ebook img

Relativistic ionization dynamics for a hydrogen atom exposed to super-intense XUV laser pulses PDF

0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Relativistic ionization dynamics for a hydrogen atom exposed to super-intense XUV laser pulses

Relativisticionizationdynamics fora hydrogen atom exposedto super-intense XUV laserpulses Tor Kjellsson,1 Sølve Selstø,2 and Eva Lindroth1 1DepartmentofPhysics,StockholmUniversity, AlbaNovaUniversityCenter,SE-10691Stockholm,Sweden 2FacultyofTechnology,ArtandDesign,OsloandAkershusUniversityCollegeofAppliedSciences,NO-0130Oslo,Norway Wepresent atheoretical study oftheionization dynamics of ahydrogen atomexposed toattosecond laser pulsesintheextremeultravioletregionatveryhighintensities.Thepulsesaresuchthattheelectronisexpected toreachrelativisticvelocities,thusnecessitatingafullyrelativistictreatment.WesolvethetimedependentDirac equationandcompareitspredictionswiththoseofthecorrespondingnon-relativisticSchro¨dingerequation.We 7 findthatastheelectronisexpectedtoreachabout20%ofthespeedoflight,relativisticcorrectionsintroduces 1 afiniteyetsmalldecreaseintheprobabilityofionizingtheatom. 0 2 n I. INTRODUCTION full field. To handle the computational load, which is quite a heavy even for hydrogen, highly optimized parallel applica- J There are a number of infrastructure projects worldwide tionshavebeendeveloped. 5 With these we investigate to what extent the ionization 2 that strive for higher laser intensities, see e.g., the review probabilitiespredictedbytheTDDEdifferfromthoseofthe in Ref. [1]. For lasers operating with long wavelengths, TDSE,inaregimewhererelativisticcorrectionsaretobeex- ] the intensities have already reached the regime where mag- h pected. netic interactions play a crucial role and ionized electrons p Ofcourse,relativisticeffectsarisewhentheelectronisac- move with relativistic velocities, see e.g., Refs. [2, 3]. With - m the latest generation of free electron lasers (XFEL, SACLA, celeratedtovelocitiescomparabletothespeedoflight. This maycomeaboutintwoways;forhighlychargednucleihigh o LCLS), an unprecedented brilliance in the extreme ultravi- velocities may be induced by the Coulomb potential alone. t olet (XUV) region and beyond is reached, and new tech- a Alternativelyastrongexternalelectromagneticfieldcandrive niques[4]tofocusthebeam,aswellaspreliminaryresults[5], . s promise intensities also in this wavelength region exceeding electronstowardsrelativisticspeeds. Intheformercase,rela- ic 1020 W/cm2. The treatment of light-matter interaction in a tivisticcorrectionstotheenergystructuredoofcourseinflu- s ence the ionizationdynamics, e.g., by modifyingthe ioniza- relativisticframeworkisthusatimelyissue.Tothisend,some y tionpotential[7,9,10]. However,inthepresentworkwewill technicalobstaclesmust be overcome– obstacles specific to h restrictourselvesto hydrogenandinvestigatecases in which p the relativistic time-dependentDirac equation (TDDE). One theexternalfieldaloneisstrongenoughtopotentiallyinduce [ issueishowtodealwiththenegativeenergypartofthespec- relativistic dynamics. As a “measure of relativity” we may trumof the Dirac Hamiltonian. Specifically, the stiffnessin- 1 takethemaximumquivervelocityofaclassicalfreeelectron ducedbythehugeenergydifferencebetweenthepositiveand v exposedto a homogenouselectric field of strengthE oscil- 9 negative part of the spectrum may cause severe problems in 0 4 resolving the dynamics. An even more challenging issue is, latingwithfrequencyω: 3 asitturnsout,theconsistentinclusionofhigherordermulti- eE 7 polesofthefullelectromagneticfield. v = 0 . (1) quiv 0 mω InRef.[6]theTDDEforhydrogen-likesystemsexposedto . 1 strongattosecondlaserpulseswassolvednumerically.Unfor- Asv becomescomparabletothespeedoflightc,relativis- 0 tunately,computationalconstraintsdidnotallowforcalcula- tic efqfueicvtsare expected. In orderto actually see such effects 7 tionspenetratingintothe relativistic regimeforhydrogen. It inthe ionizationprobability,the laserspecificationsmust, of 1 : wasfound,however,thatevenbelowrelativisticvelocities,the course, be such that saturation is avoided even in this limit. v inclusionofthenegativeenergypartofthespectrumiscrucial Thus, the calculationswill involvephotonenergieswell into Xi in orderto accountfor dynamicsbeyondthe dipoleapproxi- theXUVregion. Varioustechniqueshavebeenappliedinor- mation. Moreover,in Ref. [7] itwas shownthatevenwithin dertosolveTDDEnumerically,e.g.,splitoperatormethods– r a the dipole approximation, negative energy states are crucial combinedwith Fouriertransforms[10, 11] or the method of forionizationprocessesinvolvingmorethanonephoton. characteristics[12,13],theclosecouplingmethod[9,14]and More recently, it was demonstrated in Ref. [8] that for a Krylov methods [15]. In the present work TDDE is solved laser pulse with photon energy in the XUV-region and field within a spectralbasis as in Refs. [6, 7], i.e., the state is ex- strengthsbelowtherelativisticregime,higherordermultipole pandedinasetofeigenstatesoftheHamiltonianwithoutany effectsarewellaccountedforbyusingthesocalledenvelope externalelectromagneticfieldpresent. Thetime propagation approximation,whichdoesnotcontainthespatialdependence isperformedusingaloworderMagnusexpansion[16]while of the electromagnetic field in full. It was further demon- theactualmatrixexponentiationisapproximatedbyaKrylov strated that within this approximation, the solutions of the subspaceapproachasinRef.