RESEARCHARTICLE Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles NavinJain,ArpitBhargava,MohitRathi,R.VenkataramanaDilip,JitendraPanwar* CentreforBiotechnology,DepartmentofBiologicalSciences,BirlaInstituteofTechnologyandScience, Pilani,333031,India * [email protected] Abstract Thepresentstudydemonstratesaneconomicalandenvironmentalaffableapproachfor thesynthesisof“protein-capped”silvernanoparticlesinaqueoussolventsystem.Avariety ofstandardtechniquesviz.UV-visiblespectroscopy,transmissionelectronmicroscopy (TEM),energydispersivespectroscopy(EDS)andX-raydiffraction(XRD)measurements wereemployedtocharacterizetheshape,sizeandcompositionofnanoparticles.The synthesizednanoparticleswerefoundtobehomogenous,spherical,mono-dispersedand coveredwithmulti-layeredproteinshell.Inordertopreparebaresilvernanoparticles,the OPENACCESS proteinshellwasremovedfrombiogenicnanoparticlesasconfirmedbyUV-visiblespec- Citation:JainN,BhargavaA,RathiM,DilipRV, troscopy,FTIRandphotoluminescenceanalysis.Subsequently,theantibacterialefficacyof PanwarJ(2015)RemovalofProteinCapping EnhancestheAntibacterialEfficiencyof protein-cappedandbaresilvernanoparticleswascomparedbybacterialgrowthrateand BiosynthesizedSilverNanoparticles.PLoSONE10 minimuminhibitoryconcentrationassay.Theresultsrevealedthatbarenanoparticleswere (7):e0134337.doi:10.1371/journal.pone.0134337 moreeffectiveascomparedtotheprotein-cappedsilvernanoparticleswithvaryingantibac- Editor:AmitavaMukherjee,VITUniversity,INDIA terialpotentialagainstthetestedGrampositiveandnegativebacterialspecies.Mechanistic Received:February21,2015 studiesbasedonROSgenerationandmembranedamagesuggestedthatprotein-capped andbaresilvernanoparticlesdemonstratedistinctmodeofaction.Thesefindingswere Accepted:July8,2015 strengthenedbytheTEMimagingalongwithsilverionreleasemeasurementsusinginduc- Published:July30,2015 tivelycoupledplasmaatomicemissionspectroscopy(ICP-AES).Inconclusion,ourresults Copyright:©2015Jainetal.Thisisanopenaccess illustratethatpresenceofproteinshellonsilvernanoparticlescandecreasetheirbacteri- articledistributedunderthetermsoftheCreative cidaleffects.Thesefindingsopennewavenuesforsurfacemodificationsofnanoparticles CommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany tomodulateandenhancetheirfunctionalproperties. medium,providedtheoriginalauthorandsourceare credited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformationfiles. Funding:Thisresearchworkwasfinancially Introduction supportedbyUniversityGrantCommission(www. ugc.ac.in),GovernmentofIndiaunderMajorProject Overthepastfewyears,worldwideescalationandaugmentationofmulti-drugresistancein Scheme[F.No.42-185/2013(SR)]. microorganismshasbeenaseriousconcernformodernmedicine[1–5].Theneedforthe developmentofnew,lowcostandeffectiveantimicrobialagentsindependentofbacterialresis- CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. tancehasrevivedtheinterestofscientificcommunitytoexploretheantimicrobialpropertiesof PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 1/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs silveranditscompounds.Inpastfewyears,varietyofnewsilverformulationssuchassilver sulfadiazine,silvercitrate,silverlactate,etc.havebeendevelopedandvarioussilverintegrated formulations(Katadyn,Argyrol,Movidyn,Tetrasil,Alagon,etc.)werecommercialized[6]. However,costconcernandrecentreportsofsilver-resistantbacterialstrainshaslimitedthe useofsilverasapotentialalternativetoantibiotics[7]. Since,mostofthebiologicalprocessestakeplaceatthenanoscalelevel,acombinedapplica- tionofbiologyandnanotechnologycanperhapsmeetthischallenge[8].Utilizationofsilver nanoparticlescanbeparticularlyadvantageousascomparedtotheirbulkcounterpartasthe formermanifesthighsurfaceareatovolumeratiowhichcanprovidebettercontactwithmicro- organisms.Ithasbeendemonstratedthatsilvernanoparticlesrestrictthemicroorganismsto developresistance[9–11].Additionally,atlowconcentrationssilvernanoparticleshavebeen reportedtobenon-toxictohumancells,andhenceconsideredasansafeantimicrobialagent [12].Owingtotheseproperties,anenormousincreaseintheapplicationsofsilvernanoparti- clesforawiderangeofmedicalandcommercialproductshasbeenobservedwhichincludes householdantisepticspraysandantimicrobialcoatingsformedicaldevicesthatsterilzeairand surfaces[13].Silvernanoparticleshavealsoexpandedtheirhorizonsintextiles,cosmetics,air purifiers,foodpackaging,coatingforrefrigerators,waterdisinfection;infact,ineveryapplica- tionwherebacteriamayexertaharmfuleffect[14]. Themechanismofbactericidaleffectsofsilvernanoparticleshasnotbeenyetcompletely elucidated.Inparticular,thereisadebateastowhetherthetoxicityisonlyduetothesilver nanoparticlesoritisconfinedtothesilverionsreleasedfromthesenanoparticles.Ithasbeen reportedthatthereleaseofsilverionsfromthecrystallinecoreofsilvernanoparticlescontrib- utetothebactericidaleffects[15].Inaerobicconditions,silvernanoparticlesgetoxidised releasinghighconcentrationsofsilverionsinsolution,whichinteractswithproteinsgiving risetobactericidaleffects[16].Theantibacterialactivityofmicromolarconcentrationofsilver ionsmaybelinkedwithuncouplingofrespiratoryelectrontransportfromoxidativephosphor- ylation[17],inhibitionofrespiratorychainenzymesandinterferencewiththemembraneper- meability[18]orinteractionwithcytoplasmiccomponentsandnucleicacids[19].However, themolecularmechanismbehindthebactericidalactivityofsilverionsisstillnotclear.Inaddi- tion,whetherthebactericidaleffectsareexertedbynanoscalephnemenonisanelusiveques- tion.Xiuetal.[20]attemptedtodecipherthischallengebyperformingantibacterialstudies understrictanaerobicconditionstoprecludesilveroxidationandAg+release.Theirfindings completelyruledoutthedirectparticle-specificbactericidaleffectsofsilvernanoparticlesand inferredAg+ionsasthedefinitivemoleculartoxicantforbactericidaleffects.Thus,astrictcon- troloverthereleaseofsilverionsisapre-requisitefortheantibacterialefficacyofsilvernano- particles.Manipulationatvariouslevelssuchasparticlesize,morphology,surfacecharge, coatingandoxygenavailablityhavebeenconsideredasimportantparameterstocontroland modulatetheantibacterialactivityofsilvernanoparticles.Amongtheseparameters,surface coating(orfunctionalization)serveasthemostimportantfactorwhichdeterminethenano- particle-microbeinteractions.Ithasbeenobservedthatcoatingofsilvernanoparticleswith surfactantsresultsingreaterdamagetomicroorganismsincomparisontosimilar-sizedbare silvernanoparticles[21,22].Similarly,comparitivestudiesofpolysaccharidecoatedandbare silvernanoparticlesshowedthatpresenceofpolysaccharidemoleculesonnanoparticlesurface facilitatesthedamagetomammaliancell-lines[23].Conversely,nanoparticleswerefoundto belesstoxictomicroorganismswhencoatedwithpolymersornaturalorganicmatter[24]. Variegatedeffectsofsurfacechemistryonsilvernanoparticleuptakeandtoxicityhavealso beenreported.Forinstance,presenceofmoleculessuchasalbumin,lecithin,polysorbital-80 andpeptideonthenanoparticlesurfacehavebeenreportedtofacilitatetheiruptakeandtoxic- ity,whilepolyethyleneglycolinterferedwithuptakeinthelivercells[25].Incontrast,a PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 2/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs systematicsub-chronicreproductiontoxicityassessmentofsilvernanoparticlescoatedwith polyvinylpyrrolidone(hydrophilic)oroleicacid(amphiphilic)onsoilearthworms(Eisenia fetida)showednosignificantdifferencesinsilveraccumulationortoxicity[26].Hence,studies targetedtounderstandthedynamicbehaviourofnanoparticlecoatings(inorganicororganic) couldbehighlyinformativefordesigningefficientantibacterialformulationsofsilver nanoparticles. Inthepresentstudy,wearereportingaone-stepprotocoltosynthesize“protein-capped” silvernanoparticlesusingAspergillussp.NJP02.Thepresenceofproteinshellonnanoparticles ishighlyadvantageousasitimpartssolubilityandcolloidalstabilityinaqueoussystem.In ordertofindouttheroleofproteinshellinmodulatingantibacterialefficacy,thecomparative antibacterialpotentialofprotein-cappedandbaresilvernanoparticleswereassessed.Our resultsclearlyindicatethatthepresenceofproteinshelloverthesurfaceofsilvernanoparticles negativelyaffecttheirantibacterialpotential.Furthermechanisticstudiessuggestedthatpro- tein-cappedandbaresilvernanoparticlesdemonstratedistinctmodeofaction. Experimental FungusAspergillussp.NJP02(GenBankaccessionnumber:HM222932)wasusedfortheextra- cellularsynthesisofsilvernanoparticles.Thecompletedetailsforisolationandmolecularchar- acterizationoftheisolatecanbeobtainedfromourpreviousreport[27]. Synthesisandcharacterizationofprotein-cappedandbaresilver nanoparticles Theextracellularsynthesisofsilvernanoparticleswasachievedusinganindigenousprotocol developedinourlaboratory[28].Briefly,thefunguswasgrowninMGYPmediumfor72hat 28°Conarotaryshaker(150rpm)underdarkconditions.Afterincubation,thefungalmycelia wereseparatedandwashedthricewithsterilewaterinordertoremovealltracesofmedia.Typ- ically,10gofbiomass(freshweight)wasresuspendedin100mLofsteriledeionizedMilli-Q waterandfurtherincubatedfor72hunderthesameconditionsasdescribedabove.Afterincu- bation,biomasswasseparatedbyfiltrationusingWhatmanfilterpaperno.1andthefungal cellfreefiltratecontainingextracellularsecretionswascollected.Forsynthesisofsilvernano- particles,aqueoussilvernitratesolutionatafinalconcentrationof1.0mMwasaddedtothe reactionvesselscontainingcell-freefiltrateandincubatedat28°Conarotaryshaker(150rpm) withoutlight.Theobtainedprotein-cappedsilvernanoparticleswereusedforfurtherexperi- ments.TheparticleswerecharacterizedbyUV-visiblespectroscopy,dynamiclightscattering (DLS),transmissionelectronmicroscopy(TEM),energydispersivespectroscopy(EDS)and selectedareaelectrondiffraction(SAED)analysis.Thedetailedproceduresfortheaboveanaly- seshavebeendiscussedinourpreviousreport[28].Thecrystallinephaseofnanoparticleswas measuredbyX-raydiffraction(XRD)studiesusingaRigakuMiniFlex-IIbenchtopdiffractom- eteroperatedatavoltageof40kVandcurrentof30mAwithCuKαradiation.Inorderto checkthestabilityofprotein-cappedsilvernanoparticles,UV-visiblespectrumofthreemonth oldsamplewasalsorecorded. Forpreparationofbaresilvernanoparticles,theas-synthesizedprotein-cappedsilvernano- particlesolutionwascentrifugedat10,000rpmfor20min.Thepelletwassuspendedin1% (w/v)sodiumdodecylsulphate(SDS)andboiledinwaterbathfor30mininordertodetach theproteinshellfromnanoparticlesfollowedbycentrifugationat10,000rpmfor20min.The supernatantcontainingtheunreactedSDSandSDS-proteincomplexwasanalyzedforthe presenceofproteinsbymeasuringtheUV-visibleabsorptionspectrum.Theresultingpellet