ebook img

Remark on Lehnert’s Revised Quantum Electrodynamics (RQED) as an Alternative to Francesco Celani’s et al. Maxwell–Clifford Equations: With an Outline of Chiral Cosmology Model and its Role to CMNS PDF

2020·0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Remark on Lehnert’s Revised Quantum Electrodynamics (RQED) as an Alternative to Francesco Celani’s et al. Maxwell–Clifford Equations: With an Outline of Chiral Cosmology Model and its Role to CMNS

J.CondensedMatterNucl.Sci.31(2020)91–102 ResearchArticle Remark on Lehnert’s Revised Quantum Electrodynamics (RQED) as an Alternative to Francesco Celani’s et al. Maxwell–Clifford Equations: With an Outline of Chiral Cosmology Model and its Role to CMNS ∗ Victor Christianto MalangInstituteofAgriculture(IPM),Malang,Indonesia † Florentin Smarandache DepartmentofMathematicsandSciences,UniversityofNewMexico,Gallup,USA ‡ Yunita Umniyati HeadofPhysicsLab,DepartmentofMechatronics,Swiss-GermanUniversity,BSDCity,Indonesia Abstract InarecentpaperpublishedinJCMNSin2017,FrancescoCelani,DiTommasoandVassaloarguedthatMaxwellequationsrewritten inCliffordalgebraaresufficienttodescribetheelectronandalsoultra-densedeuteriumreactionprocessproposedbyHomlidet al. Apparently, Celanietal. believedthattheirMaxwell–CliffordequationsareanexcellentcandidatetosurpassbothClassical ElectromagneticandZitterbewegungQM.Meanwhile,inaseriesofpapers,BoLehnertproposedanovelandrevisedversionof QuantumElectrodynamics(RQED)basedonProcaequations. Therefore, inthispaper, wegaveanoutlineofLehnert’sRQED, as an alternative framework to Celani et al Zitterbewegung-Classical EM. Moreover, in a rather old paper, Mario Liu described hydrodynamic Maxwell equations. While he also discussed potential implications of these new approaches to superconductors, suchadiscussionofelectrodynamicsofsuperconductorsismadeonlyafterTajmar’spaper. (continuedinthenextpage) ⃝c 2020ISCMNS.Allrightsreserved.ISSN 2227-3123 Keywords: Chiralmedium,Chiralgravitationtheory,Electrodynamicsofsuperconductor,Hirschtheory,HydrodynamicsMaxwell equations,LENR,Londonequations,Maxwellequations,Procaequations,RevisedQED ∗Correspondingauthor.http://researchgate.net/profile/Victor_Christianto,E-mail:[email protected]. †E-mail:fl[email protected]. ‡E-mail:[email protected]. ⃝c 2020ISCMNS.Allrightsreserved.ISSN 2227-3123 92 V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 (continuedfromthetitlepage) Therefore, in this paper we present for the first time a derivation of fluidic Maxwell–Proca equations. The name of fluidic Maxwell–Proca is proposed because the equations were based on modifying Maxwell–Proca and Hirsch’s theory of electrodynamics of superconductors. It is hoped that this paper may stimulate further investigations and experimentsinsuperconductorsItmaybeexpectedtohavesomeimpacttocosmologymodelingtoo,forinstancewe considerahypotheticalargumentthatthephotonmasscanbetheoriginofgravitation. Then,aftercombiningwiththe so-calledchiralmodificationofMaxwellequations(afterSpröessig),weconsiderchiralMaxwell–Procaequationsas apossiblealternativeofgravitationtheory. Suchahypothesishasneverconsideredintheliteraturetothebestofour knowledge. Inthelastsection,wediscusstheplausibleroleofchiralMaxwell–Proca(RQED)inCMNSprocess. Itis hopedthatthispapermaystimulatefurtherinvestigationsandexperimentsinparticularforelucidatingthephysicsof LENRandUDDreactionfromclassicalelectromagnetics. 1. Introduction In a recent paper published in JCMNS in 2017, Francesco Celani, Di Tommaso and Vassalo argued that Maxwell equationsrewritteninCliffordalgebraaresufficienttodescribetheelectronandalsoultra-densedeuteriumreaction processproposedbyHomlidetalApparently, Celanietal. believedthattheirMaxwell–Cliffordequationsarequite excellentcandidatetosurpassbothClassicalElectromagneticstheoryandZitterbewegungQM[1]. Inthemeantime,itisknownthatconventionalelectromagnetictheorybasedonMaxwell’sequationsandquantum mechanics has been successful in its applications in numerous problems in physics, and has sometimes manifested itselfinagoodagreementwithexperiments. Nevertheless,asalreadystatedbyFeynman,thereareunsolvedproblems leading to difficulties with Maxwell’s equations that are not removed by and not directly associated with quantum mechanics [17–20]. Therefore QED, which is an extension of Maxwell’s equations, also becomes subject to the typicalshortcomingsofelectromagneticinitsconventionalform. ThisreasoningmakesawayforRevisedQuantum ElectrodynamicsasproposedbyBoLehnert[17–19]. Meanwhile, according to J.E. Hirsch, from theoutset of superconductivityresearch it wasassumed thatno elec- trostatic fields could exist inside superconductors and this assumption was incorporated into conventional London electrodynamics[23]HirschsuggeststhattherearedifficultieswiththetwoLondonequations. Tosummarize, Lon- don’s equations together with Maxwell’s equations lead to unphysical predictions [22] Hirsch also proposes a new modelforelectrodynamicsforsuperconductors[22–23]. Inthisregard,inaratheroldpaper,MarioLiudescribedahydrodynamicMaxwellequations[25]. Whilehealso discussedpotentialimplicationsofthesenewapproachestosuperconductors,suchadiscussionofelectrodynamicsof superconductorsismadeonlyafterTajmar’spaper. Therefore,inthispaperwepresentforthefirsttimeaderivation offluidicMaxwell–Proca–Hirschequations. ThenameofMaxwell–Proca–Hirschisproposedbecausetheequations werebasedonmodifyingMaxwell–ProcaandHirsch’stheoryofelectrodynamicsofsuperconductor. Therefore, the aimofthepresentpaperistoproposeaversionoffluidicMaxwell–Procamodelforelectrodynamicsofsuperconductor, alongwithanoutlineofachiralcosmologymodel. Thismaybeexpectedtohavesomeimpacttocosmologymodelingtoo,whichwillbediscussedinthelastsection. Itishopedthatthispapermaystimulatefurtherinvestigationsandexperimentsinparticularforfractalsuperconductor. 2. Lehnert’sRevisedQuantumElectrodynamics InaseriesofpapersBoLehnertproposedanovelandrevisedversionofQuantumElectrodynamics,whichherefers toasRQED.Histheoryisbasedonthehypothesisofanonzeroelectricchargedensityinthevacuum,anditisbased V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 93 onProca-typefieldequations([20],p. 23): ( ) 1 ∂2 −∇2 A =µ J , µ=1,2,3,4, (1) c2∂t2 µ 0 µ where ( ) iφ A = A, (2) µ c withAandϕstandingforthemagneticvectorpotentialandtheelectrostaticpotentialinthree-space. Inthreedimen- sions,wegot([20],p. 23): curlB ε ∂E =ε (divE)C+ 0 , (3) µ 0 ∂t 0 ∂B curlE =− , (4) ∂t B =curlA, divB =0, (5) ∂A E =−∇φ− , (6) ∂t ρ¯ divE = . (7) ε 0 These equations differ from the conventional form with a nonzero