Remote Sensing and Actuation Using Unmanned Vehicles IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard JohnB.Anderson,EditorinChief R.Abhari G.W.Arnold F.Canavero D.Goldgof B-M.Haemmerli D.Jacobson M.Lanzerotti O.P.Malik S.Nahavandi T.Samad G.Zobrist KennethMoore,DirectorofIEEEBookandInformationServices(BIS) TechnicalReviewers DongbingGu,UniversityofEssex IEEEPressSeriesonSystemsScienceandEngineering Acompletelistofthetitlesinthisseriesappearsattheendofthisvolume. Remote Sensing and Actuation Using Unmanned Vehicles Haiyang Chao YangQuan Chen Copyright©2012byTheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax (978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshould beaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317) 572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationData: Chao,Haiyang. Remotesensingandactuationusingunmannedvehicles/Haiyang Chao,YangquanChen. pages cm Includesbibliographicalreferencesandindex. ISBN978-1-118-12276-1(hardback) 1. Geomorphology–Remotesensing. 2. Environmentalmonitoring–Remote sensing. 3. Vehicles,Remotelypiloted. I. Chen,Yangquan,1966- II. Title. GB400.42.R4C462012 621.36’78–dc23 2012006660 PrintedintheUnitedStatesofAmerica. 10987654321 Tomyparentsandmybrother HaiyangChao Tomyfamily YangQuanChen Contents in Brief 1 Introduction 1 2 AggieAir:ALow-CostUnmannedAircraftSystemforRemoteSensing 15 3 AttitudeEstimationUsingLow-CostIMUsforSmallUnmanned AerialVehicles 53 4 LateralChannelFractionalOrderFlightControllerDesignfor aSmallUAV 77 5 RemoteSensingUsingSingleUnmannedAerialVehicle 101 6 CooperativeRemoteSensingUsingMultipleUnmannedVehicles 121 7 DiffusionControlUsingMobileSensorandActuatorNetworks 143 8 ConclusionsandFutureResearchSuggestions 167 9 Appendix 171 10 TopicIndex 197 vii Contents ListofFigures xv ListofTables xix Foreword xxi Preface xxiii Acknowledgments xxv Acronyms xxvii 1 Introduction 1 1.1 MonographRoadmap 1 1.1.1 SensingandControlintheInformation-RichWorld 1 1.1.2 TypicalCivilianApplicationScenarios 3 1.1.3 ChallengesinSensingandControlUsingUnmannedVehicles 5 1.2 ResearchMotivations 7 1.2.1 SmallUnmannedAircraftSystemDesignforRemoteSensing 7 1.2.2 StateEstimationforSmallUAVs 8 1.2.3 AdvancedFlightControlforSmallUAVs 9 1.2.4 CooperativeRemoteSensingUsingMultipleUAVs 10 1.2.5 DiffusionControlUsingMobileActuator andSensorNetworks 11 1.3 MonographContributions 11 1.4 MonographOrganization 12 References 12 2 AggieAir:ALow-CostUnmannedAircraftSystemforRemoteSensing 15 2.1 Introduction 15 2.2 SmallUASOverview 17 2.2.1 AutopilotHardware 19 2.2.2 AutopilotSoftware 21 2.2.3 TypicalAutopilotsforSmallUAVs 22 2.3 AggieAirUASPlatform 26 2.3.1 RemoteSensingRequirements 26 2.3.2 AggieAirSystemStructure 27 2.3.3 Flying-WingAirframe 30 2.3.4 OSAM-PaparazziAutopilot 31 ix x Contents 2.3.5 OSAMImagePayloadSubsystem 32 2.3.6 gRAIDImageGeoreferenceSubsystem 36 2.4 OSAM-PaparazziInterfaceDesignforIMUIntegration 39 2.4.1 HardwareInterfaceConnections 40 2.4.2 SoftwareInterfaceDesign 41 2.5 AggieAirUASTestProtocolandTuning 45 2.5.1 AggieAirUASTestProtocol 45 2.5.2 AggieAirControllerTuningProcedure 46 2.6 TypicalPlatformsandFlightTestResults 47 2.6.1 TypicalPlatforms 47 2.6.2 FlightTestResults 48 2.7 ChapterSummary 50 References 50 3 AttitudeEstimationUsingLow-CostIMUsforSmallUnmanned AerialVehicles 53 3.1 StateEstimationProblemDefinition 54 3.2 RigidBodyRotationsBasics 55 3.2.1 FrameDefinition 55 3.2.2 RotationRepresentations 56 3.2.3 ConversionBetweenRotationRepresentations 57 3.2.4 UAVKinematics 58 3.3 Low-CostInertialMeasurementUnits:HardwareandSensorSuites 60 3.3.1 IMUBasicsandNotations 60 3.3.2 SensorPacks 61 3.3.3 IMUCategories 63 3.3.4 ExampleLow-CostIMUs 63 3.4 AttitudeEstimationUsingComplementaryFiltersonSO(3) 65 3.4.1 PassiveComplementaryFilter 66 3.4.2 ExplicitComplementaryFilter 66 3.4.3 