[15]. TDDE and the non-relativistic time dependent Schro¨dinger This paper is structured as follows: The next section out- equation(TDSE)wereinagreement. linesthetheoreticalframework,anddetailsontheimplemen- Inthisworkwegofurtherandsolvetheequationsofmotion tation are provided in Sec. III. Our results and findings are intherelativisticregimeincludingmultipoleeffectsfromthe presentedanddiscussedinSec.IV,whileourconclusionsare 2 drawn in Sec. V. Atomic units are used throughout the text unlessexplicitlystatedotherwise. H (t)=cα A(x,t) . (9) I z Asthistermdependsonbothtimeandspace,tandx,adi- II. THEORY rectcalculationofthex-dependentcouplingsinducedbythis interactionwouldhavetobeperformedateachandeverytime Our starting point is the time-dependent Dirac equation stepinordertorepresentH(t)numerically.Thiscumbersome (TDDE): feature may be removed by writing the vector potential as a d sumoftermswithapurelytime-dependentandaspatiallyde- i~ Ψ=H(t)Ψ, (2) pendentpart, dt withtheHamiltonian ntrunc A(η) c T (t)X (x) . (10) n n n H(t)=cα [p+eA(η)]+V(r) 4+mc2β ≈ nX=0 · 1 =H0+ecα A . (3) Such separationsmay be achievedby, e.g., a Fourier expan- · sion in η or a Taylor expansion around η = t. In Ref. [6] Fortherepresentationofα,thePaulimatricesareused, both these approaches were followed. In the Fourier imple- 0 σ mentation,thenumberoftermswasminimizedintwoways: α=(cid:18)σ 0 (cid:19) , (4) First, by taking A to have the pulse length T as period and, second,byneglectingthespatialdependenceoftheenvelope and f(η),c.f.,Eq.(8).Bothoftheseapproacheshavesevereshort- comings.Theformerobviouslyintroducesanerroneousperi- β = 12 0 . (5) odicity,while for the latter ithasbeen shownthatin general (cid:18) 0 2 (cid:19) it is the spatial dependence of the envelope, not the carrier, −1 that provides the dominant correction to the dipole approxi- Thefour-componentwavefunctioncanbewrittenas mation[8]. InviewofthisweresorttoaTaylorexpansionin thepresentwork: Ψ (r,t) Ψ(r,t)= F , (6) (cid:18)ΨG(r,t) (cid:19) ntrunc 1 x n ntrunc A(η) A(n)(t) = a (t)xn (11) n whereΨF andΨG aretwo-componentspinors. Thepotential ≈ nX=0 n! (cid:16)−c(cid:17) nX=0 V(r)issimplytheCoulombpotentialofapointnucleus,i.e., weneglectretardationeffectsintheelectron-nucleusinterac- withoutneglectingspatialdependenceinneithertheenvelope tion and take the nuclear mass to be infinite, thus allowing northecarrier. forseparationbetweentheelectronicandthenucleardegrees The electric dipole approximation, which is generally not of freedom. The mass energy term, i.e., mc2β, introduces applicableforthecasesofinteresthere,see, e.g.,thediscus- a 2mc2 gap in the spectrum, dividing it into the aforemen- sion by Reiss [17], consists in substituting η with the time tionednegativeandpositiveparts. Sincechangesinthepop- t, i.e., neglecting the spatial dependence of the laser pulse ulationofnegativeenergystates isinterpretedastheappear- completely. In going beyond the dipole approximation, i.e., anceofpositrons(throughpair-creation),onemightarguethat assigning a value larger than zero to n in Eq. (11), it is trunc the negative spectrum should be excluded in simulating the however important that the spatial dependence is introduced dynamics induced between an electron and an external field consistently in the equations of motion. This is not guaran- withstrengthfarbelowthelimitofpairproduction. Thiswas teedbyjustchoosingn =1,whichmaybeexplainedby trunc disproved,however,inRefs.[6,7]andwewillbrieflyreturn firstlookingintothenon-relativisticinteraction. tothisissuealsointhiswork. WechoosetoworkinCoulombgauge, A=0,withthe externalvectorpotentialAlinearlypolariz∇ed· alongthez-axis A. Non-relativisticinteraction andpropagatingalongthex-axis; Thetime-dependentSchro¨dingerequationisgivenby: E A(η)= 0f(η)sin(ωη+ϕ)zˆ , (7) ω d i~ Ψ =H (t)Ψ (12) NR NR NR dt where η = t x/c. The envelope function is chosen to be − sine-squared; withtheHamiltonian sin2 πη , 0<η <T p2 e e2A2 f(η)= T . (8) HNR(t)= +V(r)+ p A+ . (cid:26)0, (cid:0) (cid:1) otherwise (cid:20)2m m · 2m (cid:21) With the pulse being linearly polarized in the z-direction, InsolvingtheTDSE,Eq.(12),ithasbeenfoundthattheA2- thetime-dependentpartoftheHamiltonianbecomes term,thesocalleddiamagneticterm, providespracticallyall 3 correctionstothedipoleapproximation[18,19].Moreover,in Specifically,theA2-termseeninthenon-relativisticHamil- Ref.[19]itwasfoundsufficienttoincludeonlythefirstorder tonian of Eq. (12) reappears. Thus, we see that the A2- correctionin the diamagnetic term. Here it is worth empha- termisimplicitlypresentintheDiracequationandentersthe sizingthatinthecaseoftheSchro¨dingerequationitiscrucial equation for the large componentof the wave function, Ψ , F thattheHamiltonian,thusnotthevectorpotentialitself,isex- throughthe small component, Ψ . Whenever we try to for- G panded consistently in x. Our resulting non-relativistic first mulatetheinteractionwith theelectromagneticfield through orderHamiltonianisthen; operatorsthatareanti-diagonalwithrespecttothesmalland largecomponent,itreappears. Thisimplicitoccurencecom- H p2 +V(r)+ e p A(t) e2xA(t)A(1)(t) , (13) plicatesaconsistentinclusionofspatialeffectsintherelativis- NR z ≈ 2m m −m c ticinteraction,aswillbedemonstratedinSec.IV. where the purely time-dependent A(t)2-term has been re- movedbythetrivialgaugetransformation: C. Propagation Ψ˜(r,t)=e~i R0t 2em2A(ωt′)2dt′Ψ(r,t). (14) Bothintherelativisticandthenon-relativisticcase,thestate In the non-relativistic regime the TDSE and the TDDE vectorΨ(t)ispropagatedbymeansofasecondorderMagnus should,ofcourse,agree.Thisconditionwillnowproveuseful propagator, in understanding the consistent incorporation of effects be- yond the dipole approximation in the Dirac Hamiltonian by Ψ(t+τ)=exp[ iτH(t+τ/2)]Ψ(t)+ (τ3) . (19) − O studyingitsnon-relativisticlimit. OneofthemajoradvantagesofaMagnus-typepropagatorfor the Schro¨dinger equation is stated clearly in Ref. [21]: “In B. Thenon-relativiticlimitofthelight-matterinteraction contrast to standard integrators, the error does not depend onhighertimederivativesofthesolution,whichisingeneral highlyoscillatory”. Dueto thestiffnessinherentin themass While the time dependentSchro¨dingerequation, Eq.(12), energyterm,i.e.,themc2β-termoftheHamiltonianinEq.(3), hasbotha linearand a quadratictermin A, the time depen- thisbecomesevenmoreadvantageousfortheDiracequation dent Dirac equation, Eqs. (2,3), is only linear in the vector than for the Schro¨dinger equation. In fact, the accuracy of potential.Wecanstudythenon-relativisticlimitoftheTDDE manytime-propagationschemes,suchasCrank-Nicolsonand by using the form of the wave functiongiven in Eq. (6) and Runge-Kutta, suffer greatly from the 2mc2 energy splitting. rewriteEq.(2): InRef.[22],e.g.,itisstatedthat“Themajordrawbackofthe dΨ Diractreatmentisthetemporalstepsize∆t.~/Erequired, VΨ +cσ (eA+p) Ψ =i~ F (15) F · G dt which has to be significantly smaller than for Schro¨dinger dΨ treatments, because of the large rest mass energy mc2 that cσ (eA+p)ΨF + V 2mc2 ΨG =i~ G , (16) iscontainedintheparticle’stotalenergyE.”Indeed,several · − dt (cid:0) (cid:1) works dealing numerically with the TDDE apply time-steps with ΨF and ΨG being the upper and lower component, re- of the order 10−5 a.u. or smaller, see, e.g., [9, 10, 13, 23]. spectively,c.f. Eq.(6). Forpositiveenergystates, Obviously,sucharestrictionrendersthedescriptionofalaser pulseofarealisticdurationratherinfeasible.Thisproblemis, ΨF c ΨG , however, circumventedby the application of Magnuspropa- | |∼ | | gators[21]. Itshouldbenotedthatextremelysmalltimesteps soacomparisonwithΨ shouldbedictatedbyΨ . NR F are,ofcourse,requiredwhenresolvingphenomenawhichre- By assuming that the Coulomb potential is negligible in allydotakeplaceatsuchshorttimescales, suchasZitterbe- comparison with the mass energy term, V 2mc2, and wegung[15]. ≪ thatthetimevariationofthesmallcomponentΨ ismodest, G Weemphasizethatinatime-dependentcontextitiscrucial Eq.(16)yields tokeepinmindthatatimedependentHamiltonianleadstoa time-dependentdistinctionbetweenpositiveandnegativeen- 1 ΨG σ (eA+p)ΨF , (17) ergy states; the Dirac sea is not calm, so to speak. As was ≈ 2mc · discussedinRef.[6],negativeenergysolutions,asdefinedby whichinsertedintoEq.(15)provides thetime-independentHamiltonian,H ,areessentialtocalcu- 0 late effects beyondthe dipole approximations, while the dy- p2 +V + e p A+ e2A2 + e~ σ B Ψ =i~dΨF. namicnegativeenergystates,asdefinedbyH(t),shouldonly (cid:20)2m m · 2m 2m · (cid:21) F dt comeintoplaywhenpair-productionstartstoplayarole. For (18) fieldsfarawayfromthatlimitthepropagatorofEq.(19)may Thatis,theTDSE,Eq.(12),isreproduced–withanadditional inprinciplebemodifiedto term corresponding to the interaction between the spin and the magnetic field. The same can be achieved via a Foldy- Ψ(t+τ)= (t+τ/2)exp[ iτH(t+τ/2)]Ψ(t)+ (t3) , P − O Wouthuysentypeoftransformationonthewavefunction[20]. (20) 4 where (t) projects the state onto the time-dependent sub- energy index n can attain per spin-angular symmetry. The P space spanned by the positive spectrum of the Hamiltonian boundaryconditionsappliedonthecomponentsare: H(t), i.e., the negative energy states are blocked. For the fields used here the population of the negative energy states P (0) = P (R )=0 (26) n,κ n,κ max oftheHamiltonianH(t)isso tinythattheprojectedandthe Q (0) = Q (R )=0 . (27) n,κ n,κ max unprojectedpropagatorgivesthesameresults,asexplainedin Sec.IV. Weincludeallspin-orbitalswithangularmomentumupto When,ultimately,thefieldsareincreasedevenfurtherand l = 30(asdefinedforthelargecomponent)andkeepall max pair-productiondo startto playa role, this has, of course, to the associated magnetic quantumnumbersm . To speed up j behandledthroughfieldtheory,wherethedistinctionbetween the propagation without compromising the results, high en- positive and negative energy states is inherent. Then transi- ergycomponentshavebeenfiltered outleaving, forthistyp- tionsintonegativeenergystates(annihilation)arecoupledto ical choice of parameters a final number of 1902594 states excitations out of them (pair-production)and the number of in ourbasis. Similarly, the non-relativisticspectralbasishas particlesisnolongerconserved. eigenfunctionsoftheform P (r) III. IMPLEMENTATION Φ(r)= nl Yl(θ,φ) , (28) r m We expandour wave function in eigenstates of the unper- where, as in the relativistic case, the radial component is turbedHamiltonianH , expanded in B-splines while the angular part is analytically 0 known. Weusethesamelinearknotsequenceasintherela- Ψ(t)= cn,j,m,κ(t)ψn,j,m,κ(r) , (21) tivisticcasewith500B-splines,k = 7andRmax = 150a.u. n,Xj,m,κ andtheboundaryconditions, with P (0)=P (R )=0 . (29) n,l n,l max F (r) ψn,j,m,κ(r)=(cid:18)Gnn,,jj,,mm,,κκ(r)(cid:19) , (22) For convergence we needed to keep all orbital angular mo- mentauptol =40,withallassociatedm -values. Justas max l where intherelativisticcasewefilteredouthighenergycomponents that do not affect the dynamics, leaving a total of 827351 F (r) 1 P (r)X (Ω) n,j,m,κ = n,κ κ,j,m . (23) statesinthenon-relativisticbasis. (cid:18)Gn,j,m,κ(r)(cid:19) r (cid:18)iQn,κ(r)X-κ,j,m(Ω)(cid:19) Here κ = l for j = l 1/2 and κ = (l + 1) for j = l + 1/2, and X rep−resents the spin-a−ngular part which A. Computingthematrixelements κ,j,m hastheanalyticalform WiththevectorfieldgivenbyEq.(11),thelight-matterin- X = l ,m ;s,m j,m Ylκ(θ,φ)χ , (24) teraction,Eq.(9),givesrisetomatrixelementsbetweeneigen- κ,j,m hκ l s| i ml ms mXs,ml states to the time-independent Hamiltonian. Labelling two such states k = nκjm and k˜ = n˜κ˜˜jm˜ , the matrix where Ymlκl(θ,φ) is a spherical harmonic and χms is an elementconn|eicting|themisigiven|byiasum| ofterimsincluding eigenspinor. TheradialcomponentsPn,κ(r)andQn,κ(r)are higherandhigherpowersofthespatialcoordinate: expandedinB-splines[24]; ntrunc Pn,κ(r)= aiBik1(r) , Qn,κ(r)= bjBjk2(r) . Hkk˜(t)= ai(t)hnκjm|αzxγ|n˜κ˜˜jm˜i. (30) Xi Xj γX=0 (25) In Ref. [25] it is demonstrated that specific choices of B- SinceweareworkingintheeigenbasisofH0, wemaycom- splineordersk andk controltheoccurrenceofthesocalled putethesecouplingsusingangularmomentumtheorybyfirst 1 2 spuriousstates, which are knownto appearin the numerical expressing the operators in terms of spherical tensor opera- spectrumafterdiscretizationoftheDiracHamiltonian.While tors[26]. Forthepowersofx, thesearesphericalharmonics the choicek = k contaminatesthe spectrumwith suchin- Yλ; 1 2 µ correctstates,thechoicesk =k 1arereportedtobestable 1 2 ± combinationsthatdonotproducethem. γ λ In this work we use k = 7,k = 8. Converged re- xγ = cλµrγYλ , (31) 1 2 γ µ sultswereobtainedusingalinearknotsequencewith500B- λX=0µX=−λ splinesforthelargecomponentand501forthesmalloneup to R = 150 a.u.. This gives a total of 1001 bound and while σ = σ1 is a componentof a rank-1 spherical tensor max z 0 pseudocontinuum(bothpositiveandnegative)statesthatthe operator.ThecouplingsinEq.(30)arenowgivenbysumming 5 uptermsfactoredinaradialandspin-angularpart: where,justasinEq.(35),theWigner-Eckarttheoremhasbeen applied. Note that this enables an efficient memory storage nκjmα rγYλ n˜κ˜˜jm˜ = h | z µ| i since all dependence on the projection numbers may be ac- countedforbymultiplicationofsinglescalars. Thisfacthas i P∗ (r)rγQ (r) κjmσ1Yλ -κ˜˜jm˜ Zrh nκ n˜κ˜ h | 0 µ| i− alsobeenusedforcache-efficientmemoryusageintheprop- agationmethodused. Q∗ (r)rγP (r) -κjmσ1Yλ κ˜˜jm˜ dr (32) nκ n˜κ˜ h | 0 µ| ii where -κ implies the spin-angular part of the small compo- B. Propagation nent. With the radial components expressed in B-splines, theintegralsarecomputedtomachineaccuracyusingGauss- Asthe useof a Magnuspropagator,Eq.(19), involvesex- Legendrequadrature. Toobtainthespin-angularpart,theop- ponentiatingatime-dependentHamiltonianmatrix,fulldiag- eratorproductcan be expressedin a coupledtensor operator onalization at each time step is called for. This would also basis: be necessary in order to make the distinction between (dy- λ+1 namical) positive and negative energy states needed for the σ1Yλ = 10;λµKQ σσσ1Yλ K , Q=µ . 0 µ h | i Q projection in Eq. (20). Incidentally, in the work of Ref. [6], K=X|λ−1| (cid:8) (cid:9) imposingthisprojectionwasactuallynecessaryduetotheuse ofthecomplexscalingmethod,whichwasthenakeytomini- Withthischoicethespin-angularpartmaybecomputedas: mizethebasissize. Sincenegativeenergystatesattainaposi- λ+1 tiveimaginaryenergycomponentundercomplexscaling,they hκjm|σ01Yµλ|κ˜˜jm˜i= (−1)λ−1−Q√2K+1 cannotbepropagatedforwardintimeandhastobeseparated K=X|λ−1| fromthepositiveenergystates. ×(cid:18)01 µλ Kµ(cid:19)hκjm| σσσ1Yλ KQ |κ˜˜jm˜i . (33) cisNioenedmleastrsixtoosfasyi,zerep(e1a0t6e,d1d0i6a)goinsaelixztaretimoneloyfeaxpdeonusbivleeparned- − (cid:8) (cid:9) completelyoutofthequestion.Anyefficientwayofdoingthe TheWigner-Eckarttheoremcanbeappliedtothematrixele- exponentiationapproximativelyisthuswelcome.Tothisend, mentofthecombinedoperator σσσ1Yλ K: Krylovsubspacemethodsturnouttobequiteuseful[15,27]. Q (cid:8) (cid:9) Such methodsprovideaccurateapproximationsto the action κjm σσσ1Yλ K κ˜˜jm˜ = oftheexponentialofanoperatoronaspecificvector. More- h | Q | i over, their numericalimplementation can be made very effi- (-1)j−m(cid:8) j (cid:9)K ˜j j σσσ1Yλ K ˜j (34) cient.AteachtimesteptheKrylovsubspaceofdimensionm, (cid:18) m Q m˜(cid:19)×h || || i Km(t+τ/2),whichisspannedbythesetofstatesobtained − (cid:8) (cid:9) byiterativelymultiplyingthestatewiththeHamiltonian, withthereducedmatrixelementgivenby: [H(t+τ/2)]kΨ(t), k =0,...,(m 1) , (38) j σσσ1Yλ K ˜j = (2j+1)(2K+1)(2˜j+1) is constructed using the Arnoldialgorithm.−The exponential h || || i q (cid:8) (cid:9) l ˜l 1 isnowprojectedontoKm(t+τ/2)andexponentiatedwithin ×hs||σσσ1||s˜ihl||Yλ||˜lisj Js˜˜ Kλ . (35) othfisτs≈ubs1p0a−c3e.a.uT.ypiincaolulyr cmalc≈ulat5i0onws.heOnnucesincognavetrigmeencseteips achieved,a backtransformationto the originalHilbertspace With this scheme the couplings induced by α xγ, for γ = is performed to give Ψ(t + τ). The computationally heavy z 0,1,...,n in Eq. (30) are readily computed to repre- partinthisapproachistherepeatedmatrix-vectorproductsin trunc sentthelight-matterinteractionterm,cf.Eq.(9),intheDirac Eq.(38). DespiteH(t+τ/2)beingquitesparse,thenumber Hamiltonian, Eq. (3). For the Schro¨dinger Hamiltonian in ofnon-zeroelementsintherelativisticcaseisapproximately Eq.(13)theneededcouplingsarep -couplings; 3.9 1011, whichisquiteachallengetohandle. Thisisdone z · bystoringtheprojectionfactorsseparatefromtherestofthe couplings, as discussed in Sec. IIIA, such that the memory n l m p n l m = a a a z b b b requirementfor our parameters is reduced by roughly a fac- h | | i ( 1)la−ma la 1 lb n l p1 n l , (36) tor ∼ 100 while high computational throughput is achieved − (cid:18) ma 0 mb(cid:19)×h a a|| || b bi byperformingallmultiplicationscorrespondingtotransitions − betweenstatessharingallotherquantumnumberssimultane- andx-couplings; ously. In order to prevent reflection at the computational box n l m xn l m = a a a b b b h | | i boundary, a complex absorbing potential (CAP) is added to 2π ( 1)la−ma la 1 lb la 1 lb H(t)duringthetime-propagation–forboththeSchro¨dinger r 3 · − (cid:18)(cid:18) ma 1 mb(cid:19)−(cid:18) ma 1 mb(cid:19)(cid:19) andtheDiracequation, − − − ×Z Pn∗ala(r)rPnblb(r)drhnala||Y1||nblbi , (37) VCAP =(cid:26)−η(r0−,r0)2, rr >rr0 . (39) 0 ≤ 6 TypicalCAP values are η = 0.05iand r = 110.0a.u., the andtheTDDEdoindeedagreebelowandaroundthisregime. 0 latterbeinglargeenoughtoensurethatanyfluxreachingthis However,theconvergencepatternswithrespecttothespatial distance will really represent the ionization current. In that dependence in Eq. (11) of the calculations are actually very case the absorptionof the flux beyondr doesnotaffectthe different. We will now study this convergence behavior in 0 ionization dynamics – provided that reflection is negligible. somedetail. For the TDDE the complex absorbing potential is found to havethesameeffectonallthecomponentsofthewavefunc- tion. A. Therepresentationofthevectorfieldbeyondthedipole approximation IV. RESULTSANDDISCUSSION Aspreviouslymentioned,Ref.[19]providesstrongsupport fortheclaimthatbelowtherelativisticregion,thefirstorder The probatility of ionizing a hydrogen atom from the term in Eq. (11) alone providespractically all correctionsto ground state, P , by exposing it to laser pulses of various the dipole prediction. At first glance there does not seem to ion intensitieshasbeenstudied.Thepulseischaracterizedbythe beanyapriorireasonwhythisconclusionshouldnotapplyto followingparameters,cf. Eqs.(7,8): therelativistictreatmentaswell. Yet,asshowninFig.2,we typicallyhavetoresorttoathirdorderexpansiontoreproduce ω =3.5a.u., φ=0, T =2πNωc a.u. and Nc =15. (40) thenon-relativisticresultswhensolvingtheDiracequation. P hasbeencalculatedwithpeakelectricfieldstrengths,E , ion 0 sohighthattheelectronquivervelocity,vquiv,correspondsto ω=3.5 a.u., NCycles=15 almost 20 % of c, cf. Eq. (1). But before we discuss such 0.7 TDSE dip extremeconditionswewillconsidertheionizationprobability TDSE BYD inthenon-relativisticregime. 