wasboiledin1mLofTris-Cl(pH8.0)inwaterbathfor10mintoeliminatethepossibilityof PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 3/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs SDSbindingtothenanoparticles,ifany.ToensurethecompleteremovalofSDS,dialysiswas carriedoutagainstMilli-Qwaterwithfourchangesofwater.Theobtainedbaresilvernanopar- ticleswerecharacterizedusingFouriertransforminfraredspectroscopy(FTIR),Photolumines- cence(PL)spectroscopy,UV-visiblespectroscopyandDLSmeasurements.FTIRspectraof freeze-driedsampleswererecordedonaShimazduIRPrestige-21FTIRspectrometer.Photolu- minescencemeasurementswereperformedonaHoribaFluroMax-4spectrofluorometerwith anexcitationwavelengthof280nmusing90°illumination.Inordertoachievemaximal signal-to-noiseratio,excitationandemissionslitwidthvalueswereattunedto2.5and3.0nm, respectively.UV-visiblespectroscopymeasurementswerecarriedoutonaJascoV-630UV- visiblespectrophotometerataresolutionof1nm.DLSmeasurementswereconductedusinga MalvernZetasizerNanoZSinstrumentandtheobtaineddatawereanalysedusingZetasizer software. Antibacterialefficiencyofsilvernanoparticles Invitrobactericidaleffectsofprotein-cappedandbaresilvernanoparticleswereevaluated againstclinically-importantbacterialpathogensprocuredfromtheInstituteofMicrobialTech- nology,India.ThetestedstrainswereGrampositiveBacilluscereus(MTCC430)andPseudo- monasputida(MTCC102);andGramnegativeEscherichiacoli(MTCC1652)andKlebsiella pneumoniae(MTCC432).Theselectedbacterialspecieswereexposedtoprotein-cappedor baresilvernanoparticles(50μgnanoparticlespermLofmedium)for30minat37°Cunless otherwisestated. Assaysforantibacterialactivity. Toexaminetheeffectonbacterialgrowthrate,the selectedbacterialspeciesweregrownseparatelyin100mLofnutrientbrothsupplemented with50μgofprotein-cappedorbaresilvernanoparticlespermLofmedium.Thebacterial growthratesweredeterminedbymeasuringtheabsorbanceat600nmatdifferenttimeinter- vals(0.1absorbancecorrespondstoaconcentrationof108cellspermL).Mediawithoutnano- particlesandbacterialcellswereusedaspositiveandnegativecontrols,respectively. Minimuminhibitoryconcentration(MIC)valuesofprotein-cappedandbaresilvernano- particlesweredeterminedbyperformingdehydrogenaseassayina96-wellplate.Bacterial inoculumswerepreparedbywashingtheovernightgrownculturetwicewithphosphatebuffer saline(pH7.4)followedbydilutiontoachieveafinalconcentrationof108cfumL-1.100μLof bacterialinoculumand20μLoftriphenyltetrazoliumchloride(TTC;3mgmL-1solution) wereaddedineachwell.Subsequently,20μLof50μgmL-1silvernanoparticle(protein-capped orbare)solutionwasaddedandtheplateswereincubatedfor18hoursat37°Cunderdarkcon- ditions.Thetriphenylformazan(TPF)formedwasmeasuredat485nmusinganELISAreader. TheMICassaywasdoneintriplicateandexecutedthricetovalidatetheMICvaluesforthe eachtestedbacterialspecies. Assaysforantibacterialmechanism. Thegenerationofintracellularreactiveoxygenspe- cies(ROS)inpresenceofprotein-cappedorbaresilvernanoparticleswasdeterminedusingan oxidation-sensitivefluorescentdye2,7-dichlorodihydrofluoresceindiacetate(DCFH-DA)in triplicateasperthestandardprotocol[29].Briefly,theovernightgrownbacterialcells(108cfu mL-1)werewashedthricewithphosphate-bufferedsaline(pH7.4)andfurthersuspendedin freshnutrientbroth.DCFH-DA(10μMinphosphate-bufferedsaline)wasmixedinthe mediumataratioof1:2,000(dye:medium)andincubatedfor30minat37°Cindarkcondi- tionstosuccessfullypenetratethedyeintothebacterialcells.TheDCFH-DAloadedcellswere separatedfromthefreedyemoleculesbycentrifugationat8,000rpmfor5minfollowedbya