Astronomy&Astrophysicsmanuscriptno.LF3-arxiv (cid:13)c ESO2014 January28,2014 Relativistic cosmology number densities in void-Lemaˆıtre-Tolman-Bondi models A.Iribarrem1 ⋆,P.Andreani2,S.February3,C.Gruppioni4,A.R.Lopes1,M.B.Ribeiro5,andW.R.Stoeger6 1 Observato´riodoValongo,UniversidadeFederaldoRiodeJaneiro,Brazil 2 EuropeanSouthernObservatory,Karl-Schwarzschild-Straße2,85748Garching,Germany 3 Astrophysics,CosmologyandGravitationCentre,andDepartmentofMathematicsandAppliedMathematics,UniversityofCape Town,Rondebosch7701,CapeTown,SouthAfrica 4 INAF–OsservatorioAstronomicodiBologna,ViaRanzani1,I-40127Bologna,Italy 4 5 InstitutodeF´ısica,UniversidadeFederaldoRiodeJaneiro,Brazil 1 6 VaticanObservatoryResearchGroup,StewardObservatory,UniversityofArizona,AZ85721,Tucson,USA 0 2 n a ABSTRACT J Aims.Thegoalofthisworkistocomputethenumberdensityoffar-IRselectedgalaxiesinthecomovingframeandalongthepast 5 lightconeofobservationallyconstrainedLemaˆıtre-Tolman-Bondi“giantvoid”modelsandtocomparethoseresultswiththeirstandard 2 modelcounterparts. Methods.Wederivedintegral number densitiesanddifferential number densitiesusingdifferent cosmological distance definitions ] O in the Lemaˆıtre-Tolman-Bondi dust models. Then, we computed selection functions and consistency functions for the luminosity functionsinthecombinedfieldsoftheHerschel/PACSevolutionaryprobe(PEP)surveyinbothstandardandvoidcosmologies,from C whichwederivedtheobservedvaluesoftheabove-mentioneddensities.WeusedtheKolmogorov-Smirnovstatisticstostudyboth . theevolutionoftheconsistencyfunctionsanditsconnectiontotheevolutionofthecomovingdensityofsources.Finally,wefitted h thepower-lawbehaviourofthedensitiesalongtheobserver’spastlightcone. p Results.TheanalysisofthecomovingnumberdensityshowsthattheincreasedflexibilityoftheLemaˆıtre-Tolman-Bondimodelsis - o notenoughtofittheobservedredshiftevolutionofthenumbercounts,ifitisspecialisedtoarecentbest-fitgiantvoidparametrisation. r Theresultsforthepower-lawfitsofthedensitiesalongtheobserver’spastlightconeshowgeneralagreementacrossbothcosmological st modelsstudiedherearoundaslopeof-2.5±0.1fortheintegralnumberdensityontheluminosity-distancevolumes.Thedifferential a numberdensitiesshowmuchbiggerslopediscrepancies. [ Conclusions.Weconclude thatthedifferentialnumber densitiesontheobserver’spastlightconewerestillrendereddependent on thecosmological model by thefluxlimitsof thePEPsurvey. Inaddition, weshow that anintrinsicevolution of thesources must 1 beassumedtofitthecomovingnumber-densityredshiftevolutioninthegiantvoidparametrisationfortheLemaˆıtre-Tolman-Bondi v modelsusedinthiswork. 2 7 Keywords.Galaxies:distancesandredshifts–Cosmology:theory–Galaxies:evolution–Infrared:galaxies 5 6 . 1 1. Introduction HubbleparametermeasurementsfromthedistancestoCepheids 0 (Freedmanetal. 2001), or from the massive, passively evolv- 4 The aim of many studies in observational cosmology is to in- ingearly-typegalaxies(Morescoetal.2012;Liuetal.2012),or 1 fer to what extent the geometry of the spacetime contributes from the extragalacticHII regions(Cha´vezetal. 2012); the lu- : to the formation and evolution of the galaxies, i.e. the build- v minosity distance-redshift relation stemming from supernovae ingblocksoftheluminousUniverse.Inpracticalterms,mostof i type Ia (henceforth, simply SNe) surveys (Riessetal. 1998; X whatwecaninferaboutgalaxyformationandevolutioncomes Perlmutteretal. 1999), the power spectrum of the cosmic mi- r from analyses of redshift surveys. Although the redshift is an crowavebackgroundradiation(CMB,e.g.Komatsuetal.2011), a observable quantity related to the energy content and geome- and the angular size scale obtained from baryonicacoustic os- try of the Universe – regardless of how we model it – trans- cillation(BAO)studies(e.g.Percivaletal.2010).Thedegreeof lating these measurements into distance estimations cannot be confidence on the concordance model is such that the above- performedwithoutassumingacosmologicalmodel.Asaconse- mentionedmodeldependencyofgalaxyformationandevolution quence,it is clear that anystudythat involvesgalaxydistances nowadayssoundslikeanunavoidable,butotherwiselessconse- willbemodeldependent.Thisdependencycannotbeovercome quentialfact. aslongasthedistanceestimatorsusedinthesestudiesarenotdi- rectlyobtained,butinsteadderivedfromredshiftmeasurements. Despite the sizeable constraining power of the current The standard cosmologicalmodel, often called the concor- set of observations show, there is still room for considering dancemodel,ispresentlyabletosimultaneouslyfitmostofthe alternative cosmologicalmodels. Even if most of these models currentobservationsof independentcosmologicalquantities.A are disfavoured when compared to the standard model (e.g. few examples of observations that support this model include Sollermanetal. 2009), some of them cannot be ruled out entirely yet. Among these models, motivated mainly as alter- ⋆ [email protected] native to dark energy, various non-homogeneous cosmologies 1 A.Iribarremetal.:Numberdensitiesinvoidcosmologies have been proposed, with an increasing interest in the past framecomputations.Theempiricalapproachofit,ifnotasam- few years (Hellaby&Alfedeel 2009; Alfedeel&Hellaby bitious, shares the same philosophy of the ideal observational 2010; Februaryetal. 2010; Biswasetal. 2010; Sussman cosmologyprogrammeasEllisetal.(1985),wheretheaimwas 2010; Bolejkoetal. 2011b; Nadathur&Sarkar 2011; todeterminethespacetimegeometryoftheUniversewithoutas- Clarkson&Regis2011;Clarksonetal.2012;Regis&Clarkson sumingacosmologicalmodelapriori. 2012; Meures&Bruni 2012; Humphreysetal. 2012; The present line of work started with Ribeiro&Stoeger Nishikawaetal. 2012; Bull&Clifton 2012; Valkenburgetal. (2003), which connected the relativistic cosmology number 2012; Wang&Zhang 2012; Hellaby 2012; Hoyleetal. 2013; countsresultssummarizedinEllis(1971)tothepracticallumi- Bulletal. 2012; dePutteretal. 2012; Keenanetal. 2012; nosity function (LF) results from galaxy redshift surveys. The Fleuryetal. 2013). Some recent reviews include Ce´le´rier LF is a statistical tool to infer the formation and evolution of (2007), Bolejkoetal. (2011a), Ellis (2011), and Krasin´ski galaxies from a set of photometric or spectroscopic data. To (2013). compute the luminosities of the sources from their observed Thesimplestnon-homogeneousmodelassumesaLemaˆıtre- fluxes,aluminositydistancemustbeobtainedfromtheredshift Tolman-Bondi (LTB) metric coupled to a pressure-less (dust) estimation,astep thatrequiresadoptingacosmologicalmodel. energy-momentumtensor.LTBdustmodelsyieldanalyticalso- Todealwithincompletenessduetothefluxlimits,anassumption lutionstotheEinstein’sfieldequations,e.g.Bonnor(1972),that on the spatial homogeneity of the distribution is usually made. canbereducedbyanappropriateparametrizationtothestandard Spatialhomogeneityisdefinedonconstanttime-coordinatehy- modelones.It is, forexample,quiteusualto set thefree equa- persurfaces,nottobeconfusedwithobservationalhomogeneity tionsallowedinthismodelinawaythatitreducestotheusual thatis definedonthe observer’spastlightcone.Thespatial ho- Einstein-deSittersolutionatlargeenoughredshifts,enablingthe mogeneityassumptiondoesnotholdfornon-homogeneouscos- model to naturally fit many CMB constraints, albeit with very mologies in general, but Iribarremetal. (2013) showed that it lowH .Thismodelcanbeunderstoodasageneralisationofthe does not lead to significant differences in the LF results in the 0 FLRWmetric,aneffectivemodel,possiblythesimplestone,in caseoftheLTB/GBHmodelsadoptedhere. which the observed large-scale inhomogeneities play a role in Ribeiro (2005) considers the effect of the expansion of the thelate-timedynamicsandnearbygeometryoftheUniverse. spacetimeinthenumberdensitiesalongthepastlightconelead- Usingthegreaterflexibilityofthesemodels,Mustaphaetal. ingtoobservationalnon-homogeneitiesinthespatiallyhomoge- (1997)showedthatanysphericallysymmetricastronomicalob- neous Friedmann-Lemaˆıtre-Robertson-Walker (FLRW) model. servation, such as redshift surveys, can be fitted by the non- RangelLemos&Ribeiro (2008) expanded on those theoretical homogeneities allowed in these models, instead of any source results,showingthathomogeneousdistributionsinthepastlight- evolution.Thisisparticularlyrelevantforgalaxyevolutionsince cone would lead to spatial non-homogeneity, in disagreement itimpliesthatinordertoestablishitbeyondthistheoreticalpos- withtheusualformofthecosmologicalprinciple. sibility,itisnecessarytouseacombinationofvariousindepen- Albanietal. (2007) combined the results of the first two dent observable quantities. Garcia-Bellido&Haugbølle (2008, previous papers to compute such lightcone distributions us- hereafter GBH) propose a “giant void” parametrisation for the ing the luminosity functions for the CNOC2 survey from LTB dust model that was able to reach that exactly: fit simul- Linetal.(1999),confirmingthepresenceofsuchlightconenon- taneously the SNe Ia hubble diagram and some general fea- homogeneities. In Iribarremetal. (2012) we discussed further tures of the CMB. Despite the many problems this alterna- ways to compare the relativistic effect of the expandingspace- tivemodelshows(Marra&Pa¨a¨kko¨nen2010;Mossetal.2011; timetotheevolutionofthesourcesintheFLRWpastlightcone, Zhang&Stebbins2011;Zibin2011;PlanckCollaborationetal. using the much wider redshift range in the luminosity func- 2013),arguablyitremainsthesimplestandbest-studiedwayto tionsfortheFORSDeepFieldsurveyfromGabaschetal.(2004, allowfornon-homogeneitiesinthecosmologicalmodel.Given 2006). thetheoreticalpossibilityoffittingtheredshiftevolutionofthe Thegoalofthepresentworkistoincludenon-FLRWspace- number counts without any intrinsic evolution of the sources times in the past lightcone studies described above. We spe- mentioned above, we aimed to investigate what our view of cialisedthegeneralequationsofRibeiro&Stoeger(2003)tothe galaxyevolutionwouldbeunderthesealternativemodels. LTBmetric,combiningtheresultsfrombothRibeiro(1992),and To address the question of how robustly the current Garcia-Bellido&Haugbølle(2008). Finally, we used the lumi- observations render the luminosity function of galaxies, in nosityfunctionsinIribarremetal.(2013),whichwerecomputed Iribarremetal. (2013) we used the dataset of FIR-selected byassumingtheLTB/GBHmodelfromtheirbuild-up. sourcesinGruppionietal.(2013)forthecombinedGOODS-N, Thequestionweaimtoaddressisthefollowing:arethenum- GOODS-S,COSMOSandECDF-SfieldsintheHerschel/PACS berdensitiesalongthepastlightconeandthecharacterisationof evolutionary probe (PEP) galaxy redshift survey, computed in theirpowerlawbehaviour,robustamongthestandardandvoid boththeΛCDMstandardandLTBgiantvoidmodels,thelatter cosmological models cited above? In addition, we discuss the parameterizedasinGarcia-Bellido&Haugbølle(2008)withthe comovingnumberdensityinthevoidmodels,withpossibleim- best-fitparametersgivenbyZumalaca´rreguietal.(2012). plicationsforempiricalmodelslikethatin,e.g.,Gruppionietal. WhilethemotivationofIribarremetal.(2013)wastoprobe (2011);Be´therminetal.(2012). the implications of the underlying cosmology on the redshift Thepaperis organisedas follows. In Sect. 2, we specialise evolutionofobservablepropertiesofthesources,suchasnum- the results in Ribeiro&Stoeger (2003) and Ribeiro (2005) to bercountandluminosity,thepresentworkaimstofurtherstudy theconstrainedGBHparametrisationoftheLTBdustmodels.In these implications, specifically, on the characterization of the Sect.3,wecomputetheselectionfunctionsfortheFIRdatasets number density of sources along the past lightcone of the as- in Iribarremetal. (2013). In Sect. 4 we compute the connec- sumed cosmology.The past lightcone is a direct observable:it tionbetweenthepredictedcomovingdensityofsourcesinboth istheonlyregionoftheUniversemanifoldthatgalaxyredshift FLRWandLTBgeometriestotheselectionfunctions.InSect.5 surveys probe. In computing the densities in the lightcone, we wecomputethenumberdensitiesofPEPsourcesdownthepast remove the model assumption intrinsic to the usual comoving lightconeofbothcosmologies.InSect.6,wepresenttheresults, 2 A.Iribarremetal.:Numberdensitiesinvoidcosmologies showevidenceofgalaxyevolutionintheLTB/GBHmodel,and ThelastequationisessentiallyaversionoftheresultofEllis comparethecomovingnumberdensityevolutionoverbothcos- (1971),specialisedto thepastnullgeodesicof theLTBmodel. mologies.InSect.7wediscussthedependencyoftherelativistic Next, we further specialised it to use the GBH parametrisation numberdensitiesonbothfluxlimitandcosmologicalmodel.In for their constrainedmodel,and the best-fit valuesobtainedby Sect.8wepresentourconclusions. Zumalaca´rreguietal. (2012) in a simultaneousanalysisofSNe Ia,CMB,andBAOdata. Itisstraightforwardtorelate f(r)tothespatialcurvaturepa- 2. TheoreticalquantitiesintheLTB/GBHmodel rameterk(r)inGBHbywriting In the empirical approach of Albanietal. (2007), the number f(r)= 1−k(r). (6) densities along the observer’s past lightcone were computed fromLFdatausingdifferentrelativisticcosmologydistancedef- p TheboundaryconditionequationslistedinGBHreadas initions. These distances are defined in the same cosmological