 Removingtheasymmetrybiasonthetemperaturepower peraturepowerspectrum.Thesecondtestisperformedonasingle spectrum noise-free full sky simulation of the satelliteexperiment. We use this latter simulation to test if the algorithm can successfully re- AsinSection7.2,wecreate48TODrealisationsusingthesatellite- movetheasymmetrybiasdirectlyfromthetemperatureandpolar- like scan strategy, and using an elliptical Gaussian beam with isationmaps.WedonotincludeaCMBpolarisationsignalinour θFWHM=7 arcmin and q=1.5 (see equation 50). As before, the TODand so asuccessful asymmetry correction algorithm should TODincludedwhitenoiseequivalenttoamapnoiselevelof8.5µK recoverazeropolarisationsignal. arcmin. From the simulated TOD, we then compute both a simple binnedmapandamapconstructedusingthealgorithmpresented in Section 5 with k =2. We then apply the same galactic and max point source mask to these maps as used in Section 7.2. A stan-