ebook img

Relativistic Burgers and Nonlinear Schrödinger Equations PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Relativistic Burgers and Nonlinear Schrödinger Equations

Relativistic Burgers and Nonlinear Schr¨odinger Equations 9 0 0 Oktay K. PASHAEV 2 n a Department of Mathematics, Izmir Institute of Technology J Urla-Izmir, 35430, Turkey 0 1 January 13, 2009 ] h p Abstract - h Relativistic complex Burgers-Schr¨odinger and Nonliner Schr¨odinger t a equations are constructed. In the non-relativistic limit they reduce to m the standard Burgers and NLS equations respectively and are integrable [ at any order of relativistic corrections. 1 v 1 General Burgers-Schr¨odinger Hierarchy 9 9 TherelativisticlinearSchr¨odingerequationhasbeendiscussedattheearlyyears 3 1 of quantum mechanics but was dismissed promptly by the Klein-Gordon and . the Dirac equations. Recently, relativistic versions of the Schr¨odinger equation 1 have been considered in the study of relativistic quark-antiquark bound states 0 9 [1], and gravitational collapse of a boson star [2]. A nonlinear version of the 0 model has appeared in the form of semi-relativistic Hartree-Fock equation [3]. : But none of those models is known to be integrable. In the present paper we v i construct an integrable relativistic nonlinear Schr¨odinger equation, preserving X integrability at any order of 1/c approximation. r We start from the Schr¨odinger equation in 1 + 1 dimensions a ∂Ψ i~ = (P )Ψ (1) 1 ∂t H for a free particle with classical dispersion of the general analytic form E = E(p). Here P = i~∂ and P = i~ ∂ are operators of the time and space 0 ∂t 1 − ∂x translationsrespectively,commuting with the Schr¨odingeroperatorS =i~∂ ∂t− (P ): [P ,S] = 0, µ = 0,1. The general boost operator, defined as K = 1 µ H x t ′(P ), is also commuting with S, [K,S] = 0. Commuting it with space 1 − H and time translations we have the algebra of symmetry operators [P ,P ]=0, [P ,K]= ~ ′(P ), [P ,K]= i~. (2) 0 1 0 1 1 − H − 1 Then, if Ψ is a solution of (1) and W is an operator from this algebra, so that [W,S]=0, then SΨ is also solution of (1). ForagivenclassicaldispersionE =E(p),E E(0)wedefineE-polynomials 0 ≡ H(E)(x,t) by the generating function n ∞ i n pn e~i(px−(E(p)−E0)t) = H(E)(x,t). (3) ~ n! n n=0(cid:18) (cid:19) X It is equivalent to H(E)(x,t)=e−~i(H(−i~∂/∂x)−E0)txn (4) n so that H(E)(x,t) is a solution of n ∂ i~ H(E)(x,t)=( E )H(E)(x,t) (5) ∂t n H− 0 n with the initial value H(E)(x,0) = xn. From commutativity [S,K] = 0, time n evolution of the operator K satisfies ∂K i~ =[ ,K] (6) ∂t H and has the form K(t) = e−~iHtK(0)e~iHt = e−~iHtxe~iHt. Then as follows, operator K generates the infinite hierarchy of polynomials according to KHn(x,t)=Ke−~i(H−E0)txn =e−~i(H−E0)txn+1 =Hn+1(x,t) (7) 1.1 Non-relativistic Schr¨odinger equation Thenon-relativisticdispersionE(p)=p2/2mimplies the Hamiltonianoperator ~2 ∂2 = (8) H −2m∂x2 and the Gallilean boost operator ~ ∂ K =x+it . (9) m∂x From the generating function e~i(px−2pm2t) = ∞ ~i n pnn!Hn(S)(x,t) (10) n=0(cid:18) (cid:19) X we have the Schr¨odinger polynomials Hn(S)(x,t)=e~it2~m2 ∂∂x22xn. (11) IfH(KF)(x,t)=exp(td2 )xnistheKampedeFerietpolynomial,thenH(S)(x,t)= n dt2 n HKF(x, i~ t) or in terms of the Hermit polynomial 2m i~ n/2 x H(S)(x,t)= t H . (12) (cid:18)−2m (cid:19) n −2i~t/m! p 2 1.2 Semi-relativistic Schr¨odinger equation The relativistic dispersion E(p)= m2c4+c2p2 implies the Hamiltonian p ~2 ∂2 =mc2 1 (13) H − m2c2∂x2 r and the semi-relativistic boost operator i~ ∂ K =x+ t ∂x . (14) m 1 ~2 ∂2 − m2c2∂x2 q In the non-relativistic limit, when c , it reduces to the Galilean boost (9). →∞ The generating function in the form of relativistic plane wave e~i(px−(√m2c4+c2p2−mc2)t) = ∞ i n pnH(SRS)(x,t) (15) ~ n! n n=0(cid:18) (cid:19) X then gives semi-relativistic polynomials HnSRS(x,t)=e−~imc2t(q1−m~22c2∂∂x22−1)xn. (16) In the non-relativistic limit HSRS HS. The first three polynomials coincide n → n exactly with the Schr¨odinger polynomials HSRS(x,t)=x, H(SRS)(x,t)=x2+ 1 2 i~t, H(SRS) =x3+i~3xt, while starting from the fourth one m 3 m ~ ~2 ~3 H(SRS)(x,t)=x4+i 6x2t 3t2+i 3t (17) 4 m − m2 m3c2 we have relativistic corrections of order 1/c2. For complex valued space coor- dinate x, as it appears in 2+1 dimensional Chern-Simons theory [4], zeros of these polynomials describe a motion of point vortices in the plane. Equations of motion for N vortices are (k = 1,...,N): i ~ ∂ N 1 x˙ = Res + 1 (18) k ~ |x=xkH i ∂x x xl!!