ebook img

Remote sensing retrieval of urban land surface temperature in hot-humid region PDF

2018·0.65 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Remote sensing retrieval of urban land surface temperature in hot-humid region

UrbanClimate24(2018)299–310 ContentslistsavailableatScienceDirect Urban Climate journalhomepage:http://www.elsevier.com/locate/uclim Remote sensing retrieval of urban land surface temperature in hot-humid region ⁎ YurongShi,YufengZhang StateKeyLaboratoryofSubtropicalBuildingScience,DepartmentofArchitecture,SouthChinaUniversityofTechnology,NO381.Wushanroad, Tianhedistrict,510640Guangzhou,PRChina a r t i c l e i n f o a b s t r a c t Articlehistory: Withtherapidurbanizationandtheglobalclimatechange,theurban Received19October2016 climateproblemsbecomeincreasinglyseriousinthehot-humidregion Receivedinrevisedform3January2017 ofChina.Thisstudyestablishedthesatellite-basedremotesensingre- Accepted4January2017 trievalmethodsforurbanlandsurfacetemperature(LST)basedonthe mono-windowalgorithmandtheestimationmethodsofgroundemis- Keywords: sivityandatmospherictransmittance.ThroughretrievingLSTofHaizhu Landsurfacetemperature districtinGuangzhouinasunnysummerday,itwasfoundthatthere- Urbanclimate trievalmethodswereabletodistinguishthesurfacetemperaturevaria- Remotesensing tionsfordifferentunderlyingurbansurfaces.Bycomparisonwiththe Mono-windowalgorithm fieldobservations,itwasfoundthattheerroroftheretrievalmethods Fieldobservation wasabout1.0°CandthemethodswereapplicableforLSTretrievalin thecitiesinthehot-humidregion.Byapplyingtheretrievalmethods, itshowedthatthecoolingeffectsofwaterandvegetationonsurround- ingurbanlandswereeffectivewithindistancesof250mand350m,re- spectively.Thewatercoolingeffectcorrelatedwithitsareaandwidth positively,andthevegetationLSTcorrelatedwithitscanopydensity negatively.Thepresentstudyprovidesreliabletechniquesforobserving andevaluatingurbanLSTandusefulguidanceforplanninganddesignof urbanclimateinthehot-humidregion. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction Withtherapidurbanizationandtheglobalclimatechange,theurbanenvironmentandclimateproblems becomeincreasinglyseriousinChina.Inthehot-humidregionofChina,thesummerislong,hotandhumid, andtheurbanclimateproblemissevere.Ononehand,mortalityincreaseswithurbanwarming.Forinstance, ⁎ Correspondingauthor. E-mailaddresses:[email protected](Y.Shi),[email protected](Y.Zhang) http://dx.doi.org/10.1016/j.uclim.2017.01.001 2212-0955©2017ElsevierB.V.Allrightsreserved. 300 Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 themeandailycountofnon-accidentaldeathreached32.6during2006to2009andthetemperature-mortal- ityrelationshipshowedaUshapeinGuangzhou,abigcityinthehot-humidregionofChina(Wuetal.,2013). Ontheotherhand,buildingenergyconsumptionsincreasewithurbanwarming.Forexample,a10%increase inair-conditioningdemandwascausedbytheheatislandinHongKong(Chan,2011).Theneighborhoodmi- croclimate,asthemicro-scaleofurbanclimate,relatestopeople'sdailylifeveryclosely(Rothetal.,1989).Itis thusimportantandnecessarytostudytheurbanclimateandtheneighborhoodmicroclimateinthehot- humidregionforimprovinglivingenvironmentalquality,reducingbuildingenergyconsumptionandmitigat- ingurbanheatisland. Previousstudiesonurbanclimateandneighborhoodmicroclimatearemainlyfocusedonfiledstudyofin- dividualcasesandhardtobegeneralized.Ontheotherside,theadvancedtechnologiesofremotesensingare mainlyappliedtolarge-scalefieldslikeagricultureandocean.Onlyafewstudieshavebeencarriedoutinthe citiesofSingapore(Nichol,1996),Tel-Aviv(Saaronietal.,2000),SaltLakeValley(Gluchetal.,2006)and China(HeandXu,2012;Ye,2009;WangandZhang,2010).Theprimaryworkofutilizingremotesensing tourbanclimateandneighborhoodmicroclimatestudiesistoacquirelandcharacteristicparametersre- trievedbyremotesensingtechniques.Landsurfacetemperature(LST)hasbeenprovedtobeanimportant factorcontrollingthephysical,chemicalandbiologicalprocesseson Earth'ssurface(QinandKarnieli, 1999).Intherecentyears,theremotesensingtechniquesthatbasedonsatelliteandaircrafthavebeenad- vancedgreatlyandappliedextensivelyinurbanclimate,forinstance,VoogtandOke(1997,1998)and Chenetal.(2014)havedonemanyworksonurbanclimatebyremotesensingtechniques.Byusingthere- motesensingtechniques,itcanacquiretheurbanclimaticinformationquicklyandbroadlyandprovidea largenumberofneighborhoodmicroclimaticdatabytakingitsadvantagesonmacro,multibandandhigh resolution. ThispaperaimedatestablishingremotesensingretrievalmethodsforurbanLSTbasedonpreviousstudies andtestingperformancesoftheretrievalmethodsthroughfieldobservationsinthecityinthehot-humidre- gionofChina.Furthermore,thecoolingeffectsofwaterandvegetationonurbanLSTwillbequantitatively studiedbyusingthevalidatedmethods.Thisstudyprovidesreliablemethodsforremotesensingretrieval ofurbanLST,andusefulguidanceforurbanclimateplanninganddesigninthehot-humidregion. 2.Retrievalmethods 2.1.Mono-windowalgorithm Therearethreemethods,i.e.,atmosphericcorrectionmethod(alsocalledradiativetransferequation), mono-windowalgorithm(Qinetal.,2001),andsinglechannelalgorithm(Jimenez-MunozandSobrino, 2003),appropriateforretrievingLSTbyusingthesatellitethermalbanddata.Theatmosphericcorrection methodneedstoknowtheinsituatmosphericprofiledata.Itiscomplicatedandhardtoacquireandhuge errorwouldbeproducedbyitsestimation.Themono-windowalgorithmandthesinglechannelalgorithm arebothderivedfromthethermalradiancetransferequation,whicharesimple,needingfewinputsand withrelativelylesserror.SomestudiescomparedthethreemethodswiththefieldobservationsintheChi- nesecitiesofBeijing(Baietal.,2008)andGansu(Mengetal.,2005),andconcludedthattheaccuracyof themono-windowalgorithmwashighestforretrievingLST.Therefore,themono-windowalgorithmwasde- terminedtobethemethodforretrievingurbanLSTinthepresentstudy. Themono-windowalgorithmretrievesLST(T)byknowinggroundemissivity,effectivemeanatmospher- s ictemperatureandatmospherictransmittancebyEqs.(1)–(3): T ¼½að1−C−DÞþ½bð1−C−DÞþCþD(cid:2)T −DT (cid:2)=C ð1Þ s 6 0 C¼ετ ð2Þ D¼ð1−τÞ½1þð1−εÞτ(cid:2) ð3Þ whereaandbareconstants,a=−67.355351,andb=0.458606;T isthebrightnesstemperatureinK;T is 6 0 the effective mean atmospheric temperature in K; ε is ground emissivity; τ is atmospheric transmittance. Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 301 T canbecalculatedbyusingtheformulasprovidedforvarioussatellites.T canbeevaluatedbyanalysisof 6 0 thestandardatmosphereprofiledataandthevariationsofatmosphericmoistureandairtemperaturewith theincreasingelevation.Themethodsforestimationsofεandτarepresentedinthefollowingsections. 