0.6 BYD1 v≈0.1c Figure 1 shows the convergedP calculated both within BYD2 thedipoleapproximationandbeyonidon(BYD)forE0 70a.u. eld0.5 BYD3 t(icvoerlryeslopwonfideinldgsttoreIngt∼hst1h.e7i·on1i0z2a0tioWn/pcrmo2b)a.bilFitoyrisc≤oinmcpreaaras-- tion yi0.4 a ing monotonouslywith increasing field strength, but around z0.3 ni E 10a.u. theso-calledstabilizationsetsin[28]. Foreven o hi0gh≈er field strengths the ionization starts to increase again. I0.2 At E 30 a.u. the dipole approximation breaks down, a 0 ≈ 0.1 behaviourthathasbeendiscussed,e.g.,inRef.[29]. 0.0 0 10 20 30 40 50 60 Peak electric field stength (a.u.) ω=3.5 a.u., NCycles=15 0.8 TDSE dip FIG.2: (coloronline). ComparisonbetweenTDDEresultswithin- 0.7 TDDE dip creasingorderofxincludedintheexpansionofthevectorpotential. TDSE BYD 0.6 Thenumberstrailingtheacronym“BYD”isthenumericalvalueof TDDE BYD n in Eq. (11). BYD1 starts deviating from TDSE already at d trunc el0.5 E ≈ 12 a.u. and from there on consistently overestimates P . n yi BY0D2, on the other hand, agrees with TDSE up to E0 = 40 aio.nu. tio0.4 where it starts to give a lower value for Pion. BYD3 then pushes niza0.3 PionupandagreeswiththeTDSEresultsuptoE0≈60a.u.. o I 0.2 TheunderlyingproblemistheimplicitinclusionoftheA2- termintheDirac-equation,discussedinSec.IIB.Whenonly 0.1 v≈0.1c firstordercorrectionsto Aareincluded,someofthe second 0.0 ordercorrectionsintheimplicitA2-termwillstillbeincluded, 0 10 20 30 40 50 60 70 Peak electric field stength (a.u.) namely the (A(1))2x2 contribution, while the other con- ∼ tribution, namely the A(2)A(0)x2-term, require the inclu- ∼ FIG.1:(coloronline).ComparisonofTDSEandTDDEcalculations sionalsoofsecondordercorrectionstoA. FørreandSimon- withinthedipoleapproximationandbeyond(BYD).Theverticalline sen [19] foundthat in the non-relativistic limit there are im- indicates a maximum electric field strength E0 corresponding to a portantcancellationsbetweenthesex2-terms;itsneteffectis maximumquivervelocityvquiv =0.1c. vanishinglysmallwhileseparatecontributionswouldshiftre- sultsdramatically–andartificially. The verticalline in Fig. 1 marksthe electric field strength It is thus natural to assume that these cancellations are E that corresponds to a maximum electron quiver velocity a key-issue and that higher-order correction terms to A are 0 v = 0.1c. As expected, the predictions by the TDSE neededtoachievethemwhenimplementingasolutionofthe quiv v≈0.1c 7 Dirac equation [30]. Of course, inclusion of second order correction terms in A, in turn, introduceseffective third and ω=3.5 a.u., NCycles=15 fourth order terms in an equally inconsistent manner and so 0.8 TDSE BYD forth. However,sincethemagnitudeofthesecorrectionsde- BYD3 BYD4 crease with n , cf. Eq. (11), the problem should for a trunc 0.7 BYD5 givenfieldstrengthdiminishwithincreasingorders.Thiscon- d vergence behavior is observable in Fig. (2); TDDE BYD1, yiel i.e., n = 1, severely overestimates the ionization yield n 0.6 trunc o evenbeforethebreakdownofthedipoleapproximation,while ti a z TDDEBYD2, i.e., ntrunc = 2, givesinitialagreementupto ni0.5 v≈0.1c v≈0.2c o E0 = 40a.u. butisthenseentounderestimatePion (aspre- I dicted by the TDSE). Inclusion of an additional third order 0.4 terminEq.(11)increasesP ascomparedtoTDDEBYD2, ion givingcloseagreementwiththeTDSEuptoE =60a.u.. 0 0.3 Beforewegoon,acommentisnecessary. Theconclusion 50 60 70 80 90 100 concerningtheinconsistentrepresentationoftheimplicitA2- Peak electric field stength (a.u.) termmayseemtocontradicttheresultspresentedinRef.[8], where the agreement was found between TDSE and TDDE FIG.3:(coloronline).ContinuationofFig.2withntrunc=3,4and usingafirstorderexpansioninxofAutilizingthesocalled 5 for the TDDE. At the highest fieldstrengths the relativisticPion starts to show a decreasing value compared to the non-relativistic envelopeapproximation. Withthisapproximationthespatial prediction. dependenceinthecarrier,i.e.,sin(ωη+ϕ)inEq.(7),isdis- garded,whichfortheTDDEinfactremovestheinconsistency problemtoa largeextent: Theremainingtermin thederiva- field,issmallerbyafactorv /c,i.e.,stillfarfromrelativis- tive of the vector potential, A(1)(t), now only consists of a quiv tic. small contribution from the envelope, cf. Eq. (8), and thus the problematic (A(1))2x2 contribution from the implicit ∼ A2 termin Eq.(18) is moreor lessinsignificant–atleast in ω=3.5 a.u., NCycles=15 the non-relativistic regime. Within the envelope approxima- 0.02 Dip tionitisthussufficienttouseonlythefirstorderterminthe BYD5 Taylor-expansionofA, butitisnotwhenalsoitsfullspatial dependenceisconsidered. 0.01 Inordertofindrelativisticeffectswe nowconsiderhigher valuesforE0. ual d 0.00 si e R B. Relativisticeffects −0.01 Figure3showsP forelectricfieldstrengthsuptoE = ion 0 90a.u. (correspondingtoI 2.8 1020 W/cm2). Forhigher ∼ · −0.02 field strengths than those seen in Fig. 1, higher values of 50 60 70 80 90 100 ntrunc arenecessary,asshowninFig.3. Forthehighestfield Peak electric field stength (a.u.) strengthsconsideredhere, relativistic effectsstart to surface. Inordertohighlightthesewepresentthedifferencebetween FIG.4: (coloronline). ResidualplotforthefinalconvergedTDDE therelativisticandthenon-relativisticpredictionsinFig.(4). calculations with respect to TDSE. Both within and beyond the Both within and beyond the dipole approximation the rela- dipoleapproximationtherelativisticcorrectionsshowadecreaseof tivisticP seemstodecreasesteadilycomparedtothecorre- Pionasthequivervelocityvquivapproaches0.2c. ion spondingnon-relativisticvalue. Albeitsmall,thediscrepancy iswellwithintheaccuracyofourcalculations. ItisclearfromFig.4thatrelativisticeffectsreducetheion- It is interesting to note from Fig. 4 that the differencebe- izationprobability. Itwouldseem reasonableto assume that tweentherelativisticandthenon-relativistictreatmentismore this reduction is related to the increased inertia of the elec- orlessthesamewithinthedipoleapproximationasbeyondit. tron. Inordertotestthisassumptionwehaveperformednon- Thisindicatesthat,althoughthevelocityoftheelectroninthe relativisticcalculationsinthedipoleapproximationinwhich polarizationdirection,vquiv,cf.Eq.(1),inducedbytheelec- the electron mass has been substituted with the relativistic tricfield,issubjecttorelativisticcorrections,themagneticin- massofaclassicalfreeelectron, teractionisessentiallyunaffected.Thisisnotsurprising,how- ever, consideringthe magnitude of the relativistic correction hereandthefactthatthevelocityin thedirectionperpendic- m e m where v(t)= A(t) . (41) ulartothedirectionofpolarization,inducedbythemagnetic → 1 (v(t)/c)2 m − p v≈0.2c v≈0.1c 8 The difference between the corresponding ionization proba- bility and the one obtained without mass shift is shown in 0.5 ω=3.5 a.u., NCycles=15 Fig. (5) – along with the TDDE results. Indeedwe find that TDSE BYD the “relativistic substitution”, Eq. (41), shifts the ionization 0.4 BYD1 BYD2 probabilitydownwards. Moreover,althoughourmodelover- BYD3 estimatesthediscrepancysomewhat,theionizationprobabil- 0.3 BYD4 ityobtainedbythemodelbehavesinamannerverysimilarto al BYD5 thetrulyrelativisticcalculations. u d 0.2 si e R 0.1 ω=3.5 a.u., NCycles=15 0.02 TDDE Dip 0.0 TDSE Dip mass correction 0.01 −0.1 0 20 40 60 80 100 Peak electric field stength (a.u.) al u sid 0.00 FIG. 6: (color online). Difference between Pion computed within e R and beyond the dipole approximation for TDSE and TDDE in re- spectivecase. −0.01 −0.02 50 60 70 80 90 100 ω=3.5 a.u., NCycles=15 Peak electric field stength (a.u.) 0.7 TDSE dip FIG.5:(coloronline).Residualplotsfortherelativisticdipolecalcu- TDSE BYD lationandthenon-relativisticdipolecalculationwiththemasssub- 0.6 Dip NoNES BYD1 NoNES stitutedasinEq.(41). eld BYD2 NoNES This is a strong indication that the dominating relativistic n yi0.5 BYD3 NoNES v≈0.1c o effectsforthefieldsconsideredhereoriginatefromdipolein- ti a z teraction. In supportof this, Fig. 6 shows the differencebe- ni o0.4 tween calculations performed within and beyond the dipole I approximation–bothfortheTDSEandtheTDDE.Itisseen that the corrections to the dipole approximation in the two 0.3 frameworksdoinfactcoincide. Althoughitis hardto judge fromFig.3aloneifntrunc = 5issufficientforE0 = 90a.u., 5 10 15 20 25 30 35 40 45 50 theagreementinFig.6providesstrongsupportthereof. Peak electric field stength (a.u.) FIG.7: (coloronline). AcomparisonofP fortheTDSEandthe ion TDDE calculated with and without the time-independent negative- C. Dealingwiththenegativeenergystates energy statesin therelativisticbasis. Withthislimitation, none of thesimulationsareabletoprovideanycorrectiontothedipoleap- In Ref. [6] it was shown that exclusion of the time- proximation. independentnegative-energystates from the propagationba- sisremovedalleffectsbeyondthedipoleapproximation.Here we showthatthisconclusionseemstoholdregardlessofthe valueofn inEq.(11). InFig.7wepresentresultsfrom trunc solvingtheTDDEwithoutthetimeindependentnegativeen- evaluated within a Krylov subspace, cf. Eq. (38), since the ergy states, i.e., with those eigenstates of H corresponding obtainedspectrumisnotthesameasthetruetimedependent 0 to negative eigenenergies excluded from the basis set, for spectrumofH(t). Totestthis,twosimulationsfortheTDDE n 3. It is seen that all these different Hamiltonians BYD5, withE = 70a.u. and80a.u.,wereperformedboth trunc ≤ 0 nowpredictthesameP . with and without the projection imposed within the Krylov ion In Sec. IIC it was argued that the projection onto time- subspace, cf. Eqs. (20, 38). As it turns out, the only differ- dependent (dynamic) positive energy states, i.e., eigenstates ence found between these calculations was slightly different of the dynamical Hamiltonian H(t), was adequate as long convergencepropertiesin the time step, which indicatesthat as the fields are not within the pair productionregime. This even in the approximate propagation method the arguments should howevernotbe taken for grantedif the propagatoris madeinSec.IICshouldhold. v≈0.2c 9 V. CONCLUSION mand of increasingly higher order corrections. A better ap- proach is to look for a transformationof the Hamiltonian to Wehavesolvedthetime-dependentDiracequationforahy- a form where the consistent inclusion of higher order multi- drogenatomexposedtoextremelaserpulses. Uponcompari- polesoftheelectromagneticfieldiseasiertoachieve. Sucha sonwiththenon-relativisticcounterpart,i.e.,theSchro¨dinger transformationwillbepresentedinaforthcomingpaper. equation,itwasfoundthateffectsbeyondthedipoleapprox- imation are morecomplicatedto incorporatecorrectlyin the relativistic framework. Whereas first order space-dependent Acknowledgments corrections to the vector field are sufficient for the TDSE, the TDDE demands an expansion to at least third order to evenreproducethenon-relativisticresultsbelowtherelativis- The authors would like to thank prof. M. Førre for fruit- tic regime. With increasing field strengths the demand for fuldiscussionsandforprovidinguswithdataforcomparison. higherordercorrectionsincreasesevenfurtherwith theneed SignificantdevelopmentoftheTDSEandTDDEcodeswere of a fifth-order space-dependent correction when the quiver done at resources provided by the Swedish National Infras- velocityisv 0.19c. tructure for Computing (SNIC) HPC2N and NSC. We espe- quiv Emergingrelat≈ivisticcorrectionsarefoundintheionization cially would like to thank A˚ke Sandgren at HPC2N for as- yield P for the test cases starting at v 0.17c. Both sistanceinthisdevelopment. TheNorwegianMetacenterfor ion quiv ≈ withinandbeyondthedipoleapproximationtherelativisticef- ComputationalScience(UNINETTSigma2)isacknowledged fectsgivealowerP suggestingincreasedstabilizingeffect forprovidingcomputationalresourcesforcarryingoutthecal- ion against ionization. It was demonstrated that this shift could culations(AccountnumberNN9417K).Financialsupportby beexplainedbytheelectron’sincreasedrelativisticinertiade- theSwedishResearchCouncil(VR),GrantNo. 2012-3668is scribedalreadywithinthedipoleapproximation. gratefully acknowledged. We also acknowledge support for Toincreasethefieldstrengthfurtherandrevealstrongerrel- ourcollaborationthroughtheNordicInstituteforTheoretical ativistic effects, possibly also relativistic corrections beyond Physics(Nordita)andfromtheresearchgroupMathematical thedipoleapproximation,thepresentformofthelight-matter Modelling at Oslo and Akershus University College of Ap- interactionintheDiracequationisnotsuitableduetothede- pliedSciences. [1] A.DiPiazza,C.Mu¨ller,K.Z.Hatsagortsyan,andC.H.Keitel, gan,Phys.Rev.A85,032701(2012). Rev.Mod.Phys.84,1177(2012). [15] R. Beerwerthand H.Bauke, Comput. Phys. Comm. 188, 189 [2] C.I.Moore,A.Ting,S.J.McNaught,J.Qiu,H.R.Burris,and (2015). P.Sprangle,Phys.Rev.Lett.82,1688(1999). [16] S.Blanes, F.Casas, J.Oteo,andJ.Ros,PhysicsReports470, [3] A. D. DiChiara, I. Ghebregziabher, R. Sauer, J. Waesche, 151 (2009). S.Palaniyappan,B.L.Wen,andB.C.Walker,Phys.Rev.Lett. [17] H.R.Reiss,Phys.Rev.A63,013409(2000). 101,173002(2008). [18] K.J.Meharg,J.S.Parker,andK.T.Taylor,J.Phys.B38,237 [4] H.Yumoto, H.Mimura, T.Koyama, S.Matsuyama, K.Tono, (2005). T.Togashi, Y. Inubushi, T.Sato, T.Tanaka, T.Kimura, et al., [19] M.FørreandA.S.Simonsen,Phys.Rev.A90,053411(2014). Nat.Photon7,43(2013). [20] L.L.FoldyandS.A.Wouthuysen,Phys.Rev.78,29(1950). [5] H.Yoneda,Y.Inubushi,M.Yabashi,T.Katayama,T.Ishikawa, [21] M.HochbruckandC.Lubich, SIAMJ.Numer.Anal.41, 945 H.Ohashi,H.Yumoto,K.Yamauchi,H.Mimura,andH.Kita- (2003). mura,Nat.Commun5,5080(2014). [22] Y. I. Salamin, S. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, [6] S. Selstø, E. Lindroth, and J. Bengtsson, Phys. Rev. A 79, Phys.Rep.427,41 (2006). 043418(2009). [23] G. R. Mocken and C. H. Keitel, Phys. Rev. Lett. 91, 173202 [7] Y.V.VanneandA.Saenz,Phys.Rev.A85,033411(2012). (2003). [8] A. S. Simonsen, T. Kjellsson, M. Førre, E. Lindroth, and [24] C. de Boor, A Practical Guide to Splines (Springer-Verlag, S.Selstø,Phys.Rev.A93,9(2016). 1978),revisededition2001ed. [9] M.S.Pindzola,J.A.Ludlow,andJ.Colgan,Phys.Rev.A81, [25] C. F. Fischer and O. Zatsarinny, Comput. Phys. Comm. 180, 063431(2010). 879(2009). [10] H.Bauke, H.G.Hetzheim, G.R.Mocken, M.Ruf,andC.H. [26] I. Lindgren and J. Morrison, Atomic Many-Body Theory, Se- Keitel,Phys.Rev.A83,063414(2011). riesonAtomsandPlasmas(Springer-Verlag,NewYorkBerlin [11] G. R. Mocken and C. H. Keitel, Comput. Phys. Comm. 178, Heidelberg,1986),2nded. 868 (2008). [27] M.HochbruckandC.Lubich,SIAMJ.Numer.Anal.34,1911 [12] F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk, Comput. (1997). Phys.Comm.183,1403 (2012). [28] M.Gavrila,J.Phys.B35,R147(2002). [13] F.Fillion-Gourdeau, E.Lorin, and A. D. Bandrauk, J. Comp. [29] A.S.SimonsenandM.Førre,Phys.Rev.A92,013405(2015). Phys.272,559 (2014). [30] M.Førre,privatecommunication(2015). [14] M.S.Pindzola,S.A.Abdel-Naby,F.Robicheaux,andJ.Col-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.