finalwashwiththephosphate-bufferedsaline(pH7.4).Thebacterialpelletswereexposedto protein-cappedorbaresilvernanoparticlesasmentionedearlier.Inlivingbacterialcells, PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 4/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs intracellularesterasesresultinhydrolysisofDCFH-DAtonon-fluorescent2,7-dichlorodihy- drofluorescin(DCFH)whichinpresenceofROSoxidizestofluorescentdichlorodihydrofluor- escin(DCF)[30].ThefluorescentsignalintensityofDCFwasmeasuredbyPerkinElmer VICTORXMultilabelPlateReaderatanexcitationandemissionwavelengthof485nmand 535nm,respectively.Bacterialcellsincubatedin25mMascorbicacidfor1hbeforeDCFH-DA exposurewereusedaspositivecontrolwhilecellswithoutDCFH-DAtreatmentwereusedas negativecontrol[31]. Peroxidaseandsuperoxidedismutase(SOD)activitiesweremeasuredintriplicatefollowing themethodofHochmanandGoldberg[32]andAroraetal.[33],respectively.Afterexposure, thebacterialcellswerecentrifugedat8,000rpmfor5minandthepelletwassonicatedto obtainthecrudeenzymeextract.Bacterialculturewithoutnanoparticletreatmentservedas control. Reactionmixturefortheassayofperoxidasecontained1mLof0.01Mpyrogallol,2mLof 0.1Mphosphatebuffer(pH6.0),and1mLof5mMhydrogenperoxide[32].Thereactionwas initiatedbyadding1mLofenzymeextractandthemixturewasincubatedat25°Cfor5min. Subsequently,thereactionwasterminatedbyadding1mLof2.5NH SO andtheamountof 2 4 purpurogallinformedwasestimatedbymeasuringtheabsorbanceat420nm.Inblank,1mL ofsterilewaterwasusedinsteadofextract.Oneunitofperoxidasewasdefinedastheamount ofenzymerequiredtoform1mgofpurpurogallinperminunderthespecifiedconditions. TheSODassayisbasedontheabilityofSODtoinhibitthephotochemicalreductionof nitrobluetetrazolium(NBT)[33].ReactionmixturefortheassayofSODcontained13.0mM methionine,6.3μMNBT,6.5μMriboflavin,0.1mMEDTA,and50mMphosphatebuffer(pH 7.8).Thereactionwasinitiatedbyadding500μlenzymeextract(diluted10times)to1.5mLof reactionmixturefollowedbyincubationat30°Cfor10minunder6000luxlightintensity. Afterincubation,thetubeswereimmediatelytransferredtodarkconditionsandtheabsor- bancewasmeasuredat560nm.Reactionmixturecontainingsterilewaterinsteadofenzyme extractservedasblank.Thenon-irradiatedreactionmixtureservedasnegativecontrol.One unitoftheSODactivitywasdefinedastheamountofenzymerequiredtoinhibitthereduction ofNBTby50%underthespecifiedconditions. Malondialdehyde(MDA)formation,ameasureofmembranedamagewasmonitoredusing thiobarbituricacid(TBA)asaprobemolecule[34].Afterexposuretoprotein-cappedorbare silvernanoparticles,thebacterialcellswerehydratedin1mLof2.5%(w/v)trichloroaceticacid (TCA)andsubsequentlycentrifugedat12,000rpmfor20minat4°C.Thesupernatant(100μl) wasmixedwith0.5%(w/v)TBAreagentpreparedin20%(w/v)TCA.Thereactionmixture washeatedat100°Cfor30mininawaterbathfollowedbycentrifugationat12,000rpmfor 10minat4°C.TheabsorbanceoftheMDA-TBAadductwasmeasuredat532nm.MDAcon- tentwasexpressedaspicomolespermgofproteinusingamolarextinctioncoefficientof1.56 mM-1cm-1[34].Theextentofmembraneleakagewasalsodeterminedbyquantificationof protein[35],totalsugar[36]andnucleicacidcontent.Thenucleicacidleakagewasdetectedby measuringtheabsorbanceofculturesupernatantat260nm(1ODunit=50μgmL-1nucleic acid). Inductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES)measurements. Thedissolutionofsilverionsfromprotein-cappedorbaresilvernanoparticleswasmeasured innutrientmediumafterexposuretobacterialcells.Thesilverionswereseparatedbydialyzing theculturemediumagainststerileMilli-Qwaterfor12husinga12kDacellulosemembrane