2.2.Groundemissivityestimation Fortheremotesensingimages,landsurfacescanbedividedintowater,soil,vegetationandmixedpixels. Themixedpixelsaremostcommoninthesensingremoteimagesofurbansurfaces.TheNDVIthreshold methodproposedbyValorandCaselles(1996)isthemostwidelyusedmethodtoestimategroundemissivity ofthemixedpixels.ItestimatesgroundemissivitybyusingthevaluesofNDVIandgreencoverageratio. ThepresentstudyadoptedtheimprovedmodelproposedbyLietal.(2004)toobtaingreencoverageratio (P)ofthemixedpixels: v h (cid:1) (cid:3)i P ¼ ðNDVI−NDVI Þ= NDVI −NDVI ð4Þ v Soil Veg Soil whereNDVIisnormalizeddifferentialvegetationindex;NDVI andNDVI arenormalizeddifferentialveg- Soil Veg etationindexofsoilandvegetation,setasempiricalvaluesof0.05and0.7,respectively. TheNDVIthresholdmethodwaspromotedbyQinetal.(2004),whichwasadoptedtoestimateground emissivityoftheurbanlandsurface. ε¼P R ε þð1−P ÞR ε þdε ð5Þ v v v v m m whereεisgroundemissivity;ε andε areemissivityofvegetationandbuildingsurface,respectively,setas v m empiricalvaluesof0.986and0.970;dεisinteractionofthermalradiationbetweenvegetationandbuilding surface,ignoredwhenthelandsurfaceisrelativelyeven;R andR aretemperatureratioofvegetationand v m buildingsurfaces,calculatedbytheempiricalequations: R ¼0:9332þ0:0585P ð6Þ v v R ¼0:9886þ0:1287P ð7Þ m v CombiningEqs.(5)–(7),groundemissivityofthemixedpixelsintheurbanremotesensingimagescanbe estimatedby: ε¼0:9589þ0:086P −0:0671P 2 ð8Þ v v 2.3.Atmospherictransmittanceestimation Atmospherictransmittanceisaffectedbyvariousfactorslikeairpressure,airtemperature,watervapor content,aerosolcontent,andconcentrationsofCO ,O ,CO,NH etc.Theatmosphericsimulationprograms 2 3 4 suchas6S,LOWTRANandMODTRANcanbeusedtoestimateatmospherictransmittance.Inaddition, manystudiesfoundthatwatervaporcontentisakeyfactoraffectingatmospherictransmittance,andthe higherthewatervaporcontent,thelowertheatmospherictransmittanceis.MaoandQin(2004)mentioned thatitwouldimprovethereal-timeperformanceofatmospherictransmittanceestimationbyusingtherela- tionshipbetweenwatervaporcontentandthermalinfraredbandtransmittance. ThewatervaporcontentwasestimatedusingKaufmanandGao's(1992)modelinthepresentstudyas follows: 0 (cid:1) (cid:3)1 α− ln ρ19 2 ω¼@ ρ2 A ð9Þ β whereωiswatervaporcontenting/cm2;αandβarecoefficient,setas0.02and0.651,respectively;ρ2and ρ19arethewavelengthofband2(0.841–0.876μm)andband19(0.915–0.965μm)forMODISsatellite. 302 Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 3.Researchmethods 3.1.Climateandsite Guangzhou,locatedatlatitude23°08′Nandlongitude113°19′E,isatypicalexampleofacityinthehot- humidregionofChina.Thelongsummersarehotandhumidwithplentifulrainfallandthewintersare warmandshort.Themonthlymeantemperatureis28.4°Candthehumidityis83%inJulyand13.3°Cand 74%,respectively,inJanuary.Theprevalentwindissoutheastwindinsummerandnorthwindinwinter andtheannualsunshinehoursis1906h.ThepresentstudywasconductedinGuangzhou. ThesitetobestudiedislocatedinthewestpartofHaizhudistrictinGuangzhouasshowninFig.1.Thesite isatypicalresidentialareaandconsistsofmanyneighborhoods.Mostbuildingsarehigh-riseandincompact arrangement,andfewarelow-rise.Thegreeningiscontinuouslydistributed.Thereareverdanttreesinthe neighborhoodsandsparsetreesalongbothsidesoftheroads.Theexteriorsurfacesofbuildingsaremainly lighttilingandfewareplaster.Theroadwaysarecoveredbyasphalt. 3.2.Dataacquisitionandprocess Currently,thesatellitesofMODIS,ASTER,Landsathavethermalbanddata,ofwhich,thedataofLandsatis easytoacquireandinhighresolution.TheLandsathasthreethermalbandsensors,TM,ETM+,andTIRS,and theirspatialresolutionsare120m,60m,100m,respectively.TheLandsatthermalbanddatawasusedinthe presentstudy.BycheckingthedatapassedthroughGuangzhouinrecenttime,itwasfoundthatthedataat GTM2:51am(localTime10:51am),September18,2016,wasappropriateforLSTanalysisbecauseitwas sunnyandcloudlessatthattime. TheLSTofthewholeHaizhudistrictinGuangzhouwasretrievedbyusingthemethodsinSection2,and thedetaileddataacquisitionandprocessareillustratedasfollows. 3.2.1.Spectralradiance Thespectralradiance(L )ofthermalband10fromTIRSsensorwasacquiredbyusingthefunctionofra- 6 diometriccalibrationofthesoftwareENVI. Fig.1.Visibleimagemapofthestudiedsite. (FromQuickbirth,2010). Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 303 3.2.2.Brightnesstemperature Thebrightnesstemperature(T )thatcorrespondstothespectralradiance(L )wascalculatedbyusingthe 6 6 approximateformofPlanck'sradiancefunction: T ¼K = lnð1þK =L Þ ð10Þ 6 2 1 6 whereK andK wereacquiredfromtheheaderfileoftheLandsatsatellitedata,fortheTIRSdata,K = 1 2 1 774.89W/(m2·μm·sr),K =1321.08K. 2 3.2.3.Effectivemeanatmospherictemperature Qinetal.(2003)providedfourlinearrelationshipsbetweenT andT forvariousstandardatmosphere 0 a conditions.Therelationshipforthetropicalstandardatmosphereconditionwasusedinthepresentstudyac- cordingtoDeng(2010),thatis: T ¼17:9769þ0:91715T ð11Þ 0 a whereT isnearsurfaceairtemperatureandcanbereplacedbythelocalmeteorologicalobservationdata a ofdailymeanairtemperatureatthedayofsatellitepassing. 3.2.4.Atmospherictransmittance ThewatervaporcontentwascalculatedbyEq.(9).Qinetal.(2003)andGuetal.(2011)studiedthechang- esofatmospherictransmittancewithwatervaporcontent(0.4–6.4g/cm2)forthemid-latitudeatmosphere conditionsbyusingLOWTRAN7andMODTRAN4,andfoundthatthegoodlinearrelationshipsexistedbe- tweenatmospherictransmittanceandwatervaporcontent.ThisstudyutilizedMODTRAN4tocalculatethe atmospherictransmittanceinthethermalbandof10.40–12.50μmbyusingtheatmosphericprofiledata ofsubtropical30°NinJuly. 3.2.5.Groundemissivity ThegroundemissivityofthesitewasestimatedbythemethodsinSection2.2,i.e.,theNDVIvaluewascal- culatedbysoftwareENVI,thegreencoverageratiowasobtainedbyEq.(4),andthegroundemissivitywas estimatedbyEq.(8). 3.3.Fieldobservations SincefieldobservationofLSTforthewholesitewasnotfeasible,asmallandrepresentativepatchofthe sitewasselectedasshowninFig.2a.Thelandsurfaceofthepatchconsistsofbuildings,vegetation,and Fig.2.Theobservedpatchandthemeasurementmethod.aTheobservedpatch.bThethermalinfraredcamera. 304 Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 roads.Thebuildingsaremiddle-riseandhigh-rise.Thegreencoverageratiorangesfrom4%to28%andthe roadscover20%ofthesurface.Allofthesecharacteristicsareclosetothoseofthewholesite,indicating thattheselectedpatchisrepresentativetothesiteintheaspectoflandsurface. ThermalInfraredimagesofthepatchwerephotographedatthetimewhentheLandsatsatellitepassed through.TheinstrumentisNECAvioTH9260ThermalInfraredcamera,anditsmeasuringrangeis−40to 500°C,precisionis±2°Candresolutionis0.06to0.12°C.Thecamerawasfixedattheroofofatallbuilding neartothepatch(Fig.2b),84mabovetheground,takingphotosfromtoptobottom.Theviewanglewasap- proximatedtobe30°.TheLSTofthepatchwasobtainedafteremissivitycorrection,ofwhichtheemissivity wassettobe0.97accordingtotheretrievalresults. 4.Results 4.1.Theretrievalparameters Themeannear-surfaceairtemperature(T)was28.7°CforthesiteatthetimetheLandsatsatellitepassed a through,basedonwhich,theeffectivemeanatmospherictemperature(T )wasobtainedas294.8K.The 0 watervaporcontentwas4.5g/cm2,whichisinagreementwiththepreviousfindingsinthehot-humidregion. Theatmospherictransmittancewas0.39,theNDVIvalueschangedfrom−0.03to0.43,andthegroundemis- sivitywasinrangeof0.955–0.986. Fig.3showstheresultsofgreencoverageratioforthesite.Itisshownthatinthemajorityofthesitethe greencoverageratiowasbetween4%and28%. 4.2.LSTretrievals TheretrievedLSTimagemapofthewholeHaizhudistrictisshowninFig.4,ofwhich,thescopesmarkedin blacklinearethestudiedsiteinthepresentpaper.ThevisibleimagemapisalsoprovidedasshowninFig.5. ItcanbeseenfromFig.5thatthePearlRiverrunsthroughtheHaizhudistrictbyseparatingintotwo branchesandconvergesafterwards.FortheareathatsurroundedbythePearlRiver,thewestpartshows greatdevelopmentintensityandhighbuildingdensity,whiletheeastpartshowssmalldevelopmentinten- sityandlargegreenspace.Abovethesurroundedareabuildingsarebuiltintensively,whilebelowthe surroundedareabuildingsarebuiltloosely.CombingFigs.4and5,itcanbeknownthatthereexistedgood relationshipsbetweenLSTanddevelopmentintensityandlandtype,showingthatLSTwasthehighestfor theintensivelydevelopedareas,followedbythelessdevelopedareasandroads,andLSTofgreenand waterareasweresmallest.Thisindicatedthattheproposedretrievalmethodswereabletodistinguishthe surfacetemperaturevariationsfordifferentunderlyingurbansurfaces. TheanalysisofthescopemarkedinblacklineinFig.4showedthatthemean,maximumandminimumLST ofthesitewere39.8°C,47.9°Cand34.2°C,respectively.ItcanbeseenfromFig.5thatLSTofthesitewas higherthanotherareasofHaizhudistrict.Thisprobablybecausethatthebuildingdensityofthesiteislarger. Fig.3.Greencoverageratioofthesite.(Forimagemap,thedeeperthegreencolor,thelargerthegreencoverageratiois) Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 305 Fig.4.LSTretrievalimagemapoftheHaizhudistrictinGuangzhou. (GTM2:51am,September18,2016). TheabovefindingswerefurtherconfirmedbycomparingFig.4withtheLCZclassificationmapofHaizhu districtshowninFig.6.ItcanbeseenthatLSTwasthehighestfortheLCZofcompactbuildings,followedby theLCZofopenbuildings,andLSTofwaterandvegetationweresmallest.Inaddition,therewerestillsome areaswithlow-risebuildingsbuthighLST,andsomeareaswithcompactandmiddle-risebuildingsbutlow LST,indicatingthatLSTmaybenotonlyaffectedbybuildingdensityandheight,butalsobysurfacepavement andgreening. Fig.5.VisibleimagemapoftheHaizhudistrictinGuangzhou. 306 Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 Fig.6.LCZclassificationmapofHaizhudistrictinGuangzhou. (http://geopedia.world/#T4_L107_x12622485.993643802_y2641625.479021549_s11_b17). 4.3.LSTobservations Fig.7showstheLSTobservationsforthepatch.Thehighertemperatureswereobservedforthesurfaces directlyexposedtosolarradiation,liketheroofandpartoftheroads;whilethelowertemperatureswereob- servedforthesurfacesnotexposedtodirectsolarradiation,likewallsandvegetation.Themeansurfacetem- peraturesofroof,road,wallsandvegetationwere40.7°C,32.5°C,31.8°Cand31.5°C,respectively. 4.4.Validationofretrievalmethods AsthewidthofLandsatimagewas185km,theremightbeacertainviewdifferencethatwasestimatedas azenithangleof3°betweenpixelofimagemarginandcentralscanningline(Qinetal.,2003).Accordingto Fig.7.Thermalinfraredimageofthepatch. (GTM2:51am,September18,2016). Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 307 this,thesurfacesthatcouldbeobserveddirectlyfromaverticalangle,includingtheroofs,roads,andvegeta- tion,wereconsideredandtheiraveragetemperaturewasobtainedas36.8°Cbasedonthefieldobservations. Thecomparisonbetweentheretrievalresultsandthemeasuredresultsreporteda3°Cdifferencebetween them.Thepreviousstudiesindicatedthataverageerrorofthemono-windowalgorithmwaswithin1.1°C. ConsideringtheaccuracyofthermalInfraredcamerawas±2°C,webelievedthatthepresentstudyvalidated theresultsofpreviousstudies,thatis,theerrorofthemono-windowalgorithmforurbanLSTretrievalwas about1.0°C.Theabovefindingsindicatethattheretrievalmethodsbasedonthemono-windowalgorithm andtheestimationmethodsforgroundemissivityandatmospherictransmittanceareapplicableforurban LSTretrievalinGuangzhouandothercitiesinthehot-humidregion.Hereinafter,thecoolingeffectsof waterandvegetationontheurbanLSTwereanalyzedbyusingthevalidatedretrievalmethods. 4.5.Watercoolingeffect TheimagemapsofwaterandvegetationinGuangzhouwereextractedbytheNDVIthresholdmethodas showninFig.8.TheNDVIvalueswerefrom−1to−0.5forwater,and0.2–0.8forvegetation. TwelveriversinGuangzhouwithvariousareas,lengthsandwidthswereselectedassamplestobestudied. Takingwaterareaascenter,thebufferzoneswerebuiltevery50moutward(totally10bufferzonesand 500mawayfromthecenter),andthetemperaturedrop,namelythemeanLSToftheurbanlandina 500mrangeoutsidethebufferzoneminusthemeanLSTofthebufferzonewasobtainedbyusingARCGIS. ThechangeoftemperaturedropwithbufferdistanceforwaterisshowninFig.9. Itcanbeseenthatwhenthebufferdistancebecamegreater,thetemperaturedropdecreasedrapidlyini- tially,andthentendedtobestablewithathresholdof250m,thatistosay,thecoolingeffectofwateronits surroundingurbanlandswassignificantwithinadistanceof250m. TakingtheLSTdifferencebetweenwateranditscoolingurbansurface(300mrange)astheindexofwater coolingeffect,therelationshipbetweenwatercoolingeffectandwaterarea,lengthandwidthwereanalyzed asshowninFig.10.Thewatercoolingeffectwascorrelatedwiththewaterareaandwidthpositively,withthe correlationcoefficientsof0.865and0.879,respectively,whileindependentofthewatershape. Fig.8.ExtractedimagemapsofwaterandvegetationinGuangzhou.aWater.bVegetation. 308 Y.Shi,Y.Zhang/UrbanClimate24(2018)299–310 Fig.9.Changeoftemperaturedropwithbufferdistanceforwater. 4.6.Vegetationcoolingeffect ThirteenpiecesofforestryinGuangzhouwithdifferentarea,shape,andcanopydensitywereselectedas samplestobestudied.Thedefinitionoftemperaturedropandtheanalysismethodkeptthesamewiththose ofwater.TheresultsareshowninFig.11. Itcanbeseenthatwhenthebufferdistancebecamegreater,thetemperaturedropdecreasedrapidlyini- tially,andthentendedtobestablewithathresholdof350m.Furtheranalysisontherelationshipsbetween Fig.10.Relationshipsbetweenwatercoolingeffectandwaterareaandwidth. Fig.11.Changeoftemperaturedropwithbufferdistanceforvegetation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.