Relativistic Quantum Field Theory, Volume 3 Applications of quantum field theory Relativistic Quantum Field Theory, Volume 3 Applications of quantum field theory Michael Strickland Kent State University, Kent, Ohio, USA Morgan & Claypool Publishers Copyrightª2019Morgan&ClaypoolPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganizations. Rights&Permissions Toobtainpermissiontore-usecopyrightedmaterialfromMorgan&ClaypoolPublishers,please [email protected]. ISBN 978-1-64327-762-2(ebook) ISBN 978-1-64327-759-2(print) ISBN 978-1-64327-760-8(mobi) DOI 10.1088/2053-2571/ab3a99 Version:20191101 IOPConcisePhysics ISSN2053-2571(online) ISSN2054-7307(print) AMorgan&ClaypoolpublicationaspartofIOPConcisePhysics PublishedbyMorgan&ClaypoolPublishers,1210FifthAvenue,Suite250,SanRafael,CA, 94901,USA IOPPublishing,TempleCircus,TempleWay,BristolBS16HG,UK This book is dedicated to my wife, Dr Veronica Antocheviz Dexheimer Strickland, and our amazing daughter Emily. Contents Preface xi Acknowledgements xiv Author biography xv Units and conventions xvi 1 QCD phenomenology 1-1 1.1 Electron–muon scattering 1-1 1.2 Form factors 1-4 1.3 Elastic electron–proton scattering and the proton form factors 1-6 1.4 Inelastic electron–proton scattering 1-11 1.5 The parton model and Bjorken scaling 1-14 1.6 Valence partons and sea partons 1-17 1.7 Beyond the naive parton model 1-21 1.7.1 Gluon emission cross section 1-22 1.7.2 Small-angle approximation 1-23 1.7.3 Embedding γ∗-parton scattering in DIS 1-24 1.8 DGLAP evolution 1-26 1.9 Hadron production in e+e− collisions 1-32 1.10 Fragmentation functions 1-35 1.11 Solution of the DGLAP equations using Mellin moments 1-37 1.12 Drell–Yan scattering 1-39 References 1-41 2 Weak interactions 2-1 2.1 Early models of the weak interaction 2-2 2.2 Muon decay 2-3 2.3 Charged pion decay 2-7 2.4 Electron–neutrino and electron–antineutrino scattering 2-9 2.5 Neutrino–quark scattering 2-11 2.5.1 Charge raising current 2-11 2.5.2 Charge lowering current 2-11 2.5.3 Differential cross section 2-12 2.5.4 Embedding 2-12 vii RelativisticQuantumFieldTheory,Volume3 2.6 Weak neutral currents 2-14 2.7 The Cabibbo angle and the CKM matrix 2-15 2.7.1 The Cabibbo–Kobayashi–Maskawa (CKM) matrix 2-16 References 2-17 3 Electroweak unification and the Higgs mechanism 3-1 3.1 Electroweak Feynman rules 3-5 3.2 Massive gauge fields with local gauge symmetry 3-6 3.2.1 Spontaneous symmetry breaking 3-7 3.2.2 Breaking of a continuous local symmetry 3-10 3.3 Gauge boson masses in SU(2) × U(1) 3-12 L Y 3.3.1 The resulting particle spectrum 3-12 3.3.2 Fermion masses 3-13 3.4 The discovery of the Higgs boson 3-14 3.4.1 The H → γγ decay channel 3-16 3.4.2 The H → ZZ → 4l decay channel 3-18 3.4.3 The H → τ+τ− decay channel 3-19 3.4.4 Other decay channels and the nature of the Higgs 3-19 References 3-20 4 Basics of finite temperature quantum field theory 4-1 4.1 Partition function for a quantum harmonic oscillator 4-1 4.1.1 The QHO canonical partition function in the energy basis 4-2 4.1.2 Computing the QHO partition function using the 4-3 path integral formalism 4.2 The partition function for a free scalar field theory 4-6 4.2.1 Fourier representation of the fields 4-7 4.2.2 Tricks for evaluating sum-integrals 4-9 4.3 Free scalar thermodynamics 4-11 4.3.1 Low temperature limit 4-15 4.3.2 High-temperature limit 4-15 4.4 The need for resummation 4-17 4.5 Perturbative expansion of thermodynamics for a scalar field theory 4-21 4.5.1 One loop 4-22 4.5.2 Two loops 4-22 4.5.3 Three loops 4-23 4.5.4 Pressure through g5 4-24 viii RelativisticQuantumFieldTheory,Volume3 4.6 Screened perturbation theory 4-25 4.6.1 One-loop contribution 4-26 4.6.2 Two-loop contribution 4-27 4.6.3 Three-loop contribution 4-27 4.6.4 Pressure to three loops 4-28 4.6.5 Mass prescription 4-28 4.6.6 The tadpole mass prescription 4-29 4.6.7 Three-loop SPT Pressure 4-29 References 4-30 5 Hard-thermal-loops for QED and QCD 5-1 5.1 Photon polarization tensor 5-1 5.1.1 Generalization to d-dimensions 5-4 5.1.2 The HTL polarization tensor 5-5 5.1.3 Generalization to QCD 5-5 5.2 Fermionic self-energy 5-6 5.3 Collective modes 5-7 5.3.1 Gluon modes 5-8 5.3.2 Quark modes 5-9 5.3.3 Collective modes in an isotropic QGP 5-10 5.3.4 Gluon modes 5-10 5.3.5 Landau damping 5-12 5.3.6 Quark modes 5-13 5.4 Hard-thermal-loop effective action 5-15 5.4.1 Minkowski-space HTL gluon propagator 5-15 5.4.2 Minkowski-space HTL quark propagator 5-18 5.4.3 Three-gluon vertex 5-19 5.4.4 Four-gluon vertex 5-19 5.4.5 Quark-gluon three-vertex 5-20 5.4.6 Quark-gluon four-vertex 5-21 5.4.7 Hard thermal loop effective Lagrangian 5-21 5.4.8 Euclidean space HTL effective Lagrangian 5-22 and vertex functions 5.5 Hard-thermal-loop resummed thermodynamics 5-23 5.5.1 Contributions to the HTLpt thermodynamic 5-25 potential through NNLO 5.5.2 NNLO HTLpt thermodynamic potential 5-28 5.5.3 NNLO result for equal chemical potentials 5-28 ix