andmeasuredbyShimadzuICPS-7500instrument.Thesilverionconcentrationinnutrient medium(withoutsilvernanoparticles)wasusedascontrol. TEMimaging. InordertopreparesampleforTEMimaging,nanoparticletreatedbacterial cellswerecentrifugedat5,000rpmfor2min.Thebacterialpelletswerewashedtwicewith PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 5/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs Fig1.UVvisiblespectrumofreactionmediumasafunctionoftime(0,12,24,48and72h).Insetshows tubescontainingfungalcell-freefiltrate(a)withoutand(b)withsilvernitratesolutionafter72hofreaction. doi:10.1371/journal.pone.0134337.g001 phosphatebuffersaline(pH7.2)followedbyapre-fixationstepwith2.5%glutaraldehyde(pre- paredin0.1Mcacodylatebuffer)for2hat4°C.Post-fixationofthebacterialcellswasper- formedwith1%OsO treatmentfor1hat4°C.Afterpost-fixation,theOsO solutionwas 4 4 removedbywashingtwicethebacterialcellswith0.1Mcacodylatebufferfollowedbystaining withfiltereduranylacetate(1%)solution.ForTEMimaging,adropofstainedbacterialsample wasplacedonacarbon-coatedcoppergridanddriedovernightinavacuumdesiccator.Thegrids wereobservedonaHitachiH-7650TEMinstrumentoperatedataconstantvoltageof100kV. ResultsandDiscussion Characterizationofprotein-cappedandbaresilvernanoparticles Agradualchangeinthecolourofreactionmedium(containingfungalcell-freefiltrateand precursorsilverions)fromcolourlesstoreddishbrownrevealedavisualevidenceforsilver nanoparticlesynthesis(Fig1inset).UV-visiblespectrumshowedagradualincreaseinthe absorbanceat429nmwithrespecttotime(Fig1).Theabsorptionmaximaat429nmcanbe attributedtothesurfaceplasmonresonance(SPR)vibrationsofsynthesizedsilvernanoparti- cles[37].Nofurtherincreaseinabsorbancewasobservedafter72hofreaction(datanot shown),whichindicatedthecompletereductionofprecursorsilverionsinreactionmedium. Stabilityofas-synthesizedsilvernanoparticleswasmonitoredperiodicallyformorethanthree months.Itwasobservedthatthenanoparticlesolutionwasextremelystableatroomtempera- ture,withnoevidenceofparticleaggregationasdeterminedbyUV-visiblespectroscopy measurements. TEMmicrograph(Fig2A)revealedthepresenceofmono-dispersedandpredominantly sphericalparticleswithnovisibleaggregation.TheSAEDpattern(Fig2Ainset)atteststhe crystallanityofsilvernanoparticles.Theparticlesizedistributionhistogramobtainedfrom TEMmeasurementsrevealedthatmostoftheparticlesrangedbetween40–80nmwithamean diameterof54±8.9nm(Fig2B).Theseresultswereinwellagreementwiththevaluesobtained byDLSmeasurements(Fig2C).Ithasbeenwellreportedthatdifferentfungicansynthesize nanoparticlesofvariedcomposition,sizesandshapeswhichmaybeduetothedifferencesin theirextracellularproteinprofiles[38–40]. PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 6/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 7/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs Fig2.(A)Arepresentativetransmissionelectronmicrographshowingsphericalshapedsilver nanoparticles(scalebarequivalentto50nm).InsetshowingSAEDpatternrecordedfromasingle nanoparticle.Particlesizedistributionhistogramofsilvernanoparticlesasdeterminedusing(B) transmissionelectronmicroscopeand(C)dynamiclightscatteringmeasurements. doi:10.1371/journal.pone.0134337.g002 X-raydiffractionpatternrecordedbypreparingdrop-coatedfilmofprotein-cappedsilver nanoparticlesfurthervalidatedthecrystallinenatureofnanoparticles.Thewell-definedpeaks at2θvaluesof38.03°,46.18°,64.60°,and77.18°correspondsto(111),(200),(220)and(311) planesofsilver,respectively(Fig3A).Thesevalueswereincompleteagreementwiththeface- centeredcubic(fcc)latticestructureofcrystallinesilver(JCPDSfileno.04–0783).Asimilar patternofXRDspectrumhasbeenreportedformetallicsilvernanoparticlessynthesizedby otherfungi[41].EDSwascarriedouttodeterminetheelementalcompositionofas-synthe- sizednanoparticlesandcappingmolecules.Anintenseopticalabsorptionbandat3.0KeV Fig3.(A)XRDspectrumofas-synthesizedprotein-cappedsilvernanoparticleswithBragg’s diffractionvaluesshowninparentheses.(B)EDSspectrumshowingtheelementalcompositionof silvernanoparticles. doi:10.1371/journal.pone.0134337.g003 PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 8/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs Fig4.(A)FTIRspectraand(B)Photoluminescencespectraofprotein-cappedandbaresilver nanoparticles. doi:10.1371/journal.pone.0134337.g004 confirmedthepresenceofpuremetallicsilvernanoparticles(Fig3B).Otherpeaksobservedfor C,NandOatomsindicatedthepresenceofproteinsascappingmolecules. UV-visibleabsorptionspectrumofsupernatantobtainedafterSDStreatmentofassynthe- sizedsilvernanoparticlesshowedabroadabsorptionpeaknear280nmwhichcorrespondsto aromaticaminoacidsofproteinsS1Fig[28].FTIRandphotoluminescencemeasurementsof protein-cappedandbaresilvernanoparticleswerecarriedouttoconfirmtheremovalofcap- pingproteinsfromthesurfaceofsilvernanoparticles.FTIRspectrumofprotein-cappedsilver nanoparticles(Fig4A)exhibitedcharacteristicbandsofamideIandamideIIatwavenumbers 1651and1539cm-1,respectivelyandC-Nstretchingvibrationbandofaliphaticamineat1029 cm-1[28].ThedisappearanceofthesecharacteristicproteinbandsintheFTIRspectrumof baresilvernanoparticlesclearlyindicatedtheremovalofproteinsfromnanoparticles.ThePL spectrum(Fig4B)ofprotein-cappedsilvernanoparticlesshowedadistinctemissionpeakat 340nm,whichcouldbeattributedtothetyrosineresiduesofcappingproteins.Incontrast, PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 9/19 SurfaceModificationEnhancesAntibacterialActivityofAgNPs Fig5.(A)UVvisiblespectraand(B)particlesizedistributionofprotein-cappedandbaresilver nanoparticles. doi:10.1371/journal.pone.0134337.g005 absenceofemissionpeakincaseofbaresilvernanoparticlesconfirmedthecompleteremoval ofproteinmolecules. TheremovalofproteinshellbySDStreatmentreducedthesizeofnanoparticlesasreflected bytheblueshiftobservedintheSPRpeakfrom429to425nmincaseofbaresilvernanoparti- cle(Fig5A).Calzolaietal.[42]reportedasimilarobservationwhilestudyinginteraction betweenhumanubiquitinandgoldnanoparticles.Furthermore,hydrodynamicparticlesize distributionandpolydispersityindex(PDI)analysiswascarriedouttoinvestigatetheoccu- pancyofproteinshellincaseofprotein-cappedsilvernanoparticles.Theprotein-cappedsilver nanoparticlesshowedameanparticlesizeof90.53nm(PDI=0.357)whichdecreasedto58.39 nm(PDI=0.396)incaseofbaresilvernanoparticlesindicatingthesuccessfulremovalofpro- teinshellfromnanoparticlesafterSDStreatment(Fig5B).Theplausiblereasonformulti-lay- eredshell(~32nmthick)couldbethenon-specificandnon-competitivebindingofproteins presentinthesurroundingenvironment(reactionmedium).Thepersistenceofthickprotein shellonbiogenicsilvernanoparticleshasattractedourattentiontocomparetheantibacterial efficacyofprotein-cappednanoparticlesincomparisontobaresilvernanoparticles. Antibacterialefficacyofprotein-cappedandbaresilvernanoparticles Thetime-dependentbacterialgrowthinpresenceofprotein-cappedandbaresilvernanoparti- cleswasmonitoredbymeasuringtheabsorbanceat600nm[43].Theprotein-cappedaswellas PLOSONE|DOI:10.1371/journal.pone.0134337 July30,2015 10/19
Description: