Relativistic Burgers and Nonlinear Schr¨odinger Equations 9 0 0 Oktay K. PASHAEV 2 n a Department of Mathematics, Izmir Institute of Technology J Urla-Izmir, 35430, Turkey 0 1 January 13, 2009 ] h p Abstract - h Relativistic complex Burgers-Schr¨odinger and Nonliner Schr¨odinger t a equations are constructed. In the non-relativistic limit they reduce to m the standard Burgers and NLS equations respectively and are integrable [ at any order of relativistic corrections. 1 v 1 General Burgers-Schr¨odinger Hierarchy 9 9 TherelativisticlinearSchr¨odingerequationhasbeendiscussedattheearlyyears 3 1 of quantum mechanics but was dismissed promptly by the Klein-Gordon and . the Dirac equations. Recently, relativistic versions of the Schr¨odinger equation 1 have been considered in the study of relativistic quark-antiquark bound states 0 9 [1], and gravitational collapse of a boson star [2]. A nonlinear version of the 0 model has appeared in the form of semi-relativistic Hartree-Fock equation [3]. : But none of those models is known to be integrable. In the present paper we v i construct an integrable relativistic nonlinear Schr¨odinger equation, preserving X integrability at any order of 1/c approximation. r We start from the Schr¨odinger equation in 1 + 1 dimensions a ∂Ψ i~ = (P )Ψ (1) 1 ∂t H for a free particle with classical dispersion of the general analytic form E = E(p). Here P = i~∂ and P = i~ ∂ are operators of the time and space 0 ∂t 1 − ∂x translationsrespectively,commuting with the Schr¨odingeroperatorS =i~∂ ∂t− (P ): [P ,S] = 0, µ = 0,1. The general boost operator, defined as K = 1 µ H x t ′(P ), is also commuting with S, [K,S] = 0. Commuting it with space 1 − H and time translations we have the algebra of symmetry operators [P ,P ]=0, [P ,K]= ~ ′(P ), [P ,K]= i~. (2) 0 1 0 1 1 − H − 1 Then, if Ψ is a solution of (1) and W is an operator from this algebra, so that [W,S]=0, then SΨ is also solution of (1). ForagivenclassicaldispersionE =E(p),E E(0)wedefineE-polynomials 0 ≡ H(E)(x,t) by the generating function n ∞ i n pn e~i(px−(E(p)−E0)t) = H(E)(x,t). (3) ~ n! n n=0(cid:18) (cid:19) X It is equivalent to H(E)(x,t)=e−~i(H(−i~∂/∂x)−E0)txn (4) n so that H(E)(x,t) is a solution of n ∂ i~ H(E)(x,t)=( E )H(E)(x,t) (5) ∂t n H− 0 n with the initial value H(E)(x,0) = xn. From commutativity [S,K] = 0, time n evolution of the operator K satisfies ∂K i~ =[ ,K] (6) ∂t H and has the form K(t) = e−~iHtK(0)e~iHt = e−~iHtxe~iHt. Then as follows, operator K generates the infinite hierarchy of polynomials according to KHn(x,t)=Ke−~i(H−E0)txn =e−~i(H−E0)txn+1 =Hn+1(x,t) (7) 1.1 Non-relativistic Schr¨odinger equation Thenon-relativisticdispersionE(p)=p2/2mimplies the Hamiltonianoperator ~2 ∂2 = (8) H −2m∂x2 and the Gallilean boost operator ~ ∂ K =x+it . (9) m∂x From the generating function e~i(px−2pm2t) = ∞ ~i n pnn!Hn(S)(x,t) (10) n=0(cid:18) (cid:19) X we have the Schr¨odinger polynomials Hn(S)(x,t)=e~it2~m2 ∂∂x22xn. (11) IfH(KF)(x,t)=exp(td2 )xnistheKampedeFerietpolynomial,thenH(S)(x,t)= n dt2 n HKF(x, i~ t) or in terms of the Hermit polynomial 2m i~ n/2 x H(S)(x,t)= t H . (12) (cid:18)−2m (cid:19) n −2i~t/m! p 2 1.2 Semi-relativistic Schr¨odinger equation The relativistic dispersion E(p)= m2c4+c2p2 implies the Hamiltonian p ~2 ∂2 =mc2 1 (13) H − m2c2∂x2 r and the semi-relativistic boost operator i~ ∂ K =x+ t ∂x . (14) m 1 ~2 ∂2 − m2c2∂x2 q In the non-relativistic limit, when c , it reduces to the Galilean boost (9). →∞ The generating function in the form of relativistic plane wave e~i(px−(√m2c4+c2p2−mc2)t) = ∞ i n pnH(SRS)(x,t) (15) ~ n! n n=0(cid:18) (cid:19) X then gives semi-relativistic polynomials HnSRS(x,t)=e−~imc2t(q1−m~22c2∂∂x22−1)xn. (16) In the non-relativistic limit HSRS HS. The first three polynomials coincide n → n exactly with the Schr¨odinger polynomials HSRS(x,t)=x, H(SRS)(x,t)=x2+ 1 2 i~t, H(SRS) =x3+i~3xt, while starting from the fourth one m 3 m ~ ~2 ~3 H(SRS)(x,t)=x4+i 6x2t 3t2+i 3t (17) 4 m − m2 m3c2 we have relativistic corrections of order 1/c2. For complex valued space coor- dinate x, as it appears in 2+1 dimensional Chern-Simons theory [4], zeros of these polynomials describe a motion of point vortices in the plane. Equations of motion for N vortices are (k = 1,...,N): i ~ ∂ N 1 x˙ = Res + 1 (18) k ~ |x=xkH i ∂x x xl!!· l=1 − X 1.3 Relativistic Burgers-Schr¨odinger Equation Using Schr¨odinger’s log Ψ transform [5], Ψ=elnΨ, and identity ∂n ∂ ∂lnΨ n e−lnΨ elnΨ = + 1 (19) ∂xn ∂x ∂x · (cid:18) (cid:19) the Schr¨odinger equation (1) can be rewritten in the form ∂ ∂ ∂lnΨ i~ lnΨ= i~ + 1 (20) ∂t H − ∂x ∂x · (cid:18) (cid:18) (cid:19)(cid:19) 3 For complex function Ψ=e~iF =eR+~iS we introduce a new complex function V = i~ ∂ lnΨ = 1 ∂ F, with dimension of velocity. Then F = S i~R, is − m∂x m∂x − the complex potential, real and imaginary part of which are the classical and quantum velocities V = V +iV = 1S i~R . Hence (20) becomes of the c q m x− m x complex Hamilton-Jacobi form (quantum Hamilton-Jacobi equation) ∂F ∂ + i~ +F 1=0 (21) x ∂t H − ∂x · (cid:18) (cid:19) In the classical (dispersionless) limit ~ 0, the quantum velocity V vanishes q → and complex potential F reduces to the real velocity potential S, playing the role of Hamilton’s principal function. In this case (21) becomes the classical Hamilton-Jacobi equation ∂S + ∂S =0. By differentiation of (20) we have ∂t H ∂x equation for the complex velocity (cid:0) (cid:1) ∂V ~ ∂ ∂ i~ = i i~ +mV 1 (22) ∂t − m∂x H − ∂x · (cid:20) (cid:18) (cid:19) (cid:21) This equation is the Madelung fluid type representation of the Schr¨odinger equation (1). In the classical limit it gives the Newton equation m∂Vc = ∂t ∂ [ (mV )] or in the hydrodynamic type form −∂x H c ∂V ∂V c + ′(mV ) c =0 (23) c ∂t H ∂x whichisjustdifferentiationoftheclassicalHamilton-Jacobiequation. Equation (23) has implicit general