Remarks on rational solutions for the Korteveg - de Vries hierarchy Nikolai A. Kudryashov 7 0 0 Department of Applied Mathematics 2 Moscow Engineering and Physics Institute n a (State University) J 7 31 Kashirskoe Shosse, 115409, Moscow, 1 Russian Federation ] I S . Abstract n i l Differential equations for the special polynomials associated with n [ the rational solutions of the second Painlev´e hierarchy are introduced. It is shown rational solutions of the Korteveg - de Vries hierarchy can 1 v be found taking the Yablonskii - Vorob’ev polynomials into account. 4 Specialpolynomials associated with rational solutions ofthe Korteveg 3 - de Vries hierarchy are presented. 0 1 0 Keywords: The Korteveg - de Vries hierarchy, Special polynomials, the 7 Yablonskii - Vorob’ev polynomials, Rational solutions, 0 / n i PACS: 02.30.Hq - Ordinary differential equations l n : v 1 Introduction i X r a In this paper our interest is in rational solutions of the Korteveg - de Vries hierarchy [1] ∂ u + L [u] = 0 (1.1) t N+1 ∂x Here the operator L is determined by the Lenard recursion formula [1–3] N d d3 d 1 L [u] = +4u +2u L [u], L [u] = (1.2) dz N+1 (cid:18)dz3 dz z(cid:19) N 0 2 1 From (1.2) we have L [u] = u, (1.3) 1 L [u] = u +3u2, (1.4) 2 zz L [u] = u +10uu +5u2 +10u3, (1.5) 3 zzzz zz z L [u] = u +14uu +28u u +21u3 + 4 zzzzzz zzzz z zzz zz (1.6) +70u2u +70uu2+35u4 zz z Hierarchy (1.1) is integrable by the inverse scattering transform [4]. The rational solutions of the Korteveg - de Vries equation (hierarchy (1.1) at N = 1) are studied in [5–7]. The aim of this paper is to introduce the hierarchy for the special polyno- mials associated with rational solutions of the second Painlev´e hierarchy (the Yablonskii - Vorob’ev polynomials [8–13]). These special polynomials can be used to find the rational solutions of the Korteveg - de Vries hierarchy. As additional result of this paper is special polynomials associated with rational solutions of the Korteveg - de Vries hierarchy. 2 Hierarchy for the Yablonskii - Vorob’ev poly- nomials Suppose u(x,t in (1.1) takes the form ∂2ln(ϕ(t)y(z)) x u = 2 , z = (2.1) ∂x2 1 ((2N +1)t)2N+1 where ϕ(t) is arbitrary function of t and y(z) is a new function of z. Then from equation (1.1) we have the hierarchy d dlny 1 d2lny z = L 2 (2.2) dz (cid:18) dz (cid:19) 2 N+1(cid:20) dz2 (cid:21) It can be shown that special polynomials Q(N)(z) associated with the n rational solutions of the second Painlev´e hierarchy satisfy hierarchy (2.2). Assuming N = 1, N = 2andN = 3in(2.2)wehave differentialequations for y(z) ≡ Q(1)(z) in (2.3) , y(z) ≡ Q(2)(z) in (2.4) and y(z) ≡ Q(3)(z) in n n n (2.5) yy −4y y +3y 2 −yy −zy y +zy 2 = 0 (2.3) zzzz z zzz zz z zz z 2 Table 2.1: The Yablonskii - Vorob’ev polynomials Q(1)(z) n Q(1)(z) = 1, 0 Q(1)(z) = z, 1 Q(1)(z) = z3 +4, 2 Q(1)(z) = z6 +20z3 −80, 3 Q(1)(z) = (z9 +60z6 +11200)z, 4 Q(1)(z) = z15 +140z12 +2800z9 +78400z6 −313600z3 −6272000, 5 Q(1)(z) = z21 +280z18 +18480z15 +627200z12 −17248000z9+1448832000z6 6 +19317760000z3−38635520000, Q(1)(z) = (z27 +504z24 +75600z21 +5174400z18 +62092800z15+13039488000z12− 7 −828731904000z9−49723914240000z6−3093932441600000)z y2y −6yy y +5yy y +10y 2y −20y y y + zzzzzz z zzzzz zz zzzz z zzzz z zz zzz (2.4) +10y 3 −y y2 −zy y2 +zy 2y = 0 zz z zz z y4y −8y3y y +28y2y 2y +7y3y 2− zzzzzzzz z zzzzzzz z zzzzzz zzzz −56yy 3y +112yy 2y 2 +28y2y 2y +28yy 4+ z zzzzz z zzz zz zzzz zz (2.5) +56y 2y 3 +56y 4y −112y 3y y +28yy 2y y − z zz z zzzz z zz zzz z zz zzzz −56y2yzyzzzyzzzz −112yyzyzz2yzzz −yzy4 −zyzzy4 +zyz2y3 = 0 Equation (2.3) for Q(1)(z) was found in [10] but equations (2.4) and (2.5) n for special polynomials Q(2)(z) and Q(3)(z) are new. Hierarchy (2.2) for the n n special polynomials associated with rational solutions of the second Painlev´e hierarchy is new as well and we need to study this hierarchy in future. Denote by w = dlny then equation (2.2) is reduced to equation dz d(zw) dw = L (2.6) N+1 dz (cid:20) dz (cid:21) Assuming N = 1, N = 2 and N = 3 from (2.6) we obtain the differential equations w +3w2−w−zw = 0, (2.7) zzz z z 3 Table 2.2: The Yablonskii - Vorob’ev polynomials Q(2)(z) (n) Q(2)(z) = 1, 0 Q(2)(z) = z, 1 Q(2)(z) = z3, 2 Q(2)(z) = z(z5 −144), 3 Q(2)(z) = z10 −1008z5 −48384, 4 Q(2)(z) = z15 −4032z10 −3048192z5 +146313216, 5 Q(2)(z) = z(z20 −12096z15 −21337344z10−33798352896z5−4866962817024), 6 Q(2)(z) = z3(z25 −30240z20 −55883520z15 −1182942351360z10+701543488297107456) 7 w +10w w +5w2 +10w3−w−zw = 0, (2.8) zzzzz z zzz zz z z w +14w w +28w w +21w3 +70w2w + zzzzzzz z zzzzz zz zzzz zzz z zzz (2.9) +70w w2 +35w4−w−zw = 0 z zz z z Equation (2.7) for dln(Q(n1)(z)) was studied in [10] but equations (2.8) and (2.9) dz for special polynomials dln(Q(n2)(z)) and dln(Q(n3)(z)) are new. dz dz Multiplying (2.7) on (2w −1) we have the first integral of this equation zz 2 in the form [10] 1 z w2 − w +2(2w2− w) w − = C (2.10) zz 2 zz z z 4 1 (cid:16) (cid:17) Taking C = n(n+1) in (2.10) we have solutions of (2.10) in the form of the 1 4 Yablonskii - Vorob’ev polynomials. Using w(z) = z2 + p(z) in (2.10) we 8 obtain the equation in the form [10] 2 1 1 p2 +4 (p )3 +2z (p )2 −2pp − n+ = 0 (2.11) zz z z z 4 (cid:18) 2(cid:19) Hierarchy (2.6) is integrable because this is obtained from the Korteveg - de Vries hierarchy. The study of equation (2.7) by the Painlev´e test [14] yields the Fuchs indices: j = −1, j = 1 and j = 6. These indices correspond to 1 2 4 Table 2.3: The Yablonskii - Vorob’ev polynomials for Q(3)(z) n Q(3)(z) = 1 0 Q(3)(z) = z 1 Q (z) = z3 2 Q(3)(z) = z6 3 Q(3)(z) = z3(z7 +14400) 4 Q(3)(z) = z(z14 +129600z7 −373248000) 5 Q(3)(z) = z21 +648000z14 −24634368000z7−35473489920000 6 Q(3)(z) = z28 +2376000z21 −825251328000z14−30436254351360000z7 7 +43828206265958400000 the arbitrary constants z , a and a in the Laurent series 0 1 6 2 z z 2 a w(z) = +a + 0 (z −z )− 0 + 1 (z −z 3− (z −z ) 1 6 0 (cid:18)360 30(cid:19) 0 0 (2.12) z z 2 a − (z −z )4 +a (z −z )5 − 0 + 1 (z −z )6 +... 0 6 0 0 72 (cid:18)4320 360 (cid:19) Special polynomials Q(N)(z) were found in works [11,13]. It is very im- n portant to remark that these polynomials can be found taking into account the differential - difference hierarchy [15] d2 Q(N) Q(N) = z(Q(N))2 −2(Q(N))2L 2 lnQ(N) , n ≥ 1 (2.13) n+1 n−1 n n N (cid:20) dz2 n (cid:21) (cid:0) (cid:1) Assuming Q(N)(z) = 1 and Q(N)(z) = z from (2.13) we have special 0 0 polynomials Q(N)(z) at n ≥ 1. Some of few special polynomials Q(1)(z) n n Q(2)(z) and Q(3)(z) are given in tables (2.1), (2.2) and (2.3). n n 3 Rational solutions of the Korteveg - de Vries hierarchy Using the special polynomials associated with the rational solutions of the second Painlev´e hierarchy (the Yablonskii - Vorob’ev polynomials) we can 5 find the rational solutions of the Korteveg - de Vries hierarchy (1.1) by the formula ∂2 lnQ(N)(z) x n u(x,t) = 2 , z = (3.1) ∂x2 1 ((2N +1)t)2N+1 Table 3.1: Polynomials P(1)(x,t) n P(1)(x,t) = x, 1 P(1)(x,t) = x3 +12t, 2 P(1)(x,t) = x6 +60x3t−720t2, 3 P(1)(x,t) = (x9 +180x6t+302400t3) x, 4 P(1)(x,t) = x15 +420x12t+25200x9t2 +2116800x6t3− 5 −2540166000x3t4 −1524096000t5, P(1)(x,t) = x21 +840x18t+166320x15t2 +16934400x12t3 −1397088000x9t4+ 6 +352066176000x6t5 +14082647040000x3t6 −84495882240000t7, P(1)(x,t) = x(x27 +1512x24t+680400x21t2 +139708800x18t3+ 7 +5029516800x15t4 +3168595584000x12t5 −604145558016000x9t6− −108746200442880000x6t7 −60897872248012800000t9) The four rational solutions of the Korteveg - de Vries equation (hierarchy (1.1) at N = 1) take the form 2 u (x,t) = − , (3.2) 1 x2 x(−x3 +24t) u (x,t) = 6 , (3.3) 2 (x3 +12t)2 x(x9 +43200t3+5400x3t2) u (x,t) = −12 , (3.4) 3 (−x6 −60x3t+720t2)2 20 u (x,t) = − [x18 +144x15t− 4 x2(x9 +180x6t+302400t3)2 (3.5) −2116800x9t3 +22680x12t2 −152409600x6t4 +9144576000t6] The four rational solutions of the fifth-order Korteveg - de Vries equation (hierarchy (1.1) at N = 2) can be written in the form 2 u (x,t) = − , (3.6) 1 x2 6 Table 3.2: Polynomials P(2)(x,t) n P(2)(x,t) = x, 1 P(2)(x,t) = x3, 2 P(2)(x,t) = x(x5 −720t), 3 P(2)(x,t) = x10 −5040x5t−1209600t2, 4 P(2)(x,t) = x15 −20160x10t−76204800x5t2 +18289152000t3, 5 P(2)(x,t) = x(x20 −60480x15t−533433600x10t2 −4224794112000x5t3− 6 −3041851760640000t4), P(2)(x,t) = x3(x25 −151200x20t−1397088000x15t2 −147867793920000x10t3+ 7 +2192323400928460800000t5) 6 u (x,t) = − , (3.7) 2 x2 12(x10 +2160x5t+86400t2) u (x,t) = − (3.8) 3 (−x5 +720t)2x2 20x3(x15 +5040x10t+23587200x5t2 −12192768000t3) u (x,t) = − (3.9) 4 (x10 −5040x5t−1209600t2)2 The four rational solutions of the seventh-order Korteveg - de Vries equation (hierarchy (1.1) at N = 3) can be given as the following 2 u (x,t) = − , (3.10) 1 x2 6 u (x,t) = − , (3.11) 2 x2 12 u (x,t) = − , (3.12) 3 x2 20(x14 −362880x7t+3048192000t2) u (x,t) = − (3.13) 4 x2(x7 +100800t)2 The rational solutions of the Korteveg - de Vries hierarchy can be presented in the form of special polynomials taking into account the arbitrary function 7 Table 3.3: Polynomials P(3)(x,t) n P(3)(x,t) = x, 1 P(3)(x,t) = x3, 2 P(3)(x,t) = x6, 3 P(3)(x,t) = x3(x7 +100800t), 4 P(3)(x,t) = x(x14 +907200x7t−18289152000t2), 5 P(3)(x,t) = x21 +4536000x14t−1207084032000x7t2 −12167407042560000t3 6 P(3)(x,t) = x28 +16632000x21t−40437315072000x14t2− 7 −10439635242516480000x7t3 +105231523244566118400000t4 ϕ(t) in (2.1). These polynomials are determined by means of formulae n2+n x P(N)(x,t) = ((2N +1)t)“4N+2” Q(N)(z), z = (3.14) n n 1 ((2N +1)t)2N+1 Using these polynomials we obtain rational solutions from (2.4) of the Ko- rteveg - de Vries hierarchy (1.1) by formula ∂2 lnP(N)(x,t) u(N)(x,t) = 2 n (3.15) n ∂x2 Some of these polynomials P(1)(x,t), P(2)(x,t) and P(3)(x,t) are given in n n n tables (3.1), (3.2) and (3.3). 4 Acknowledgments This workwassupportedbytheInternationalScience andTechnology Center under Project B 1213. References [1] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., v.21, (1968), 467 - 490 8 [2] N.A. Kudryashov, The first Painleve and the second Painleve equations of higher order and some relations between them, Physics Letters A, v.224, (1997), 353 - 360 [3] N.A. Kudryashov, Analytical theory of nonlinear differential equations, Institute of Computer Investigations, Moscow-Izhevsk, (2004), 360 p. (in Russian) [4] C.S. Gardner, J.M. Greene, M.D. Kruskal,, R.M. Miura, Method for solving the korteveg - de Vries equation, v.19, (1967), 1095 - 1097 [5] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering TraOn classes of integrable systems and the painleve property, J. Math. th. (SIAM, Philadelphia,1981) [6] H. Airault, H.P. McKean, J. Moser, Rational and Elliptic Solutions of the Korteveg - de Vries Equation and a related Many- Body Problem, Comm. Pure Appl. Math. 30, (1977) 95 [7] J. Weiss, On classes of integrable systems and the painleve property, J. Math. Phys., 25(1) (1984) 13-24 [8] A.I. Yablonskii, On rational solutions of the second Painleve equations, Vesti Akad. Nauk BSSR, Ser. Fiz. Tkh. Nauk, 3 (1959), 30 - 35 (in Russian) [9] A.P. Vorob’ev, On rational solutions of the second Painleve equations, Differential equations 1 (1965) 79 - 81 (in Russian) [10] P.A. Clarkson, Remarks on the Yablonskii - Vorob’ev Polynomials, Physics Letters A, 319, (2003) 137 - 144 [11] P.A. Clarkson, E.L. Mansfield, The second Painleve equation, its hier- archy and associated special polynomials, Nonlinearity 16 (2003) R1 [12] P.A. Clarkson, Painleve equations - Nonlinear Special Functions, (2004) Report of IMC, 15 december 2004 [13] M.V. Demina, N.A. Kudryashov,TheYablonskii-Vorob’evpolynomials for the second Painleve hierarchy, Chaos, Solitons and Fractals, 32(2), (2007), 526 -537 [14] R. Conte, The Painleve approach to Nonlinear Ordinary Differential equations, In ”The Painlev´e property. One century later, CRM Series in Mathematical Physics”, Springer, (1999), New York, 177 - 180 9 [15] M.V. Demina, N.A. Kudryashov, Special polynomials and rational so- lutions of the second Painlev´e hierarchy, submitted to Theoretical and Mathematical Physics, (2006) 10