electric field divergence equation (7) and by the additionalspace–chargecurrentdensityinadditiontodisplacementcurrentatEq. (3). Theextendedfieldequations (3)–(7)areeasilyfoundalsotobecomeinvarianttoagaugetransformation([20],p. 23). Themaincharacteristicnewfeaturesofthepresenttheorycanbesummarizedasfollows([20],p. 24): (a) Thehypothesisofanonzeroelectricfielddivergenceinthevacuumintroducesanadditionaldegreeoffreedom, leading to new physical phenomena. The associated nonzero electric charge density thereby acts somewhat likeahiddenvariable. (b) Thisalsoabolishesthesymmetrybetweentheelectricandmagneticfields,andthenthefieldequationsobtain thecharacterofintrinsiclinearsymmetrybreaking. (c) ThetheoryisbothLorentzandgaugeinvariant. (d) Thevelocityoflightisnolongerascalarquantity,butisrepresentedbyavelocityvectorofthemodulusc. (e) Additionalresults: LehnertisalsoabletoderivethemassofZbosonandHiggs-likeboson[21]. Thesewould paveanalternativewaytonewphysicsbeyondtheStandardModel. NowitshouldbeclearthatLehnert’sRQEDisagoodalternativetheorytoQM/QED,andthereforeitisalsointeresting toaskwhetherthistheorycanalsoexplainsomephenomenarelatedtoLENRandUDDreactionproposedbyHomlid (asarguedbyCelanietal.) [1]. ItshouldbenotedtoothatProcaequationscanbeconsideredasanextensionofMaxwellequations,andtheyhave beenderivedinvariousways. ItcanbeshownthatProcaequationscanbederivedfromfirstprinciples,andalsothat ProcaequationsmayhavealinkwiththeKlein–Gordonequation[6,7]. OnepersistentquestionconcerningtheseProcaequationsishowtomeasurethemassofthephoton. Thisquestion hasbeendiscussedinlengthybyTuetal. [12]. Accordingtotheirreport, therearevariousmethodstoestimatethe 94 V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 Table1. Upperboundonthedispersionofthespeedoflightindifferentrangesoftheelectromagneticspectrum,andthe correspondinglimitsonthephotonmass([12],p.94). Author(year) Typeofmeasurement Limitsonmγ(g) Rossetal.(1937) Radiowavestransmissionoverland 5.9×10−42 MandelstamandPapalexi(1944) Radiowavestransmissionoversea 5.0×10−43 Al’pertetal.(1941) Radiowavestransmissionoversea 2.5×10−43 Florman(1955) Radio-waveinterferometer 5.7×10−42 Lovelletal.(1964) Pulsarobservationsonflourflarestars 1.6×10−42 Frome(1958) Radio-waveinterferometer 4.3×10−40 Warneretal.(1969) ObservationsonCrabNebulapulsar 5.2×10−41 Brownetal.(1973) Shortpulsesradiation 1.4×10−33 Bayetal.(1972) Pulsaremission 3.0×10−46 Schaefer(1999) Gammaraybursts 4.2×10−44 Gammaraybursts 6.1×10−39 upper bound limits of photon mass. In Table 1, some of upper bound limits of photon mass based on dispersion of speedoflightaresummarized. FromTable1andalsofromotherresultsasreportedin[12],itseemsthatwecanexpectthatsomedayphotonmass canbeobservedwithinexperimentalbounds. 3. Hirsch’sProposedRevisionofLondon’sEquations According to J.E. Hirsch, from the outset of superconductivity research it was assumed that no electrostatic fields could exist inside superconductors and this assumption was incorporated into conventional London electrodynamics [22]HirschsuggeststhattherearedifficultieswiththetwoLondonequations. ThereforeheconcludesthatLondon’s equationstogetherwithMaxwell’sequationsleadtounphysicalpredictions[1]Howeverhestillusesfour-vectorsJ andAaccordingtoMaxwell’sequations: 4π (cid:3)2A=− J (8) c and c J −J =− (A−A ). (9) 0 2 0 4πλ L ThereforeHirschproposesanewfundamentalequationforelectrodynamicsforsuperconductorsasfollows[22] 1 (cid:3)2(A−A )= (A−A ), (10a) 0 λ2 0 L whereLondonpenetrationdepthλ isdefinedasfollows[23]: L 1 4πnse2 = , (10b) λ2 mec2 L alsod’Alembertianoperatorisdefinedas[22]: 1 ∂2 (cid:3)2 =∇2− . (10c) c2∂2 t V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 95 Thenheproposesthefollowingequations[22]: 1 (cid:3)2(F −F )= (F −F ) (11) 0 2 0 λ L and 1 (cid:3)2(J −J )= (J −J ), (12) 0 2 0 λ L ⇀ ⇀ ⇀ where F is the usual electromagnetic field tensor and F is the field tensor with entries E and 0 from E and B, 0 respectively,whenexpressedinthereferenceframeatrestwithrespecttotheions. Inthemeantime,itisknownthatProcaequationscanalsobeusedtodescribeelectrodynamicsofsuperconductors, see [25–33]. The difference between Proca and Maxwell equations is that Maxwell equations and Lagrangian are basedonthehypothesisthatthephotonhaszeromass,buttheProca’sLagrangianisobtainedbyaddingmasstermto Maxwell’sLagrangian[33]Therefore,theProcaequationcanbewrittenasfollows[33]: 4π ∂ Fµν +m2A = Jν, (13a) µ γ ν c where m = ω is the inverse of the Compton wavelength associated with photon mass [38]. (Note: ‘omega’ is γ c the angular frequency = 2πf, where f is the frequency, the definition of omega involves the “reduced” Compton wavelength,correspondingwiththereducedPlanckconstant}). Itisalsoclearthatintheparticularcaseofm = 0, thenthatequationreducestotheMaxwellequation. Intermsofthevectorpotentials,Eq. (13a)canbewrittenas[33]: 4π ((cid:3)+m )A = J . (13b) γ µ c µ Similarly, according to Kruglov [31] the Proca equation for a free particle processing the mass m can be written as follows: ∂ φ (x)+m2φ (x)=0. (14) ν µν µ Now, the similarity between Eqs. (8) and (13b) are remarkable with the exception that Eq. (8) is in quadratic form. ThereforeweproposetoconsideramodifiedformofHirsch’smodelasfollows: 1 ((cid:3)2−m2)(F −F )= (F −F ) (15a) γ 0 λ2 0 L and 1 ((cid:3)2−m2)(J −J )= (J −J ). (15b) γ 0 2 0 λ L TherelevanceoftheproposednewequationsinlieuofEqs. (11)–(14)shouldbeverifiedbyexperimentswithsuper- conductors[37]. Forconvenience,theEqs. (15a)–(15b)canbegivenaname: Maxwell–Proca–Hirschequations. 96 V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 4. FluidicMaxwell–ProcaEquations In this regard, in a rather old paper, Mario Liu described a hydrodynamic Maxwell equations [24] While he also discussedthepotentialimplicationsofthesenewapproachestosuperconductors,suchadiscussionofelectrodynamics ofsuperconductorsismadeonlyafterTajmar’spaper.Therefore,inthissectionwepresentforthefirsttimeaderivation offluidicMaxwell–Proca–Hirschequations. AccordingtoBlackledge,Procaequationscanbewrittenasfollows[7]: ρ ∇·E⃗ = −κ2ϕ, (16) ε 0 ∇·B⃗ =0, (17) ∂B⃗ ∇×E⃗ =− , (18) ∂t ∂E⃗ ∇×B⃗ =µ j+ε µ +κ2A⃗, (19) 0 0 0 ∂t where(withoutassumingPlanckconstant,}=1): ∂A⃗ ∇ϕ=− −E⃗, (20) ∂t B⃗ =∇×A⃗, (21) mc κ= 0. (22) } Therefore,byusingthedefinitionsinEqs. (16)–(19),andbycomparingwithhydrodynamicMaxwellequationsofLiu ([24],Eq. (2)),nowwecanarriveatfluidicMaxwell–Procaequations,asfollows: ρ ∇·E⃗ = −κ2ϕ, (23) ε 0 ∇·B⃗ =0, (24) ( ) B˙ =−∇×E−∇× βˆ∇×H , (25) 0 ε µ E˙ =∇×B−µ j−κ2A−(σˆE +ρ v+γˆ∇T)−∇×(aˆ∇×E ), (26) 0 0 0 0 e 0 where: ∂A⃗ ∇ϕ=− −E⃗, (27) ∂t B⃗ =∇×A⃗, (28) mc κ= 0. (29) } V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 97 Since according to Blackledge, the Proca equations can be viewed as a unified wavefield model of electromagnetic phenomena [7], therefore we can also regard the fluidic Maxwell–Proca equations as a unified wavefield model for electrodynamicsofsuperconductor. Now, having defined fluidic Maxwell–Proca equations, we are ready to write fluidic Maxwell–Proca equations usingthesamedefinition,asfollows: 1 ((cid:3)2 −κ2)(F −F )= (F −F ) (30) α 0 2 0 λ L and 1 ((cid:3)2 −κ2)(J −J )= (J −J ), (31) α 0 2 0 λ L where 1 ∂α2 (cid:3)2 =∇α2− . (32) α c2∂α2 t Asfarasweknow,theabovefluidicMaxwell–Procaequationshaveneverbeenpresentedelsewherebefore. Provided theaboveequationscanbeverifiedwithexperiments,theycanbeusedtodescribeelectrodynamicsofsuperconductors. Asalastnote,itseemsinterestingtoremarkherethatKruglov[31]hasderivedasquare-rootofProcaequations asapossiblemodelforhadronmassspectrum, thereforeperhapsEqs. (30)–(32)maybefactorized tootofindouta modelforhadronmasses. However,weleavethisproblemforfutureinvestigations. 5. TowardsChiralCosmologyModel TheMaxwell–ProcaelectrodynamicscorrespondingtoafinitephotonmasscausesasubstantialchangeoftheMaxwell stresstensorand, undercertaincircumstances, maycausetheelectromagneticstressestoacteffectivelyas“negative pressure.” In a recent paper, Ryutov, Budker, Flambaum [34] suggest that such a negative pressure imitates gravita- tionalpull,andmayproduceaneffectsimilartogravitation.Inthemeantime,thereareotherpapersbyLongo,Shamir, etc. discussing observations indicating handedness of spiral galaxies, which seem to suggest chiral medium at large scale. However,sofarthereisnoderivationofMaxwell–Procaequationsinchiralmedium Inarecentpaper,Ryutov,Budker,FlambaumsuggestthatMaxwell–Procaequationsmayinduceanegativepres- sureimitatesgravitationalpull,andmayproduceeffectsimilartogravitation[34] Inthemeantime,thereareotherpapersbyLongo,Shamiretal. discussingobservationsindicatinghandednessof spiralgalaxies,whichseemtosuggestchiralmediumatlargescale. AsShamirreported: “Amorphologicalfeatureofspiralgalaxiesthatcanbeeasilyidentifiedbythehumaneyeisthehandedness— somespiralgalaxiesspinclockwise,whileotherspiralgalaxiesrotatecounterclockwise.Previousstudiessug- gestlarge-scaleasymmetrybetweenthenumberofgalaxiesthatrotateclockwiseandthenumberofgalaxies thatrotatecounterclockwise,andalarge-scalecorrelationbetweenthegalaxyhandednessandothercharac- teristicscanindicateanasymmetryatacosmologicalscale”[40]. However,sofarthereisnoderivationofMaxwell–Procaequationsinachiralmedium. Therefore,inspiredbyRyutov etalpaper,inthispaper,wepresentforthefirsttimeapossibilitytoextendMaxwell–Proca-typeequationstochiral medium,whichmaybeabletoexplainoriginofhandednessofspiralgalaxiesasreportedbyLongoetal. [39,40]. Thepresentpaperisintendedtobeafollow-uppaperofourprecedingpaper,reviewingShpenkov’sinterpretation ofclassicalwaveequationanditsroletoexplainperiodictableofelementsandotherphenomena[38]. 98 V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 6. Maxwell–ProcaEquationsinChiralMedium ProcaequationscanbeconsideredasanextensionofMaxwellequations,andtheyhavebeenderivedinvariousways. ItcanbeshownthatProcaequationscanbederivedfromfirstprinciples[6],andalsothatProcaequationsmayhave linkwithKlein–Gordonequation[7]. It should be noted that the relations between flux densities and the electric and magnetic fields depend on the material. Itiswellknown,forinstance,thatallorganicmaterialscontaincarbonandrealizeinthiswaysomekindof opticalactivity. Therefore,LordKelvinintroducedthenotionofthechiralitymeasureofamedium. Thiscoefficient expressestheopticalactivityoftheunderlyingmaterial. Thecorrespondentconstitutivelawsarethefollowing[35]: √ D =εE+εβ E (Drude–Born–Feodorovlaws), (33) √ B =µH +µβ H, (34) wheree=E(t,x)istheelectricpermittivity,j =p(t,x)isthemagneticpermeabilityandthecoefficientβ describes thechiralitymeasureofthematerial[35]. Now,sincewewanttoobtainMaxwell–Procaequationsinchiralmedium,thenEq. (28)shouldbereplacedwith Eq. (34). Butsuchahypotheticalassertionshouldbeinvestigatedinmoredetailed. SinceaccordingtoBlackledge,theProcaequationscanbeviewedasaunifiedwavefieldmodelofelectromagnetic phenomena[7],thenwecanalsoregardtheMaxwell–Procaequationsinchiralmediumasafurthergeneralizationof hisunifiedwavefieldpicture. 7. PlausibleRoleofChiralSuperconductorModeltoLENR/CMNS AccordingtoR.M.Kiehn,chiralityalreadyarisesinelectromagneticequations,i.e. Maxwellequations[41]: “From a topological viewpoint, Maxwell’s electrodynamics indicates that the concept of Chirality is to be associated with a third rank tensor density of Topological Spin induced by the interaction of the four vector potentials{A,φ}andthefieldexcitations(D,H).ThedistinctconceptofHelicityistobeassociatedwiththe third rank tensor field of Topological Torsion induced by the interaction of the 4 vector potentials and field intensities(E,B)... In the electromagnetic situation, the constitutive map is often considered to be (within a factor) a linear mappingbetweentwosixdimensionalvectorspaces. Assuchtheconstitutivemapcanhavebotharight-or aleft-handedrepresentation,implyingthattherearetwotopologicallyequivalentstatesthatarenotsmoothly equivalentabouttheidentity”. Therefore,herewewillreviewsomemodelsofchiralityinsuperconductorsandothercontexts,inhopethatwemay elucidatethechiralityoriginofspiralingwaveasconsideredbyCelanietal.forexplainingUDDreaction(cf.Homlid). Here,wesummarizesomereportsonchiralityasobservedinexperiments: (a) F.Qinetal. reported“Superconductivityinachiralnanotube”[42]. Theirabstractgoesasfollows: “Chiral- ity of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomenasuchascirculardichiroismforchiralmolecules,magneticSkyrmionsinchiralmagnetsandnon- reciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evi- dence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows arenotequivalentbecauseofinversionsymmetrybreaking.Suchsuperconductivityisrealizedviaionicgating V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 99 inindividualchiralnanotubesoftungstendisulfide. Thenonreciprocalsignalissignificantlyenhancedinthe superconductingstate,beingassociatedwithunprecedentedquantumLittle-Parksoscillationsoriginatingfrom theinterferenceofsupercurrentalongthecircumferenceofthenanotube. Thepresentresultsindicatethatthe nonreciprocityisaviableapproachtowardthesuperconductorswithchiralornoncentrosymmetricstructures”. Inotherwords,chiralitymayplayasignificantroleinelectromagneticcharacterofsuperconductors. (b) Inotherpaper,Kungetal. reported: “Usingpolarization-resolvedresonantRamanspectroscopy,weexplore collective spin excitations of the chiral surface states in a three dimensional topological insulator, Bi Se . 2 3 We observe a sharp peak at 150 meV in the pseudovector A2 symmetry channel of the Raman spectra. By comparing the data with calculations, we identify this peak as the transverse collective spin mode of surface Diracfermions. Thismode,unlikeaDiracplasmonorasurfaceplasmoninthechargesectorofexcitations,is analogoustoaspinwaveinapartiallypolarizedFermiliquid,withspin-orbitcouplingplayingtheroleofan effectivemagneticfield”[43]. Whatwewouldemphasizehereisthatthecollectivespinmodemayalterthe Diracfermions,seealso[44]. (c) Karimi et al. studied deviation from Larmor’s theorem, their abstract begins as follows: “Larmor’s theorem holdsformagneticsystemsthatareinvariantunderspinrotation. Inthepresenceofspin–orbitcouplingthis invarianceislostandLarmor’stheoremisbroken:forsystemsofinteractingelectrons,thisgivesrisetoasubtle interplaybetweenthespin-orbitcouplingactingonindividualsingle-particlestatesandCoulombmany-body efects”[45]. WhatwewouldemphasizehereispossibleobservationofCoulombmany-bodyeffects,andthis seemstoattractconsiderableinterestsrecently,seealso([45],parta). 8. ConcludingRemarks Inaseriesofpapers,BoLehnertproposedanovelandrevisedversionofQuantumElectrodynamics(RQED)basedon Procaequations.WesubmitaviewpointthatLehnert’sRQEDisagoodalternativetheorytoQM/QED,andthereforeit isalsointerestingtoask: CanthistheoryalsoexplainsomephenomenarelatedtoLENRandUDDreactionofHomlid (asarguedbyCelanietal)? Whilewedonotpretendtoholdalltheanswersinthisregard,wejustgaveanoutlineto Procaequationstoelectrodynamicsofsuperconductors,thentochiralitymodel. Nonetheless, one of our aims with the present paper is to propose a combined version of London–Proca–Hirsch model for electrodynamics of superconductor. Considering that Proca equations may be used to explain electrody- namics in superconductor, the proposed fluidic London–Proca equations may be able to describe electromagnetic of superconductors. It is hoped that this paper may stimulate further investigations and experiments in particular for superconductor. Itmaybeexpectedtohavesomeimpacttocosmologymodelingtoo. AnotherpurposeistosubmitanewmodelofgravitationbasedonarecentpaperbyRyutov,Budker,Flambaum,who suggest that Maxwell–Proca equations may induce a negative pressure imitates gravitational pull, and may produce effect similar to gravitation. In the meantime, there are other papers by Longo, Shamir etc. discussing observations indicatinghandednessofspiralgalaxies,whichseemtosuggestchiralmediumatlargescale. However, so far there is no derivation of Maxwell–Proca equations in chiral medium. In this paper, we propose Maxwell–Proca-typeequationsinchiralmedium,whichmayalsoexplain(albeithypothetically)originofhandedness ofspiralgalaxiesasreportedbyM.Longoetal. ItmaybeexpectedthatonecandescribehandednessofspiralgalaxiesbychiralMaxwell–Procaequations. This wouldneedmoreinvestigations,boththeoreticallyandempirically This paper is partly intended to stimulate further investigations and experiments of LENR inspired by classical electrodynamics,asacontinuationwithourpreviousreport. 