modelastheoneassumedonthebuild-upoftheLF.Inthiscon- A˙(r,t) text no assumptions on the redshift evolution of the sources is HT(r,t)= A(r,t), (7) made.Themethodologyiscompletelyempirical. F(r)=2Ω (r)H2(r)r3, (8) Thenumberdensitiesusedinthispaper,asdefinedinRibeiro M 0 (2005),areabletoprobethegeometricaleffectoftheexpansion k(r)=−[1−Ω (r)]H2(r)r2, (9) M 0 ofUniverseonthehomogeneityofthedistributionofthesources along the observer’spast lightcone. This effect dependson the withthegaugechoiceA(r,0)=rincluded,whereHT isthetrans- distance definition used in computingthese densities, which in verseHubblerate,H0(r)= HT(r,0),andΩM(r)isthedimension- turndependsonthelineelementofthecosmologicalmodelas- lessmatterdensityparameter.Thislastquantityisdefinedrela- sumed. tivetotheintegratedcriticaldensityinthecomovingvolumeat In this section we connect the key results from Ribeiro radialcoordinateras (1992, henceforth R92) for the number count of sources 3H2(r) in the LTB metric to the parametrisation advanced by ρ¯ = 0 . (10) C 8πG Garcia-Bellido&Haugbølle (2008) for that cosmology. The goalhere is to computethe above-mentionednumberdensities Thepresent-timetransverseHubbleparameter,H (r),inthe 0 inthegiantvoidparametrisationoftheLTBmodel.Dottedquan- constrainedversionoftheGBHmodelisparametrisedas titiesrefertotime-coordinatederivativesandprimedonesrefer toradial-coordinatederivatives. ∞ 2[1−Ω (r)]n H (r)= H M . (11) 0 in (2n+1)(2n+3) Xn=0 2.1.Differentialnumbercount Equations(6),(9),and(11)canbereadilycombinedtoyield We started by writing the line element for the LTB model fol- lowingBonnor(1972) ∞ 2[1−Ω (r)]n 2 A′2(r,t) f(r)= vut1+[1−ΩM(r)] (2n+1)(2Mn+3) Hin2r2. (12) ds2 =−c2dt2+ dr2+A2(r,t)dΩ2, (1) Xn=0 f2(r) CombiningEqs.(8)and(11),wecanwritetheF(r)function wheredΩ2 = dθ2 +sin2θdφ2,with f(r) and A(r,t) beingarbi- fortheconstrainedmodelas trary functions.Assuming a pressure-less(dust) matter content ∞ 2[1−Ω (r)]n ewqiuthatρioMnpsrfoopretrhadtenlisnietye,lietmcaenntbceanshboewcnomthbaitntehdetEoinysieteldin(’Rs9fi2e)ld F(r)= Hin (2n+1)(2Mn+3)ΩM(r)r3, (13) Xn=0 F′ wherethe dimensionlessmatterdensity parameterΩ (r) in the 8πGρ = , (2) M M 2A′A2 GBHmodelbecomes where F(r) is another arbitrary function satisfying the relation 1−tanh[(r−R)/2∆r] above,andGisthegravitationalconstant.Startingfromthegen- Ω (r)=Ω +(Ω −Ω ) . (14) M out in out ( 1+tanh[R/2∆r] ) eralexpressionforthenumbercountofsourcesderivedbyEllis (1971),R92obtained Here H is the transverse Hubble constant at the center of the in void,Ω isthedensityparameteratthecenterofthevoid,Ω the A′A2 in out dN =4πn dr, (3) asymptoticdensityparameteratlargecomovingdistances,R is f thesizeoftheunder-denseregion,and∆Rthewidthofthetran- sition between the central void and the exterior homogeneous where n is the number density per unit proper volume, and N region.Theseparameterscompletelydeterminethemodel. thetotalnumberofsourcesdownthepastlightcone.Assuming Because of the generality of the evolution of A(r,t) in the asanorderofmagnitudeestimationoftheaveragetotalmassof eachsourceM≈1011M⊙,R92wrote LTBmodels,thetimecoordinatetbb atwhichA(r,tbb)reducesto zero, can, in general, assume different values for different co- F′ movingdistances from the centre of the under-denseregion,r. n= . (4) 16πGMA′A2 Thisleadstodifferentmeasurementsfortheelapsedtimesince the Big Bang, t (r), dependingon the position of the observer Combiningthelasttwoequations,weobtained bb in the void. Setting this extra degree of freedom for the big- dN 1 F′ bang time in order to make it simultaneous(same value for all = . (5) dr 4GM f observers) yields the constrained version of the GBH model, 3 A.Iribarremetal.:Numberdensitiesinvoidcosmologies Table1.BestfitvaluesfortheLTB/CGBHmodelsfromZumalaca´rreguietal.(2012)usedinthiswork. Modelparameter CGBH OCGBH H 66.0±1.4 71.1±2.8 in Ω 0.22±0.4 0.22±0.4 in R[Gpc] 0.18+0.64 0.20+0.87 −0.18 −0.19 ∆R[Gpc] 2.56+0.28 1.33+0.36 −0.24 −0.32 Ω 1 0.86±0.03 out or CGBH model. The best-fit values we use in this work were obtained in Zumalaca´rreguietal. (2012), considering both an 1012 asymptotically flat CGBH model with Ω = 1 and an open out CGBH model (OCGBH) with Ω = 0.87, which the authors out show better fits the CMB constraints.Table 1 reproducesthese 1011 values. For each comoving distance r, Ω (r), f(r), and F(r) can M be computed through Eqs. (12), and (13). The radial deriva- z d tiveF′(r)canbeobtainednumericallythroughcentraldifference N/1010 quotients,F(r)≈lim ∆F/∆r,whichinturnallowthevalues d ∆r≪r ofdN/drtobecomputedthroughEq.(5). The redshift can be related to the radial coordinate in this 109 modelfollowingEnqvist&Mattsson(2007) ΛCDM CGBH dr 1 f OCGBH dz = 1+z A˙′, (15) 108 0.1 z 0.5 1 2 3 4 56 and to the time coordinate through the incoming radial null geodesicequationasinGBH Fig.1.Differentialnumbercountestimateswithinthepastlight- coneofthethreecosmologicalmodelsusedinthepresentwork. dt A′ =− . (16) dz f(r) Following GBH, all the first- and second-order derivatives of whereas their redshift derivatives, d(d )/dz, d(d )/dz, and A L A(r,t) can be written as power series expansion, which allows d(d )/dz can be computed numerically with the same method G Eqs. (15) and (16) to be solved numerically. This yielded the used for computing F′(r). To compare the theoretical results look-backtimeandradialdistancetables:t(z)andr(z).Wethen forthe numberdensitiesin the pastlightconeofthe LTB/GBH combinedEqs.(5)and(15)as modelswiththosefortheFLRWgeometrygiveninAlbanietal. dN 1 F′[r(z)] (2007,Figs.5-6),wealsocomputetheredshiftdistancedz sim- = , (17) plyasd =cz/H . dz 4GM (1+z)A˙′[r(z),t(z)] Withzthatwe0cancomputetherelativisticdifferentialnumber and computed the differential number count dN/dz for each densities(γi),thenumberofsourcesperunitvolumeinaspher- value of z in the r(z) and t(z) tables. A comparison between icalshellatredshiftz,foreachdistancedi ini= [A,G,L,z]and the estimates for this quantity in the ΛCDM and both CGBH ineachcosmologicalmodelasinRibeiro(2005): parametrisationsinZumalaca´rreguietal.(2012)canbefoundin Fig.1. γ = dN 4π(d)2 d(di) −1. (19) i dz ( i dz ) 2.2.Distancesandnumberdensities Following Iribarremetal. (2012), the integralnumber den- sities (γ∗), i.e. the number of sources per unit volume located Since it is impossible to measure the distance to galaxies di- i inside the observer’s past lightcone down to redshift z, can be rectly, there are a few different ways of deriving this quantity computedforeachdistancedefinitiond as fromothermeasurements.Theluminositydistance,forexample, i isbasedontherelationbetweentheemittedandreceivedfluxes 3N of the source, whereas the angular diameter distance is based γ∗ = , (20) i 4π(d)3 ontherelationbetweentheobservedangularsizeandtheactual i physicalsizeofthesource.Thoserelations,however,dependon withthecumulativenumbercountN(z)obtainedsimplyby theexpansionhistoryofthe Universeandwill, in general,lead to differentresultssimply becausetheir dependencyon the un- N(z)= z dN(z′)dz′. (21) derlyingcosmologicalmodelisnotthesame. Z dz 0 The angular diameter distance in LTB models can be iden- Resultsforthevariousγ andγ∗inthedifferentcosmologies tified as d (z) = A[r(z),t(z)]. From that we obtain the lumi- i i A consideredin this work are plotted in figures2 and 3. We note nosity distance d (z) and the galaxy-area distance d through L G thatamongthesecosmologicalmodels,thedifferentialandinte- Etherington’s reciprocity law (Etherington 1933; Ellis 1971, gralnumberdensitiesshownoticeabledifferencesinalldistance 2007) definitionsused,evenifapparentlysmalltotheeye.Thesedif- d =(1+z)2d =(1+z)d , (18) ferencesmay actually be observed,dependingon the precision L A G 4 A.Iribarremetal.:Numberdensitiesinvoidcosmologies rest-frameluminosityfunctionsfor the combinedPEPfields in 102 Iribarremetal.(2013)as γA 101 γγLG ψ = Lmax,z¯φ(L)dL, (22) γz z¯ ZLlim,z¯ z¯ 100 ] whereL isthebrightestsourceluminosityinsidetheredshift 3− max,z¯ c interval,and L is the rest-frameluminosityassociated to the p10-1 lim,z¯ M fluxlimitoftheobservations. [ γ The dataset used in this work was built using combined 10-2 fields,i.eobservationscarriedoutindifferentskyregionsatdif- ferentdepths.Thelargenumberofsourcesperredshiftinterval 10-3 ΛCDM allowed us to derive the observed quantities with better statis- CGBH tics,attheexpenseofanaddeddifficultyrelatedtothedefinition OCGBH 10-4 of the luminosity limits correspondingto the actual flux limits 0.1 0.5 1 2 3 4 56 z of the observations.This difficulty stems from the fact that the computationoftherest-frameluminosityinvolveskcorrections, Fig.2. Redshift evolution of the relativistic differential densi- whichinturndependonthespectralenergydistribution(SED) tiesforthethreecosmologicalmodelsusedinthepresentwork. ofthesource.Thatis,eachSEDtemplatedefinesaslightlydif- Differentcurvescorrespondtothecomputationsperformedwith ferent luminosity limit for the same flux limit. In the case of respecttodifferentdistanceestimatorsalongtheobserver’spast the PEP survey, each field – namely GOODS-N, GOODS-S, lightcone(dA,dL,dG,anddz). COSMOSandECDF-S–alsohadadifferentfluxlimit,depend- ing on the PACS passband in which the observation was done (Lutzetal.2011). 102 To investigate how important the selection function varia- γA∗ tionscausedbythedifferentSEDtemplatesinthedatasetsare, 101 γγLG∗∗ wvaelafisrssutmcoinmgptuhteedlotwheesstecloemctipountefdunlucmtioinnossiintyeaamchonregdtshheifstoiunrtceers- γz∗ in that interval, and then compared the results to the averages 100 ] and to the highest luminosities. The variations in the selection 3− c functions caused by assuming different luminosity limits were Mp10-1 found to be many times greater than the error bars propagated [ ∗ fromthe luminosityfunctionuncertainties.Forexample,atz = γ10-2 0.2,theselectionfunctioncomputedusingthelowestmonochro- maticluminosityinthe100-µmdatasetread(9.0±1.8)×10−3 10-3 ΛCDM Mpc−3, while the one computed using the average luminosity CGBH read (3.7 ± 0.7) × 10−3 Mpc−3, and the one using the highest OCGBH 10-4 luminosity read (2.6 ± 0.5) × 10−3 Mpc−3 - a variation more 0.1 0.5 1 2 3 4 56 z thanthreetimeslargerthanthecombineduncertaintiesobtained by propagatingthe onesfromthe LFparameters.For the same Fig.3.IntegralofthefunctionsshowninFig.2.Thecurvesshow dataset, at z = 1, the selection functions read as (2.3 ± 0.3) × the evolution of the relativistic integral densities for the three 10−3 Mpc−3, (1.1±0.1)× 10−3 Mpc−3,and(4.9± 0.6)×10−4 cosmologicalmodelsused in the presentwork as a functionof Mpc−3,respectively,avariationalmostsixtimeslargerthanthe thedifferentdistances. propagateduncertainties. Therefore,foreverysourceineachredshiftinterval,wecom- putedtherest-frameluminosityforthefluxlimitofthefieldand achieved by a galaxy survey. We go on to check whether this filterwhereitwasobserved,givenitsbest-fitSEDandredshift. purelygeometricaleffectcanbedetectedontheLFforthePEP Next,wecomputedasetofselectionfunctionvaluesinthatred- survey computed in Iribarremetal. (2013). This requires con- shift interval, using the luminosity limits computed above for sideringtheluminosityandthenumberevolutionofthegalaxies each source in the interval. Finally, we computed the average inthesurveyvolume. overthissetofselectionfunctionvaluesforagivenredshiftin- tervalandusedthisaverageasthevaluefortheselectionfunc- 3. Selectionfunctions tioninthatsameinterval.Theuncertainties,asdiscussedabove, aredominatedbythevariationintheluminositylimitsandthere- Selection functions are an estimate of the number density of forecanbetakensimplyasthestandarddeviationoverthesame galaxies with luminosity above a chosen threshold, L . Once lim set of computed selection function values for each redshift in- computed,theselectionfunctionscanbeusedtoestimatetheob- terval.Theresultingmonochromaticrest-frame100µmand160 servednumberofobjectspercomovingvolume,derivedinSect. µmselectionfunctionsaregiveninTables2and3. 2.2,andfromthattheobserveddifferentialandintegraldensities inthepastlightcone. FollowingtheempiricalapproachofIribarremetal.(2012), 4. Consistencyfunctions wecomputedselectionfunctionsψineachredshiftintervalus- ing each of the three cosmological models (ΛCDM, CGBH, In the empirical framework of Ribeiro&Stoeger (2003), and OCGBH) and the monochromatic 100 µm and 160 µm Albanietal. (2007), and Iribarremetal. (2012), the observed 5 A.Iribarremetal.:Numberdensitiesinvoidcosmologies Table2.Selectionfunctionsfortherest-frame100µmdatasets. evolutionof the totalmasses ofthe sources,missing in this es- UnitsareMpc−3. timation,areimprintedontheobservedLFandinheritedbyits derived selection functions. By translating this purely theoreti- z¯ ψΛCDM ψCGBH ψOCGBH caln (z¯) estimationto the correspondingselection functionsψ C z¯ 0.1 (4.0±0.8)×10−3 (5.0±1.0)×10−3 (5.6±1.1)×10−3 throughthe consistencyfunction J(z¯),we allowanytheoretical 0.3 (3.6±0.5)×10−3 (4.4±0.6)×10−3 (5.0±0.7)×10−3 quantity that assumes a n (z) built on a cosmologicalmodelto 0.5 (2.6±0.4)×10−3 (3.2±0.5)×10−3 (3.6±0.5)×10−3 usetheobservedvaluesgiCvenbytheselectionfunctions. 0.7 (2.3±0.4)×10−3 (2.9±0.5)×10−3 (3.2±0.6)×10−3 Forthepurposeofobtainingtherelativisticnumberdensities 0.9 (1.3±0.2)×10−3 (1.9±0.3)×10−3 (1.9±0.3)×10−3 1.1 (1.1±0.3)×10−3 (1.6±0.4)×10−3 (1.6±0.4)×10−3 empirically,thisapproachissufficient.Itminimizesthenumber 1.4 (4.3±1.1)×10−4 (3.7±1.0)×10−4 (4.8±1.2)×10−4 of theoretical assumptions about the evolution of the sources, 1.6 (4.1±1.4)×10−4 (3.6±1.2)×10−4 (4.6±1.5)×10−4 such as including a Press&Schechter (1974) formalism, and 2.0 (5.1±1.6)×10−4 (5.9±1.9)×10−4 (6.0±1.9)×10−4 considers as much information as possible from the observa- 2.4 (4.9±1.7)×10−4 (5.6±2.0)×10−4 (5.7±2.0)×10−4 tions.SinceaPress-Schechter-likeformalismisstillnotimple- 2.8 (3.3±1.1)×10−4 (1.7±0.5)×10−4 (2.5±0.8)×10−4 mentedonLTBmodels,theempiricalapproachdescribedabove 3.2 (2.7±1.1)×10−4 (1.4±0.6)×10−4 (2.1±0.8)×10−4 is the simplest way to work with both standard and void cos- mologiesinaconsistentway. Table3.Selectionfunctionsfortherest-frame160µmdatasets. UnitsareMpc−3. 5. Observednumberdensitiesinthepastlightcone z¯ ψΛCDM ψCGBH ψOCGBH 0.1 (6.0±1.4)×10−3 (3.7±0.9)×10−3 (3.7±0.9)×10−3 We computedthe relativistic numberdensities using the J ob- 0.3 (5.4±0.9)×10−3 (3.3±0.5)×10−3 (3.3±0.5)×10−3 z¯ tainedinsection4.Bydefinition,theLFisthenumberofsources 0.5 (2.7±0.5)×10−3 (2.6±0.4)×10−3 (3.0±0.5)×10−3 0.7 (2.5±0.5)×10−3 (2.3±0.5)×10−3 (2.7±0.6)×10−3 perunitluminosity,perunitcomovingvolume.Thisallowsusto 0.9 (1.0±0.2)×10−3 (1.3±0.2)×10−3 (1.8±0.3)×10−3 identifytheselectionfunctionsinEq.(22)asthedifferentialco- 1.1 (9.8±2.7)×10−4 (1.2±0.3)×10−3 (1.8±0.4)×10−3 movingdensityofgalaxiesstemmingfromtheobservationsand 1.4 (4.6±1.2)×10−4 (4.4±1.2)×10−4 (4.2±1.1)×10−4 torewriteEq.(24)as 1.6 (4.5±1.3)×10−4 (4.3±1.3)×10−4 (4.1±1.2)×10−4 2.0 (1.1±0.3)×10−4 (3.0±0.8)×10−4 (2.4±0.7)×10−4 2.4 (1.3±0.3)×10−4 (3.4±0.9)×10−4 (2.8±0.8)×10−4 ψ = dN (z¯)= J n (z¯)= J dN(z¯), (25) 2.8 (5.9±1.9)×10−5 (1.5±0.4)×10−4 (1.4±0.4)×10−4 z¯ "dV # z¯ C z¯ dV 3.2 (3.5±1.6)×10−5 (9.2±4.3)×10−5 (8.6±4.0)×10−5 c obs c whichcanstillbewrittenas quantitiescomputedinthe pastlightconeofa givencosmolog- dN dN ical model were obtained from their predicted values through = J , (26) z¯ whatwascalledacompletenessfunctionJ(z).Thiscanbesome- "dz# dz obs what confusing from the observer’s point of view, since J(z) is not necessarily related to incompleteness like that of miss- since the purely geometrical term dV/dz cancels out on both c ingsourcesinasurvey,buttotherelationbetweenatheoretical sidesoftheequation.TogetherwithEqs.(24)and(17),Eq.(26) predictionforthenumbercountsandtheactualmeasurementof allows us to obtain the differential number counts [dN/dz] obs thatquantity(Iribarremetal. 2012). In this sense, this quantity from the selection function of a given dataset in the different would be better named as consistency function, a term we use comovingdensities n (z) defined by the void modelparametri- C fromnowon.TheconsistencyfunctionJ(z)wasobtainedbyre- sationsconsideredhere. latingthepredictionforthecomovingnumberdensityn given Because the quantity inside the parentheses in Eq. (19) is C bythecosmologicalmodel alsoapurelygeometricalterm,wecansimplywrite ρ (z) Ω [r(z)] n (z)= M = M ρ , (23) [γ] (z¯)= J γ(z¯), (27) C M M C i obs z¯ i totheselectionfunctionsforagivengalaxysurveyψ inagiven which allows us to obtain the observed differential densities z¯ redshiftintervalz¯asIribarremetal.(2012) [γ] inthelightconesofthecosmologiesconsideredhereonce i obs J iscomputed. ψ z¯ J = z¯ . (24) To obtain the observed integraldensities [γ∗] (z¯), we sub- z¯ n (z¯) i obs C stitutedN/dzinEq.(21)with[dN/dz] fromEq.(26)andcom- obs The values for J can be obtained numerically for the CGBH putetheobservedcumulativenumbercounts[N] (z¯).Thenwe z¯ obs voidmodelsusingEqs.(10)and(14)combinedwiththeappro- cansubstitutethisresultbackintoEq.(20),sincethecosmologi- priate r(z) table as described in §2 and the selection functions caldistancetoredshiftrelationd(z)isalsofixedbythegeometry i computedin§3. ofthegivencosmology. AsdiscussedinIribarremetal.(2012),theestimationofthe comovingnumberdensityn assumesaconstant,averagemass C value M for normalisation purposes– that is, getting a correct 6. Results order-of-magnitudeestimationofthenumberdensity.Suchesti- mationisnotsupposedtoprovideadetaileddescriptionofn (z), Withthequantitiesobtainedinthelasttwosections,wecanpro- C butrathertoconveytheinformationontheredshiftevolutionof ceedtoinvestigatethedifferencesinthenumberdensitiesonthe the comovingnumber density caused solely by the cosmologi- comoving frame and on the past lightcone of the standard and calmodel,throughρ (z),inEq.(23).Thedetailsoftheredshift voidcosmologies. M 6 A.Iribarremetal.:Numberdensitiesinvoidcosmologies 6.1.Comovingnumberdensityevolution −1.0 As mentioned above, Mustaphaetal. (1997) showed that any ΛCDM spherically symmetric observation alone, e.g. redshift estima- CGBH tions or number counts, can be fit purely by a general enough −1.5 OCGBH LTB dust model, with no evolution of the sources required. In the contextof the presentdiscussiontheir argumentcan be un- −2.0 derstoodbycombiningEqs.(23)and(24)towrite J g−2.5 M o J = ψ . (28) l z¯ z¯ ρ Ω (z¯) C M −3.0 Looking at the right-hand side of the equation above, one can easily separate its two terms into an observed quantity to the −3.5 left and a fraction between theoretically obtained quantities to the right. Moreover, one can identify the constant M with the −4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 lackofamodelforthesecularevolutionoftheaveragemassof z the sources, and Ω (z¯) with the evolutionof the matter density M parameter on a given cosmology. By using the extra degree of Fig.4.Consistencyfunctionsforthemonochromatic100µmlu- freedomin settingthematterdensityprofileintheLTBmodel, minosity functionscomputedin the three cosmologicalmodels Ω (z),onecanobtainanumberdensityn (z)thatmatchesthese- usedinthepresentwork.Thesefunctionsarerelatedtothered- M C lectionfunctionsperfectly,withouttheneedtoassumeanevolv- shiftevolutionof thebaryonto totalmassfraction(seetextfor ing averagemass M(z).To constrainthisdegreeoffreedom,it detail). is necessary to have differentsets of independentobservations. Thisis preciselywhatthe GBH parametrisationofa giantvoid in an LTB dust model yields: a matter density profile that is −1.0 parametrised to best fit the combination of different, indepen- ΛCDM dentobservations. CGBH −1.5 OCGBH Wepresenttheevolutionoftheconsistencyfunctionsforthe differentPACSfiltersandcosmologicalmodelsinFigs.4and5. −2.0 It is clear from these plots that this quantity evolves with red- shift in both standard and void cosmologies. The behaviour of J theconsistencyfunctionsinallmodelsstudiedherearewellfit g−2.5 o l byapowerlawdecreasingwithredshift.Thebest-fittingslopes aregivenin Table4.These resultssuggestthatnotconsidering −3.0 the evolutionof the sourcesleads to a systematic trendthatin- creasestheinconsistencywithz.Thisisnotasobviousasitmay −3.5 seemgiventheflexibilityoftheLTBmodelsasdiscussedabove. It is the parametrisationof Ω (z) constrained by the combined M −4.0 independentobservationsof SNe + CMB + BAO that requires 0.0 0.5 1.0 1.5 z 2.0 2.5 3.0 3.5 M to evolve with z in the LTB models studied here. Only by allowingMtoevolvewithzcanEq.(28)yieldaconstantcon- Fig.5.AsFig.4forthemonochromatic160µmluminosityfunc- sistency function that indicates that the theoretical term on the tions.Fromtheseplots,onecanseethatthedifferencebetween rightoftheright-handsideofEq.(28)isproportionaltotheob- thestandardmodelconsistencyfunction(blackcircles)andthe servedtermontheleft. void model ones (colour circles) is not very significant, since We used a Kolmogorov-Smirnoff (KS) two-sample test to most of the points lie within the error bars. The p values dis- Λ check,onastatisticalsense,howdifferenttheconsistencyfunc- cussedin§6.1quantifythisconclusionandagreewithit. tionsarewhenassumingthedifferentcosmologicalmodelsstud- iedherefromahypotheticallyconstantconsistencyfunction.By design, a constant J(z) indicatesthat the modelforthe comov- consistencyfunctionforagivenvoidmodelandtheoneforthe ing number density used here, assuming M(z) = M, matches standardmodelarecomputedfromthesameunderlyingdistribu- the observed number density. The KS test is a non-parametric, tionor,inotherwords,thattheirdifferencesarenotstatistically distribution-freewaytocomparetwo datasets,anditassignsto significant.Toestablishwhethersuchadifferenceissignificant, whichlevelofconfidencewecanrefutethehypothesisthatthey at a 3-σ confidence level, for example, the p value should be Λ wereobtainedfromthesameunderlyingdistribution.Theresult- lowerthanapproximately0.0027.Giventhelisted p results,we Λ ingp-valueofthistestcanbeunderstoodastheprobabilitythat foundthatthecomputedconsistencyfunctionsinvoidandstan- bothdatasetscomefromthesamedistribution.Forallcosmolo- dard cosmologies were not significantly different. This means gies studied here, the no-evolution hypothesis, M(z) = M, is thatgalaxyevolutionproceedsmostlyinthesameway,regard- rejected at over5-σ confidencelevel, with p-valueslower than less of the differences in the geometry and the composition of 10−5. Thismeansthat an evolvingaveragemass of the sources theUniversestudiedhere. isalsorequiredbytheLTB/GBHmodelsstudiedhere. Next, we use the same KS test to determine how different 6.2.Lightconeinhomogeneities theconsistencyfunctionsinthevoidmodelsarefromtheirstan- dard modelcounterparts.We presentthe computedp-valuesof For this section, we used the observed differential and integral thesetests,p ,inTable4.Thep valueistheprobabilitythatthe densitiesobtainedinSect.5toinvestigatetheeffectsofthecen- Λ Λ 7 A.Iribarremetal.:Numberdensitiesinvoidcosmologies Table4.Comoving,differentialandintegraldensitiesstatistics. Thesignificanceofthis differencein termsof itsuncertaintyis thenobtainedfrom∆ /(δ∆ ). a,b a,b Dataset Model p logJ(z)slope logγ slope logγ∗slope Λ L L ΛCDM 1.0 -0.39±0.05 -2.4±0.2 -2.31±0.03 L100µm CGBH 0.43 -0.51±0.06 -3.1±0.6 -2.50±0.04 7. Discussion OCGBH 0.43 -0.51±0.05 -3.0±0.4 -2.52±0.03 Nextweusetheapproachabovetoobtaincomparisonsbetween ΛCDM 1.0 -0.75±0.03 -4.5±0.3 -2.54±0.06 standardvs.voidcosmologies,100µmvs.160µmdatasets,and L160µm OCGCGBHBH 00..7799 --00..5630±±00..0043 --33..77±±00..34 --22..5498±±00..0065 differentialdensitiesγvs.integraldensitiesγ∗. tralunderdensityprescribedbytheGBH modelsintheredshift 7.1.ComparisonwiththeLTB/CGBHmodels distortionscausedbytheexpandingspacetimeontheobserver’s Results forthe significanceof the differencebetweenslopesof pastlightcone. the high-redshift power-law fits to the differential densities γ Our previous studies of these relativistic number densities andtheintegraldensitiesγ∗,givenafixedcosmologicalmodel, (Ribeiro 2005; Albanietal. 2007; Iribarremetal. 2012) sug- werehighlydependentonthedataset.Theywerefairlyinsignif- gested a high-redshift power-law behaviour for both differen- icant with the 100 µm data for all cosmologies (ΛCDM: 0.3- tialandintegralradialdistributions.Inotherwords,thatexpan- σ, CGBH: 0.9-σ, OCGBH: 1.1-σ); whereas they were all at siondistributesthesourcesalongthelightconeinanincreasingly leastmarginallysignificantinthe160µm data(ΛCDM:5.2-σ, self-similar manner.This is a purely geometricaleffect, as dis- CGBH:3.0-σ,OCGBH:3.4-σ). cussedinSect.2,thatmayormaynotbedominantbecausethe Such differences in the slopes between the high-redshift hierarchical build-up of galaxies also plays a role in how the power-lawfitstoγandtoγ∗canbeunderstoodbycheckingEqs. sourcesare distributedalong the lightcone.Given that some of (19)and(20).WenotethatγisproportionaltodN/dz,whereas thealternativevoidmodelsarebuiltassuminganLTBlineele- γ∗ isproportionalto N.Since N isacumulativequantity,itcan mentinstead of the standard modelFLRW one, we aim in this only increase or remain constantwith increasingredshift. That sectiontobettercharacterisethosepowerlawsandtoinvestigate is, even if there are regions in the volume where N is not de- how they are affected by the secular evolution of the sources fined, which have a lower density of detected sources, N itself andbythedirecteffectoftheexpansionofthedifferentgeome- will remain constant. On the other hand, dN/dz is sensitive to tries. We focus the discussion on the densities computedusing suchlocaldensityvariations,whichaddsuptoahigherdegreeof the luminosity distance, since the results for the other distance non-homogeneityinthehigherredshiftpartofthepastlightcone definitionsareallqualitativelythesame. probedbythesurveyandasaconsequenceasteeperpower-law As can be seen in Figs. 2 and 3, the geometrical effect in- slopeofγ. creaseswiththeredshift,deviatingboththetheoreticaldifferen- The differences between the slopes of the high-redshift tialandthecumulativenumberdensitiesawayfromaconstant, power-law fits to the relativistic densities computed using the homogeneous behaviour at high redshifts. At redshifts lower 100 µm, and the 160 µm PEP blind-selected datasets were thanz≈0.1,thisgeometricaleffectislesspronounced,andboth fairlyinsignificantwhenassumingthevoidmodelsstudiedhere γ (z)andγ∗(z)shownfollowtheconstantaveragegalacticmass L L (CGBH:0.7-σforγ,and0.3forγ∗;OCGBH:1.3-σforγ, and Massumedintheircomputation,asdiscussedinSect.3. 1.0 for γ∗), whereas, those differences showed a moderate-to- It follows that there must be a region in redshift space at strongsignificanceiftheΛCDMmodelwasassumed(4.6-σfor whicha transitionoccursbetweenthe power-lawbehaviourin- γ,and3.0-σforγ∗). duced by the expansion at high redshift and the behaviour de- The differences in the slopes obtained using different finedbytheunderlyingdensityparameterΩ (z)combinedwith M datasets can be understood as the effect of different redshift- the evolution of the sources stemming from the LF. However, evolving luminosity limits on the past lightcone distributions. theexactsizeandrangeofthisregioncannotbepredictedwith The results above indicated that the distributions on the past theempiricalapproachforthecomovingnumberdensitiesused lightcone of the void models were significantly less different, inthiswork.Therefore,ifwearetocharacterisethepower-law hence less affected by the detection limits of the PEP datasets, behaviourof the high-redshiftend of ournumberdensities, we than their counterparts computed on the past lightcone of the mustallowourfittingproceduretosearchforthebestredshiftat standardmodel. whichthepower-lawbehaviourbeginstodominate. Finally,wecomputedthesignificanceofthedifferencesob- Todoso,wecomputethebestlinearfittothelogγ vs.logd L L tainedbycomparingthesameslopescomputedintwodifferent tablesinaniterativeway.StartingwiththeLFvaluesderivedfor cosmological models. The only marginally significant (≥ 3-σ) thehighestthreeredshiftbins,weperformthesamefit,includ- differencewefoundisforthecomparisonbetweenstandardand ingoneextraLFvalueineachiteration,indecreasingorder,until voidmodelsfortheintegraldensityγ∗slopes,usingthe100µm wehaveincludedallpoints.Then,weselectthefitwiththelow- est reduced χ2 value. The selected fits for the different dataset dataset:3.7-σfortheΛCDMvs.CGBHcomparison,and4.3-σ fortheΛCDMvs.OCGBHone.Giventhestrikingconcordance andcosmologycombinationsare plottedin figure6. Thelisted of the other γ∗ slopes around a tentative value of -2.5 ± 0.1 it uncertaintiesareformallyobtainedtakingthesquarerootofthe is possible that the oddly low values of the slope of γ∗ in the linearterminthecovariancematrixofthefittedpowerlaw. 100µmdatasetanditsuncertaintyareanartefactcausedbyour To quantify how significant the differencesin the slopes of fittingprocedure. the power laws are, we can start by first computing the uncer- taintyofthedifference∆ ,betweentheα slopeoflogγ using How do we combine the results from all of those differ- a,b a L ent comparisons in a coherent picture? Iribarremetal. (2013) agivendataset/cosmologycombinationaandthatofadifferent showed that the corrections needed to build the LF using a combinationbas flux-limited survey made the results sensitive to the differ- δ∆ = (δα)2+(δα)2. (29) ences caused by changing the underlying cosmologicalmodel. a,b a b p 8 A.Iribarremetal.:Numberdensitiesinvoidcosmologies Detectionlimitsseemtoplayamajorroleinthefully-relativistic galaxies.TheyshowthatalltheirmodelsmimictheFLRWd (z) L analysis used here as well. On one hand, we found signif- to sub-percent level, which should lead to the changes in the icant differences caused by the kind of statistics used (γ or maximumredshiftestimatesandintheexpectednumberdensi- γ∗) with the 160 µm blind-selected catalogue. On the other tiescausedbyassumingsuchmodelscomparabletotheoneswe hand, we found that the cosmology assumed (FLRW/ΛCDM observehere. or LTB/GBH) caused significant differences on both γ and γ∗, The authors show in their Fig. 9 that up to redshift z ≈ 1, using the 100 µm dataset instead. Some of these discrepancies their best-fit models follow closely the distance modulus, and could be caused by the way we fit the power laws to the high- thusthe d (z) relationofΛCDM. Lookingatthesame plot,we L redshiftpartsofthedistributions.Futureobservationswithlower cansee thattheluminositydistancesgrowincreasinglysmaller fluxlimitswillhelpuscheckwhichofthesediscrepancieswere when compared to their standard model counterparts at higher causedbythepresentfluxlimits. redshifts.LookingatEq.(20),wecanexpectthatthiscouldpo- tentiallyleadtohighervaluesofγ∗and,consequentially,alower valueforitsbest-fitpowerlaw. 7.2.ComparisonwithotherLTBmodels Also,theirbest-fitvoidsaremuchlargerthantheonesused It is important to notice that the results in both Sects. 6.1 and here,ascanbeseen bycomparingtheupperleft-handpanelof 6.2,togetherwiththediscussionpresentedabove,areonlyvalid their Fig. 7 versus the upper panel of Fig. 1 in Iribarremetal. for a very special case of LTB models, namely, the parametri- (2013), which shows the best-fit voids of Zumalaca´rreguietal. sation for the CGBH model obtained by Zumalaca´rreguietal. (2012).Mockcataloguetestsshouldbeusedtomakesurethese (2012). It is not in the scope of the present work to present a largervoidsdonotbiasthe1/V methodusedhere.However, max completeanalysis of otherLTB modelsin the literature,which as argued in Iribarremetal. (2013), if the large under-dense would require first recomputing the luminosity functions pre- profiles used here varied smoothly enough not to significantly sented in Iribarremetal. (2013) from the start, but given some biastheLFestimator,wedonotexpectthatthelargervoidsof recentadvancementsin betterexploitingthe flexibilityofthese Februaryetal.(2010)will. models,aqualitativediscussionoftheirpossibleimpactonour Clarkson&Regis (2011) discussthe implicationsofallow- resultsispertinenthere. ing for inhomogeneityin the early time radiation field and the Assuming different non-homogeneouscosmologies can af- way it affects the constrainingpower of CMB results for inho- fectthepresentanalysesin threedifferentways. First, in terms mogeneousmodels. Theyshow, for example,that even models of building the LF from the observations, a modelwith a mat- that are asymptotically flat at the CMB can be made to fit if ter densityprofileΩ (r)thatisdifferentenoughfromtheones the matter density profile includes a low-density shell around M studied here could possibly make the average homogeneityas- the central void. An under-dense shell like this could possibly sumptionattheheartofthe1/Vmax LFestimatorinvalid.Using lead the 1/Vmax methodto over-estimatethe volume correction mock catalogues, Iribarremetal. (2013) showed that the void of sourceswith maximumobservablecomovingvolume inside shapes of the CGBH models used in their LF does not signif- or beyond the shell, because such correctionsare based on the icantly affect the ability of the 1/V estimator to recover the assumption of an average homogeneousdistribution.To test in max underlyingLF. detail how accurately this LF estimator would recover the un- Second,differentdistance-to-redshiftrelationscouldalsoaf- derlying distribution, we would need to build mock catalogues fect the LF results, and thus its redshift evolution, through the thatassume thematter distributionof these models,butwe ex- computationofthemaximumobservableredshiftofeachsource pect thatsuch differences,if present, would show morepromi- z ,whichisusedincomputingofthe1/V valueoftheLF nentlyatmidtohighredshift,accordingtothesizeoftheshell, max max ineachredshiftbin.AsdiscussedinIribarremetal.(2013),this and make the faint-endslope steeper by assigninghigherover- comes as a result of the fainter part of the galaxies in a sur- estimatedcorrectionstothefaintersources.Dependingonhow vey having fluxes near the limit of observationin the field and non-homogeneousthematterprofileis,anover-estimationofthe is affected mainly by differencesin the luminosity distance-to- characteristic number density parameter φ∗ might also be de- redshift relation. Also, at luminosities L ≈ L∗, the z of the tected. max sources is safely hitting the higher z limit of the redshift bin, Varying bang-time functions t (r) were also studied bb leadingtheirvolumecorrectiontobeindependentoftheirlumi- (Cliftonetal.2009)andshowntobeanextradegreeoffreedom nosity,henceofthed (z)relation. that helps LTB models to reconciliate CMB + H0 constraints. L Finally,theexpectednumberdensitiesinthepast-lightcone Bulletal.(2012),however,showthatmodelswithvaryingt (r) bb γ and γ∗, as computed in Sect. 2.2 are both sensitive to the constrainedbythecombinationofSNe+CMB+H0shouldpro- diistance-ito-redshift relations, as shown in Figs. 2 and 3. The duceakineticSunyaev-Zel’dovicheffectthatisordersofmag- differencescausedonthenumberdensitiesbythedifferentdis- nitudestrongerthanitsexpectedupperlimits.Itisnotclearhow tance relationsmightbe largeenoughto be detected,giventhe allowingforthisextradegreeoffreedomwouldchangethekey observationaluncertaintiesstemmingfromtheLF.Considering quantities shown to affect our results: the d (z) and r(z) rela- L thepresentresults,suchdifferencesintheexpectednumberden- tions and the shape of the central under-dense region. Only a sities shouldbe greater than the CGBH-to-FLRW onesstudied full-fledgedanalysis,startingfromthebuildingupoftheLFand here, if we were to detect a significant effect on the observed assuminga modelwith a varyingbang-timefit by the observa- numberdensitiescausedbydifferencesintheirexpectedvalues tions,wouldallow ustomakeanyreasonablecomparisonwith alone. theresultspresentedinthiswork. Februaryetal.(2010)arguethatCMBandBAOconstraints may be significantly distorted by differences in the evolution 8. Conclusions of primordial perturbations caused by the curvature inside the voids.Theygoontofitanumberofdifferentshapesforthein- In this paper we derivedthe theoretical results needed to com- nermatterprofile,consideringonlylocalUniversedata,namely, pute the differential and integral densities along the past light- SNeIaandthereconstructionofH(z)throughpassivelyevolving cone of LTB dust models. We applied these results to comput- 9 A.Iribarremetal.:Numberdensitiesinvoidcosmologies 100 µm 160 µm 100 100 3c]− 1100--21 3c]− 1100--21 Λ p p C M 10-3 M 10-3 D γ[∗L 1100--54 γL ∝dL−2.4 γ[∗L 1100--54 γL ∝dL−4.5 M , , γL 10-6 γL∗ ∝dL−2.3 γL 10-6 γL∗ ∝dL−2.5 10-7 10-7 103 104 103 104 d [Mpc] d [Mpc] L L 100 100 3c]− 1100--21 3c]− 1100--21 C Mp 10-3 Mp 10-3 G γ[∗L 1100--54 γL ∝dL−3.1 γ[∗L 1100--54 γL ∝dL−3.7 BH , , γL 10-6 γL∗ ∝dL−2.5 γL 10-6 γL∗ ∝dL−2.5 10-7 10-7 103 104 103 104 d [Mpc] d [Mpc] L L 100 100 3pc]− 1100--21 3pc]− 1100--21 OC M 10-3 M 10-3 G γ[∗L 1100--54 γL ∝dL−3.0 γ[∗L 1100--54 γL ∝dL−3.7 BH , , γL 10-6 γL∗ ∝dL−2.5 γL 10-6 γL∗ ∝dL−2.6 10-7 10-7 103 104 103 104 d [Mpc] d [Mpc] L L Fig.6.Best-fitpowerlawstothedifferentialdensityγ (dots),andtheintegraldensityγ∗(diamonds).Theleftpanelsshowtheplots L L forthe100µmLF,whiletherightonesshowtheplotsforthe160µmLF,inthethreecosmologicalmodels/parametrisationsstudied here.Fulllinesshowthebest-fithigh-redshiftpowerlawforthedifferentialdensities,whilethedashedlinesshowthebest-fitpower lawsfortheintegraldensities,asdiscussedinSect.6.2. ingthe theoreticalpredictionsforsuch quantitiesin the CGBH iedhere.Ontheotherhand,thedifferentialdensitieswerefound parametrisationsofZumalaca´rreguietal.(2012). to be sensitive to a change in cosmological model assumed in their computation. These results confirmed the power-law be- Wecomputedtheselectionfunctionsstemmingfromthefar- haviour of the galaxy distribution on the observer’s past light- IRLFsofIribarremetal.(2013),whichallowedustoestablish, cone of the LTB/GBH modelsand allowed a tentative value of atanover5-σconfidencelevel,thatgeometryaloneisnotable -2.5±0.1tobeobtainedforthecumulativeradialstatisticsγ∗of to fit their behaviour,given the LTB/CGBH parametrisation of i thisdistribution,regardlessofthecosmologicalmodelassumed. Zumalaca´rreguietal. (2012). Thisfindingconfirmsthe needto allowforevolutionofthesources(eitherinnumberorinlumi- nosity)inthisparticularclassofvoidmodelsaswell.Wefound Aknowledgements no strong evidence of any dependenceof this evolution on the cosmologicalmodelsstudiedhere.Inotherwords,thecombined This work was jointly supported by Brazil’s CAPES and ESO mergertreeandbarionicprocessesneededtoreproducethered- studentships. SF is supported by the South African Square shiftevolutionoftheFIRLFintheCGBHvoidmodelsarenot KilometreArray(SKA)Project. significantly differentfrom the hierarchicalbuild up and astro- physicalprocessesinthestandardmodel. Finally, we computed the observed differential and inte- References gral densities in the past lightcone of both standard and void Albani,V.V.L.,Iribarrem,A.S.,Ribeiro,M.B.,&Stoeger,W.R.2007,ApJ, cosmologies, and fitted their high-redshift observational non- 657,760 homogeneities using power laws. We show that the systematic Alfedeel,A.H.A.&Hellaby,C.2010,GeneralRelativityandGravitation,42, dependencyoftheLFmethodologyonthecosmologythatwas 1935 discussedinIribarremetal.(2013)couldstillleadtosignificant Be´thermin,M.,Daddi,E.,Magdis,G.,etal.2012,ApJ,757,L23 differences in these relativistic number densities. The integral Biswas,T.,Notari,A.,&Valkenburg,W.2010,J.CosmologyAstropart.Phys., 11,30 densitiesshowedasomewhatconsistentslopeacrossallcombi- Bolejko, K., Ce´le´rier, M.-N., & Krasin´ski, A. 2011a, Classical and Quantum nationsofblind-selecteddatasetsandcosmologicalmodelsstud- Gravity,28,164002 10