solution as V (x,t)= f(x ′(mV )t), where f is an c c −H arbitraryfunction,anditdevelopsshockatacriticaltimewhenderivative(V ) c x is blowing up. 1.3.1 Non-relativistic Burgers-Schro¨dinger equation In this case the Schr¨odinger equation (1) with non-relativistic Hamiltonian (8) is equivalent to the nonlinear equation for complex velocity V ∂V ~2 ∂2V ∂V i~ = i~V (24) ∂t −2m ∂x2 − ∂x whichwe callthe Burgers-Schr¨odingerequation. In terms ofthe realandimag- inary parts it gives the Madelung fluid with density ρ=eR and velocity V . In c the classical limit it reduces to the one real equation for classical velocity V , c namely the ordinary dispersionless Burgers equation. 1.3.2 Semi-relativistic Burgers-Schro¨dinger equation For Hamiltonian (13), the ”Burgerization”procedure described above gives the semi-relativistic Burgers-Schr¨odingerequation 2 1∂V ∂ 1 ∂ +c 1+ i~ +mV 1 =0 (25) c ∂t ∂xs m2c2 − ∂x · (cid:18) (cid:19) 4 Inthe non-relativisticlimit itreducesto (24)withrelativisticcorrectionsinthe lowest order as ∂V ~2 ∂2V ∂V 1 i~ = i~V + ~4V (26) ∂t −2m ∂x2 − ∂x 8m3c2 − xxxx + 1 im~3(10V V +4VV )+m2~2(12VV2+6V2V )+4(cid:2)im3~V3V (cid:3) (27) 8m3c2 − x xx xxx x xx x (cid:2) (cid:3) Intheclassical(dispersionless)limit(25)becomesequationofthehydrodynamic type V c (V ) + (V ) =0 (28) c t c x 1+V2/c2 c In the non-relativistic limit it repduces to the dispersionless Burgers equation with the lowest relativistic correction 1 (V ) +V (V ) V3(V ) =0 (29) c t c c x− 2c2 c c x The general implicit solution of (28) is V t c V (x,t)=f x (30) c − 1+Vc2/c2! p and it develops shock at a finite time. 1.4 B¨acklund Transformation for Burgers-Schr¨odinger equa- tion By the boost transformation of Section 1, from a given solution Ψ of the 1 Schr¨odinger equation (1) we can generate another solution as ∂ Ψ =KΨ = x t ′ i~ Ψ . (31) 2 1 1 − H − ∂x (cid:20) (cid:18) (cid:19)(cid:21) Using identity ∂ ∂ Ψ−1G i~ Ψ=G i~ +mV 1 (32) − ∂x − ∂x · (cid:18) (cid:19) (cid:18) (cid:19) ~ for complex velocities V = i lnΨ , (a = 1,2), we obtain the B¨acklund a − m a transformation ~ ∂ ∂ V =V i ln x tH′ i~ +mV 1 (33) 2 1 − m∂x − − ∂x · (cid:20) (cid:18) (cid:19) (cid:21) For the non-relativistic quantum mechanics (8) it gives complex B¨acklund transformation ~ 1 (V ) t 1 x V =V i − (34) 2 1 − m x V t 1 − 5 for the Burgers-Schr¨odingerequation (24). For the semi-relativistic quantum mechanics (13) we have the B¨acklund transformation of the form ~ ∂ 1 V =V i ln x V t (35) 2 1 1 − m∂x − 1+ 1 ( i~ ∂ +mV )2 m2c2 − ∂x 1 Itisworthtonotethatintheclassicqallimit~ 0,V V theaboveB¨acklund c → → transformations reduce to the trivial identity V =V . c1 c2 2 Integrable General NLS Hierarchy In previous sections we studied the so called C-integrable relativistic Burgers- Schr¨odingerequation. Now usingthe AKNS hierarchyfor theNLSequationwe are going to construct relativistic NLS. 2.1 NLS hierarchy We consider the Zakharov-Shabatlinear problem ∂ v ip κ2ψ¯ v v ∂x(cid:18) v12 (cid:19)=(cid:18) −ψ2 −2ip (cid:19)(cid:18) v12 (cid:19)=J1(cid:18) v12 (cid:19), (36) for the space evolution, and the generalized AKNS problem [6] ∂ v iA κ2C¯ v v ∂t v12 = −C − iA v12 =J0 v12 , (37) (cid:18) (cid:19) (cid:18) − (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) for the time evolution, where for the real A(x,t,p) and complex C(x,t,p) functions, determined by the zero-curvature condition, we substitute A = N N A(n) p n, C = N C(n) p n. It gives the evolution equation n=0 −2 N n=0 −2 ∂ ψ = ∂ C(0) + 2iA(0)ψ and C(N) = 0, A(N) = a = const.. We fix PtN x(cid:0) (cid:1) P (cid:0) (cid:1) N this constant so that a = ( 2)N−1. Then we have the recurrence rela- N tions C(n) = 1∂ C(n+1) + A(−n+1)ψ, ∂ A(n) = iκ2(C¯(n)ψ C(n)ψ¯), where 2i x x − n=0,1,2,...,N 1. Integrating the last equation one has − x A(n) = iκ2 (ψ¯C(n) ψC¯(n)) (38) − − Z Substituting (38) into recursion formula we find C(n) 1 C(n+1) = (39) C¯(n) −2R C¯(n+1) (cid:18) (cid:19) (cid:18) (cid:19) where is the matrix integro-differential operator - the recursion operator of R the NLS hierarchy [6] - ∂ +2κ2ψ xψ¯ 2κ2ψ xψ x − =iσ (40) 3 R 2κ2ψ¯ xRψ¯ ∂ +2κ2ψR¯ xψ x − R R 6 and σ - the Pauli matrix. Then we get 3 ψ ψ iσ = N (41) 3 ψ¯ R ψ¯ (cid:18) (cid:19)tN (cid:18) (cid:19) where t , N = 1,2,3,... is an infinite time hierarchy. In the linear approx- N imation, when κ = 0, the recursion operator is just the momentum operator =iσ ∂ andthe NLS hierarchy(41) becomes the linear Schrodingerhierar- R0 3∂x chy iψ =in∂nψ (42) tn x fromSection1. TheMadelungrepresentationforthishierarchy,producedbythe complex Cole-Hopf transformation, is given by the complex Burgers hierarchy [4]. Every equation of hierarchy (41) is integrable. The linear problem for the N-thequationisgivenby the Zakharov-Shabatproblem(36)forthe spacepart and ∂ v iA κ2C¯ v v ∂tN (cid:18) v12 (cid:19)=(cid:18) −CNN −−iANN (cid:19)(cid:18) v12 (cid:19)=J0N (cid:18) v12 (cid:19), (43) for the time part. Coefficient functions C can be found conveniently as N N C ψ ψ N = pN−k k−1 =(pN−1+pN−2 +...+ N−1) C¯N R ψ¯ R R ψ¯ (cid:18) (cid:19) k=1 (cid:18) (cid:19) (cid:18) (cid:19) X (44) To rewrite this expression in a compact form we introduce notation of the q- number operator 1+q+q2+...+qN−1 [N] (45) q ≡ where q is a linear operator. Hence, with operator q /p we have following ≡ R finite Laurent form in the spectral parameter p 2 N−1 1+ R + R +...+ R [N] (46) p p p ≡ R/p (cid:18) (cid:19) (cid:18) (cid:19) Then we have shortly C ψ N =pN−1[N] (47) C¯ R/p ψ¯ N (cid:18) (cid:19) (cid:18) (cid:19) In a similar way pN x x ψ A = iκ2pN−1 ψ¯, ψ [N] (48) N − 2 − − R/p ψ¯ (cid:18)Z Z (cid:19) (cid:18) (cid:19) Equations (43),(47) and (48) give the time part of the linear problem (the Lax representation) for the N-th flow of NLS hierarchy (41) in the q-calculus form. 7 2.2 General NLS hierarchy equation For time t determined by the formal series ∂ = ∞ E ∂ where E are t N=0 N tN N arbitrary constants, the general NLS hierarchy equation is P ψ ψ iσ = E +E +...