100 V.Christiantoetal./JournalofCondensedMatterNuclearScience31(2020)91–102 9. Postscript It shall be noted that the present paper is not intended to be a complete description of physics of LENR and UDD reaction(Homlidetal.). Nonetheless,wecanremarkonthreethings: (1) AlthoughusuallyProcaequationsareconsiderednotgaugeinvariant,thereforesomeresearcherstriedtoderive agaugeinvariantmassiveversionofMaxwellequations,arecentexperimentsuggestU(1)gaugeinvarianceof Procaequations,see[46]. (2) Since Proca equations can be related to electromagnetic Klein–Gordon equation, and from Klein–Gordon equationonecanderivehydrinostatesofhydrogenatom,thenonecanalsoexpecttoderiveultradensehydro- genandhydrinostatesfromProcaequation. Thisbringsustoaconsistentpictureofhydrogen,seealsoMills etal. [47–50]. (3) Chiralityeffectofhydrino/UDDmaybeobservedinexperimentsinthenearfuture. Acknowledgments Special thanks to George Shpenkov for sending his papers and books. Discussions with Volodymyr Krasnoholovets and Robert Neil Boyd are gratefully appreciated. Nonetheless, the ideas presented here are our sole responsibility. Oneoftheseauthors(VC)dedicatesthispapertoJesusChristwhoalwaysguideshimthroughallvalleyofdarkness (Psalms23). HeistheGoodShepherd. References [1] F.Celani,A.DiTommasoandG.Vassalo,Theelectronandoccam’srazor,J.CondensedMatterNucl.Sci.25(2017)1–24, url:www.iscmns.org. [2] NielsGresnigt.RelativisticphysicsintheCliffordalgebra,Ph.D.Thesis,UniversityofCanterbury.January2009,139p. [3] JohnDenker.Electromagnetismusinggeometricalgebraversuscomponents.url: https://www.av8n.com/physics/maxwell- ga.htm. [4] M.Tajmar,ElectrodynamicsinSuperconductorexplainedbyProcaequations,2008,arXiv:cond-mat/0803.3080. [5] MaknickasAlgirdas,Spookyactionatadistance,intheMicropolarElectromagneticTheory,Dec.5,2014, http://vixra.org/pdf/1411.0549v4.pdf. [6] GondranMichel,Procaequationsderivedfromfirstprinciples,2009, arXiv:0901.3300[quant-ph],URL:http://arxiv.org/pdf/0901.3300.pdf. [7] BlackledgeJonathanM.,Anapproachtounificationusingalinearsystemsmodelforthepropagationofbroad-bandsignals, ISASTTransactiononElectronicsandSignalProcessing,Vol.1,No.1,2007,URL:http://eleceng.dit.ie/papers/100.pdf. [8] DemirSuleyman,Space–timealgebraforthegeneralizationofgravitationalfieldequations,Pramana(IndianAcademyof Sciences)80(5)(2013)811–823,URL:http://www.ias.ac.in/pramana/v80/p811/fulltext.pdf. [9] SchwingerJulian,DeRaadJr.,LesterL.,MiltonKimballA.andTsaiWu-yang,ClassicalElectrodynamics,PerseusBooks. Reading,Massachusetts,1998,591p. [10] PenroseRoger,TheRoadtoReality:ACompleteGuidetotheLawsoftheUniverse,JonathanCape,London,2004,1123p. URL:http://staff.washington.edu/freitz/penrose.pdf. [11] ChristiantoVictor,London–Proca–HirschequationsforelectrodynamicsofsuperconductorsonCantorSets,Prespacetime Journal,November2015,http://www.prespacetime.com. [12] L.-C. Tu, J. Luo and T. George Gillies, The mass of the photon, Rep. Prog. Phys. 68 (2005)77–130, doi:10.1088/0034- 4885/68/1/R02. [13] DmitriyevValeryP.,ElasticityandElectromagnetism,2004,URL:http://aether.narod.ru/elast1.pdf. [14] ZareskiDavid,Isdarkmatteraparticularstateoftheether?,Intr.Res.J.PureandAppl.Phys.3(3)(2015)1–7. [15] ZareskiDavid,UnificationofPhysicsbytheEtherElasticityTheory,LAPLambertAcademic,Saarbrucken,Germany,2015.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.