FlightTestResults 67 3.5 AttitudeEstimationUsingExtendedKalmanFilters 68 3.5.1 GeneralExtendedKalmanFilter 68 3.5.2 Quaternion-BasedExtendedKalmanFilter 69 3.5.3 EulerAngles-BasedExtendedKalmanFilter 69 3.6 AggieEKF:GPS-AidedExtendedKalmanFilter 70 3.7 ChapterSummary 74 References 74 4 LateralChannelFractionalOrderFlightControllerDesignfor aSmallUAV 77 4.1 Introduction 77 4.2 PreliminariesofUAVFlightControl 78 4.3 Roll-ChannelSystemIdentificationandControl 79 4.3.1 SystemModel 80 Contents xi 4.3.2 ExcitationSignalforSystemIdentification 80 4.3.3 ParameterOptimization 81 4.4 FractionalOrderControllerDesign 81 4.4.1 FractionalOrderOperators 81 4.4.2 PIλControllerDesign 82 4.4.3 FractionalOrderControllerImplementation 85 4.5 SimulationResults 86 4.5.1 IntroductiontoAerosimSimulationPlatform 87 4.5.2 Roll-ChannelSystemIdentification 87 4.5.3 Fractional-OrderPIControllerDesignProcedure 89 4.5.4 Integer-OrderPIDControllerDesign 90 4.5.5 Comparison 90 4.6 UAVFlightTestingResults 92 4.6.1 TheChangEUAVPlatform 92 4.6.2 SystemIdentification 94 4.6.3 ProportionalControllerandIntegerOrderPIControllerDesign 96 4.6.4 FractionalOrderPIControllerDesign 97 4.6.5 FlightTestResults 98 4.7 ChapterSummary 99 References 99 5 RemoteSensingUsingSingleUnmannedAerialVehicle 101 5.1 MotivationsforRemoteSensing 102 5.1.1 WaterManagementandIrrigationControlRequirements 102 5.1.2 IntroductionofRemoteSensing 102 5.2 RemoteSensingUsingSmallUAVs 103 5.2.1 CoverageControl 103 5.2.2 GeoreferenceProblem 105 5.3 SampleApplicationsforAggieAirUAS 109 5.3.1 Real-TimeSurveillance 109 5.3.2 FarmlandCoverage 109 5.3.3 RoadSurveying 111 5.3.4 WaterAreaCoverage 112 5.3.5 RiparianSurveillance 112 5.3.6 RemoteDataCollection 115 5.3.7 OtherApplications 116 5.4 ChapterSummary 119 References 119 6 CooperativeRemoteSensingUsingMultipleUnmannedVehicles 121 6.1 Consensus-BasedFormationControl 122 6.1.1 ConsensusAlgorithms 122 6.1.2 ImplementationofConsensusAlgorithms 123 6.1.3 MASnetHardwarePlatform 123 6.1.4 ExperimentalResults 125 6.2 SurfaceWindProfileMeasurementUsingMultipleUAVs 129 xii Contents 6.2.1 ProblemDefinition:WindProfileMeasurement 131 6.2.2 WindProfileMeasurementUsingUAVs 133 6.2.3 WindProfileMeasurementUsingMultipleUAVs 135 6.2.4 PreliminarySimulationandExperimentalResults 136 6.3 ChapterSummary 140 References 140 7 DiffusionControlUsingMobileSensorandActuatorNetworks 143 7.1 MotivationandBackground 143 7.2 MathematicalModelingandProblemFormulation 144 7.3 CVT-BasedDynamicalActuatorMotionSchedulingAlgorithm 146 7.3.1 MotionPlanningforActuatorswiththeFirst-OrderDynamics 146 7.3.2 MotionPlanningforActuatorswiththeSecond-OrderDynamics 147 7.3.3 NeutralizingControl 147 7.4 GroupingEffectinCVT-BasedDiffusionControl 147 7.4.1 GroupingforCVT-BasedDiffusionControl 148 7.4.2 DiffusionControlSimulationwithDifferentGroupSizes 148 7.4.3 GroupingEffectSummary 150 7.5 InformationConsensusinCVT-BasedDiffusionControl 154 7.5.1 BasicConsensusAlgorithm 154 7.5.2 RequirementsofDiffusionControl 154 7.5.3 Consensus-BasedCVTAlgorithm 155 7.6 SimulationResults 158 7.7 ChapterSummary 164 References 164 8 ConclusionsandFutureResearchSuggestions 167 8.1 Conclusions 167 8.2 FutureResearchSuggestions 168 8.2.1 VTOLUASDesignforCivilianApplications 168 8.2.2 MonitoringandControlofFast-EvolvingProcesses 169 8.2.3 OtherFutureResearchSuggestions 169 References 170 Appendix 171 A.1 ListofDocumentsforCSOISFlightTestProtocol 171 A.1.1 SampleCSOIS-OSAMFlightTestRequestForm 171 A.1.2 SampleCSOIS-OSAM48in.UAV(IR)In-labInspectionForm 172 A.1.3 SamplePreflightChecklist 172 A.2 IMU/GPSSerialCommunicationProtocols 173 A.2.1 u-bloxGPSSerialProtocol 173 A.2.2 CrossbowMNAVIMUSerialProtocol 173 A.2.3 MicrostrainGX2IMUSerialProtocol 174 A.2.4 XsensMti-gIMUSerialProtocol 178 A.3 PaparazziAutopilotSoftwareArchitecture:AModificationGuide 182
Description: