REMOVAL OF TOXIC METALS AND RECOVERY OF ACID FROM ACID MINE DRAINAGE USING ACID RETARDATION AND ADSORPTION PROCESSES Yvonne Nleya A dissertation submitted to the Faculty of Engineering and the Built Environment, University of Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016 Removal of toxic metals and recovery of acid from AMD Yvonne Nleya DECLARATION I declare that this dissertation is my own unaided work. It is being submitted to the degree of Master of Science in Engineering to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any other degree or examination in any other University. 15th day of April, 2016 ii Removal of toxic metals and recovery of acid from AMD Yvonne Nleya ABSTRACT The remediation of acid mine drainage (AMD) has received much attention over the years due to the environmental challenges associated with its toxic constituents. Although, the current methods are able to remediate AMD, they also result in the loss of valuable products which could be recovered and the financial benefits used to offset the treatment costs. Therefore, this research focused on the removal of toxic heavy metals as well as the recovery of acid using a low cost adsorbent and acid retardation process, respectively. In the first aspect of the study, three low cost adsorbents namely zeolite, bentonite clay and cassava peel biomass were evaluated for metal uptake. The adsorption efficiencies of zeolite and bentonite, was found to be less than 50% for most metal ions, which was lower compared to the 90% efficiency obtained with cassava peel biomass. Subsequently, cassava peel biomass was chosen for further tests. The metal removal efficiency using the cassava biomass was in the order Co2+> Ni2+> Ca2+> Mn2+> Fe3+> Mg2+. The highest metal removal was attained at 2% adsorbent loading and 30 ˚C solution temperature. Amongst the equilibrium models tested, the experimental data was found to fit well with the Langmuir isotherm model. Column studies using the immobilized cassava waste biomass suggested that the breakthrough curves of most metal ions did not resemble the ideal breakthrough curve, due to the competitive nature of the ions present in the AMD used in this study. However, the experimental data from the column tests was found to correlate well with the Adam- Bohart model. Sulphuric acid recovery from the metal barren solution was evaluated using Dowex MSA-1 ion exchange resins. The results showed that sulphuric acid can be recovered by the resins via the acid retardation process, and could subsequently be upgraded to near market values of up to 70% sulphuric acid using an evaporator. Water of re-usable quality could also be obtained in the acid upgrade process. An economic evaluation of the proposed process also showed that it is possible to obtain revenue from sulphuric acid which could be used to offset some of the operational costs. iii Removal of toxic metals and recovery of acid from AMD Yvonne Nleya PUBLICATIONS AND PRESENTATIONS Journal Publications 1. Nleya, Y., Simate, G.S., Ndlovu, S., 2015. Sustainability assessment of the recovery and utilisation of acid from acid mine drainage. Journal of Cleaner Production 113, pp 17 – 27. 2. Nleya, Y., Ndlovu, S., Simate, G.S., 2015. Removal of toxic metals and recovery of acid from acid mine drainage using adsorption and acid retardation processes. Water Research, Submitted for publication Conference Proceedings 1. Nleya, Y; Ndlovu, S; Simate, G.S., 2014. The recovery of valuable materials from acid mine drainage using adsorption and acid retardation processes. SAMMRI Hydrometallurgy Symposium, University of Cape Town, South Africa, 3rd – 6th August, 2014. iv Removal of toxic metals and recovery of acid from AMD Yvonne Nleya ACKNOWLEDGEMENTS I would like to extend my most heartfelt gratitude to my supervisors Professor S. Ndlovu and Dr. G.S. Simate for their willingness to impart valued knowledge and constant motivation in carrying out this research. I would also like to express my appreciation to the Dow Chemical Company and Ecca (a member of IMERYS Minerals Ltd) Holdings for supplying the ion exchange resins and bentonite samples used in this project. Mr E. du Toit and Mr V. Donnelly are gratefully acknowledged for facilitating the supply of the samples. Much appreciation also goes to Mr E.M. Peters for his insightful comments on this project. I would also like to acknowledge the financial support I received from the National Research Foundation (NRF) and the University of the Witwatersrand (Wits)‟s postgraduate merit award (PMA), which gave me the opportunity to carry out this project. I am grateful to my family for their support, love and encouragement. To my mother for continually challenging me and reminding me to give it my best all the time. I am immensely grateful to my friends for their love, support and company without which this project would have been very difficult. My regards also go to the support staff in the School of Chemical and Metallurgical Engineering for their technical assistance. My colleagues in the Metal Extraction and Recovery group are also greatly acknowledged for their unwavering support and help throughout the project and life at Wits. Finally, I would like to give my heartfelt thanks to God for blessing me with the wonderful people that surrounded me during my study and also for blessing me with favour, strength and good health to complete it. v Removal of toxic metals and recovery of acid from AMD Yvonne Nleya TABLE OF CONTENTS DECLARATION ......................................................................................................... ii ABSTRACT ............................................................................................................... iii PUBLICATIONS AND PRESENTATIONS ............................................................ iv ACKNOWLEDGEMENTS .........................................................................................v TABLE OF CONTENTS ........................................................................................... vi LIST OF FIGURES .................................................................................................... xi LIST OF TABLES .....................................................................................................xv CHAPTER ONE ...........................................................................................................1 INTRODUCTION ........................................................................................................1 1.1 General Introduction ................................................................................................ 1 1.2 Problem statement ................................................................................................... 4 1.3 Aim and Objectives ................................................................................................. 4 1.4 Key research questions ............................................................................................ 5 1.5 Research methodology ............................................................................................ 5 1.6 Dissertation layout ................................................................................................... 6 CHAPTER 2 .................................................................................................................8 LITERATURE REVIEW .............................................................................................8 2.1 General introduction ................................................................................................ 8 2.2 Formation and constituents of AMD ....................................................................... 8 2.3 Environmental and ecological impact of AMD..................................................... 11 2.3.1 Impact of low pH ............................................................................................... 12 2.3.2 Effect of high sulphate levels........................................................................... 13 2.3.3 Impact of dissolved metals ............................................................................... 14 2.3.4 Impact of solid precipitate from AMD ........................................................... 17 2.4 Source control of AMD ......................................................................................... 18 vi Removal of toxic metals and recovery of acid from AMD Yvonne Nleya 2.4.1 Flooding/sealing of underground mines ......................................................... 19 2.4.2 Underground storage of mine tailings ............................................................ 19 2.4.3 Depyritization .................................................................................................... 20 2.4.4 Mine Capping .................................................................................................... 20 2.4.5 Blending of mineral wastes .............................................................................. 21 2.4.6 Application of anion surfactants ...................................................................... 21 2.5 Treatment options for AMD .................................................................................. 22 2.5.1 Active treatment methods ................................................................................. 22 2.5.2 Passive treatment technologies ........................................................................ 24 2.6 Recently developed methods ................................................................................. 27 2.6.1 CSIR Alkali-Barium-Calcium (ABC) Process .............................................. 27 2.6.2 SAVMIN Process .............................................................................................. 29 2.6.3 SPARRO process .............................................................................................. 30 2.6.4 GYP-CIX Process ............................................................................................. 31 2.6.5 THIOPAQ Process ............................................................................................ 32 2.6.6 The Rhodes BioSURE Process ........................................................................ 32 2.6.7 Tshwane University of technology Magnesium-Barium-Alkali (MBA) Process .......................................................................................................................... 32 2.6.8 HiPRO (High Pressure Reverse Osmosis) Process ....................................... 33 2.6.9 EARTH (Environmental and Remedial Technology Holdings) Ion Exchange Process .......................................................................................................................... 33 2.7 Adsorption of AMD .............................................................................................. 35 2.7.1 Adsorption process ............................................................................................ 37 2.7.2 Biosorption ......................................................................................................... 47 2.7.3 Adsorption isotherms ........................................................................................ 53 2.7.4 Mathematical models for fixed bed columns ................................................. 56 vii Removal of toxic metals and recovery of acid from AMD Yvonne Nleya 2.8 Sulphuric acid recovery from AMD ...................................................................... 58 2.8.1 Acid retardation process ................................................................................... 59 2.9 Summary ............................................................................................................... 64 CHAPTER THREE ....................................................................................................65 MATERIALS AND METHODS ...............................................................................65 3.1 General introduction .............................................................................................. 65 3.2 Materials and sample preparations ........................................................................ 65 3.2.1 Materials ............................................................................................................. 65 3.2.2 Adsorbent preparation ...................................................................................... 67 3.3 Experimentation .................................................................................................... 69 3.3.1 Batch adsorption tests ....................................................................................... 69 3.3.2 Column adsorption tests ................................................................................... 70 3.3.3 Ion exchange column tests ............................................................................... 72 3.4 Analytical techniques ............................................................................................ 73 3.4.1 Determination of surface morphology, area and pore structure .................. 73 3.4.2 Determination of functional groups ................................................................ 73 3.4.3 Determination of chemical composition of adsorbents ................................ 73 3.4.4 Sulphate and pH measurements ....................................................................... 74 3.4.5 Determination of total solids (TS), total suspended solids (TSS) and total dissolved solids (TDS) ............................................................................................... 74 3.4.6 Determination of the metal ion concentration ............................................... 75 3.4.7 Determination of the acid content ................................................................... 75 3.4.8 Determination of the point of zero charge (pH ) ....................................... 75 PZC 3.5 Summary ............................................................................................................... 76 CHAPTER FOUR ......................................................................................................77 RESULTS AND DISCUSSIONS ..............................................................................77 viii Removal of toxic metals and recovery of acid from AMD Yvonne Nleya 4.1 Characterization results ......................................................................................... 77 4.1.1 XRD analysis ..................................................................................................... 77 4.1.2 Chemical composition of adsorbents .............................................................. 79 4.1.3 Fourier transform infrared spectroscopy (FTIR) ........................................... 81 4.1.4 Point of zero charge (pH ) ............................................................................ 84 PZC 4.1.5 Physicochemical properties.............................................................................. 86 4.1.6 Surface morphology .......................................................................................... 87 4.2 Batch adsorption studies ........................................................................................ 92 4.2.1 Metal removal results ........................................................................................ 93 4.2.2 Solution acidity and sulphate content ........................................................... 121 4.2.3 Selection of a low cost adsorbent .................................................................. 124 4.3 Adsorption isotherms .......................................................................................... 126 4.4 Column adsorption studies .................................................................................. 129 4.4.1 Introduction ...................................................................................................... 129 4.4.2 Surface chemistry structure of immobilized cassava waste biomass ....... 129 4.4.3 Fixed bed adsorption studies .......................................................................... 131 4.4.4 Column dynamics studies............................................................................... 146 4.4.5 Summary of column studies ........................................................................... 153 4.5 Acid retardation tests ........................................................................................... 154 4.5.1 Properties of Dowex MSA-1 resins .............................................................. 155 4.5.2 Acid retardation test ........................................................................................ 155 4.5.3 Elution studies.................................................................................................. 160 4.5.4 Evaporation ...................................................................................................... 162 4.6 Economic evaluation of the process .................................................................... 164 4.6.1 Estimation of the proposed process costs ..................................................... 165 4.7 Summary ............................................................................................................. 173 ix Removal of toxic metals and recovery of acid from AMD Yvonne Nleya CHAPTER FIVE ......................................................................................................175 CONCLUSION AND RECOMMENDATIONS .....................................................175 5.1 Conclusion ........................................................................................................... 175 5.1.1 Introduction ...................................................................................................... 175 5.1.2 Batch adsorption studies ................................................................................. 176 5.1.3 Column tests ..................................................................................................... 177 5.1.4 Acid retardation tests ...................................................................................... 179 5.1.5 Acid upgrade .................................................................................................... 180 5.1.6 Economic evaluation ....................................................................................... 181 5.2 Recommendations ............................................................................................... 181 REFERENCES .........................................................................................................183 Appendix A ..............................................................................................................208 Appendix B ...............................................................................................................217 Appendix C ...............................................................................................................221 x