+E N +... (49) 3 ψ¯ 0 1R NR ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) (cid:0) (cid:1) Integrability of this equation is associated with the Zakharov-Shabat prob- lem (36) and the time evolution ∞ iA κ2C¯ J0 = ENJ0N = −C − iA (50) N=0 (cid:18) − (cid:19) X where ∞ ∞ C C ψ = E N = E pN−1[N] (51) C¯ N C¯ N R/p ψ¯ N (cid:18) (cid:19) N=0 (cid:18) (cid:19) N=1 (cid:18) (cid:19) X X In the last equation we have used that for N =0, C =0. Then we have 0 ∞ 1 ∞ x x C A= E A = E pN iκ2 ψ¯, ψ (52) N N −2 N − − C¯ N=0 N=0 (cid:18)Z Z (cid:19)(cid:18) (cid:19) X X Theaboveequation(49)givesintegrablenonlinearextensionoflinearSchrd¨inger equation with generalanalytic dispersion considered in Section 1. Let one con- siders the classical particle system with the energy-momentum relation E(p)= E +E p+ E p2 +.... Then the corresponding time-dependent Schr¨odinger 0 1 2 wave equationis (1) where the Hamiltonian operator results from the standard substitutionformomentump i~ ∂ inthedispersion. Equation(1)together →− ∂x with its complex conjugate can be rewritten as ∂ ψ ∂ ψ i~σ =H i~σ (53) 3∂t ψ¯ − 3∂x ψ¯ (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) The momentum operator here is just the recursion operator in the linear ap- proximation = iσ ∂ . Hence, (53) is the linear Schr¨odinger equation with R0 3∂x arbitrary analytic dispersion. The nonlinear integrable extension of this equa- tion appears as (49), which corresponds to the replacement , (~ = 1), 0 R → R so that ψ ψ iσ =H( ) (54) 3 ψ¯ R ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) Fromthis point ofview, the standardsubstitution forclassicalmomentum p i~ ∂ orequivalentlyp i~σ ∂ = fortheequationinspinorform,giv→es − ∂x →− 3∂x R0 quantizationinthe formofthe linearSchr¨odingerequation. While substitution p gives ”nonlinear quantization” and the nonlinear Schr¨odinger hierarchy →R equation. 8 The related Lax representation for equation (54) is given by (51), (52). By definition of q-derivative D(ζ)f(ζ) = f(qζ)−f(ζ) for operator q = /p, we have q (q−1)ζ R relation D(p) ζN =[N] pN−1. Then equation (51) can be rewritten as R/p R/p ∞ ∞ C ψ ψ = E pN−1[N] = E D(p) pN (55) C¯ N R/p ψ¯ N R/p ψ¯ (cid:18) (cid:19) N=1 (cid:18) (cid:19) N=1 (cid:18) (cid:19) X X or using linearity of q-derivative and analytic dispersion form ∞ C ψ ψ =D(p) E pN =D(p) E(p) (56) C¯ R/p N ψ¯ R/p ψ¯ (cid:18) (cid:19) N=0 (cid:18) (cid:19) (cid:18) (cid:19) X Due to above definition it gives simple formula C E( ) E(p) ψ C¯ = R −p ψ¯ (57) (cid:18) (cid:19) R− (cid:18) (cid:19) Then for A we obtain 1 x x E( ) E(p) ψ A=−2E(p)−iκ2 ψ¯,− ψ R −p ψ¯ (58) (cid:18)Z Z (cid:19) R− (cid:18) (cid:19) Equations (57),(58) give the Lax representation of the general integrable NLS hierarchy model (54) in a simple and compact form. It is worth to note that specialformofthedispersionE =E(p)isfixedbyphysicalproblem. Inthenext Sectionwewilldiscusstherelativisticformofthisdispersionandcorresponding semi-relativistic NLS equation. 3 Semi-relativistic NLS In Section 1.2 we have considered the relativistic dispersion relation E(p) = m2c4+p2c2. Thismaybeusedtoconstructa“semi-relativistic”Schr¨odinger equationwithHamiltonian(13). Then,combiningtwocomplexconjugateequa- p tions together, we have 2 ψ 1 ∂ ψ iσ =mc2 1+ iσ (59) 3 ψ¯ s m2c2 3∂x ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) (cid:18) (cid:19) We liketoemphasizethatifψ describesthe relativisticparticleforwardintime andwithpositiveenergy,ψ¯correspondstothebackwardtimeortothenegative energy. From this point of view equation (59) is complete since includes both states. Following the generalprocedure described in previous Section one may pro- ceed further: by replacing the derivative operator = iσ ∂ corresponding R0 3∂x to linear momenta p with the full recursion operator (40), one obtains an R integrable relativistic nonlinear Schr¨odinger equation 9 ψ 1 ψ iσ =mc2 1+ 2 (60) 3 ψ¯ m2c2R ψ¯ (cid:18) (cid:19)t r (cid:18) (cid:19) where the square root operator has meaning of the formal power series so that ψ 1 1 1 ψ iσ =mc2 1+ 2 4+ 6 ... 3 ψ¯ 2m2c2R − 8m4c4R 16m6c6R ± ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19)(cid:18) (cid:19) (61) For the above relativistic dispersion and equation (60), we have the next linear problem ∂ v ip κ2ψ¯ v 1 = −2 − 1 , (62) ∂x(cid:18) v2 (cid:19) (cid:18) ψ 2ip (cid:19)(cid:18) v2 (cid:19) ∂ v iA κ2C¯ v 1 = − − 1 , (63) ∂t v2 C iA v2 (cid:18) (cid:19) (cid:18) − (cid:19)(cid:18) (cid:19) where C √m2c4+ 2c2 m2c4+p2c2 ψ C¯ = R − p ψ¯ (64) (cid:18) (cid:19) R−p (cid:18) (cid:19) 1 x x √m2c4+ 2c2 m2c4+p2c2 ψ A= m2c4+p2c2 iκ2 ψ¯, ψ R − −2 − − p ψ¯ (cid:18)Z Z (cid:19) R−p (cid:18) (cid:19) p (65) and the spectral parameter p has meaning of the classical momentum. The model (60), is an integrable nonlinear Schrodinger equation with relativistic dispersion: 1 ∂2 iψ =mc2 1 ψ+F(ψ) (66) t − m2c2∂x2 r where the nonlinearity expanded in 1/c2 is the infinite sum 1 F(ψ)= [ 2κ2 ψ 2ψ] 2m − | | 1 1 [2κ2(2ψ 2ψ+4ψ 2ψ +ψ¯ ψ2+3ψ¯ψ2)+6κ4 ψ 4ψ]+O( ) −8m3c2 | x| | | xx xx x | | c4 It is interesting to note that if we expand also the dispersion part in 1/c2, thenateveryorderof1/c2wegetanintegrablesystem. Itmeansthatweobtain integrable relativistic corrections to the NLS equation at any order. From the knownrelativisticintegrablemodels likethe Sine-Gordonorthe Liouvilleequa- tions, neither one has this property. Finally we note that nonlinear relativistic equationsconsideredinthispaperaredistinctfromthoseobtainedin[1]-[3]and references therein. They might be useful in analyzing relativistic corrections to solitons,Bose-Einsteincondensates or other condensed matter systems with an effective equation of relativistic form. 10