· l=1 − X 1.3 Relativistic Burgers-Schr¨odinger Equation Using Schr¨odinger’s log Ψ transform [5], Ψ=elnΨ, and identity ∂n ∂ ∂lnΨ n e−lnΨ elnΨ = + 1 (19) ∂xn ∂x ∂x · (cid:18) (cid:19) the Schr¨odinger equation (1) can be rewritten in the form ∂ ∂ ∂lnΨ i~ lnΨ= i~ + 1 (20) ∂t H − ∂x ∂x · (cid:18) (cid:18) (cid:19)(cid:19) 3 For complex function Ψ=e~iF =eR+~iS we introduce a new complex function V = i~ ∂ lnΨ = 1 ∂ F, with dimension of velocity. Then F = S i~R, is − m∂x m∂x − the complex potential, real and imaginary part of which are the classical and quantum velocities V = V +iV = 1S i~R . Hence (20) becomes of the c q m x− m x complex Hamilton-Jacobi form (quantum Hamilton-Jacobi equation) ∂F ∂ + i~ +F 1=0 (21) x ∂t H − ∂x · (cid:18) (cid:19) In the classical (dispersionless) limit ~ 0, the quantum velocity V vanishes q → and complex potential F reduces to the real velocity potential S, playing the role of Hamilton’s principal function. In this case (21) becomes the classical Hamilton-Jacobi equation ∂S + ∂S =0. By differentiation of (20) we have ∂t H ∂x equation for the complex velocity (cid:0) (cid:1) ∂V ~ ∂ ∂ i~ = i i~ +mV 1 (22) ∂t − m∂x H − ∂x · (cid:20) (cid:18) (cid:19) (cid:21) This equation is the Madelung fluid type representation of the Schr¨odinger equation (1). In the classical limit it gives the Newton equation m∂Vc = ∂t ∂ [ (mV )] or in the hydrodynamic type form −∂x H c ∂V ∂V c + ′(mV ) c =0 (23) c ∂t H ∂x whichisjustdifferentiationoftheclassicalHamilton-Jacobiequation. Equation (23) has implicit general solution as V (x,t)= f(x ′(mV )t), where f is an c c −H arbitraryfunction,anditdevelopsshockatacriticaltimewhenderivative(V ) c x is blowing up. 1.3.1 Non-relativistic Burgers-Schro¨dinger equation In this case the Schr¨odinger equation (1) with non-relativistic Hamiltonian (8) is equivalent to the nonlinear equation for complex velocity V ∂V ~2 ∂2V ∂V i~ = i~V (24) ∂t −2m ∂x2 − ∂x whichwe callthe Burgers-Schr¨odingerequation. In terms ofthe realandimag- inary parts it gives the Madelung fluid with density ρ=eR and velocity V . In c the classical limit it reduces to the one real equation for classical velocity V , c namely the ordinary dispersionless Burgers equation. 1.3.2 Semi-relativistic Burgers-Schro¨dinger equation For Hamiltonian (13), the ”Burgerization”procedure described above gives the semi-relativistic Burgers-Schr¨odingerequation 2 1∂V ∂ 1 ∂ +c 1+ i~ +mV 1 =0 (25) c ∂t ∂xs m2c2 − ∂x ·  (cid:18) (cid:19)   4 Inthe non-relativisticlimit itreducesto (24)withrelativisticcorrectionsinthe lowest order as ∂V ~2 ∂2V ∂V 1 i~ = i~V + ~4V (26) ∂t −2m ∂x2 − ∂x 8m3c2 − xxxx + 1 im~3(10V V +4VV )+m2~2(12VV2+6V2V )+4(cid:2)im3~V3V (cid:3) (27) 8m3c2 − x xx xxx x xx x (cid:2) (cid:3) Intheclassical(dispersionless)limit(25)becomesequationofthehydrodynamic type V c (V ) + (V ) =0 (28) c t c x 1+V2/c2 c In the non-relativistic limit it repduces to the dispersionless Burgers equation with the lowest relativistic correction 1 (V ) +V (V ) V3(V ) =0 (29) c t c c x− 2c2 c c x The general implicit solution of (28) is V t c V (x,t)=f x (30) c − 1+Vc2/c2! p and it develops shock at a finite time. 1.4 B¨acklund Transformation for Burgers-Schr¨odinger equa- tion By the boost transformation of Section 1, from a given solution Ψ of the 1 Schr¨odinger equation (1) we can generate another solution as ∂ Ψ =KΨ = x t ′ i~ Ψ . (31) 2 1 1 − H − ∂x (cid:20) (cid:18) (cid:19)(cid:21) Using identity ∂ ∂ Ψ−1G i~ Ψ=G i~ +mV 1 (32) − ∂x − ∂x · (cid:18) (cid:19) (cid:18) (cid:19) ~ for complex velocities V = i lnΨ , (a = 1,2), we obtain the B¨acklund a − m a transformation ~ ∂ ∂ V =V i ln x tH′ i~ +mV 1 (33) 2 1 − m∂x − − ∂x · (cid:20) (cid:18) (cid:19) (cid:21) For the non-relativistic quantum mechanics (8) it gives complex B¨acklund transformation ~ 1 (V ) t 1 x V =V i − (34) 2 1 − m x V t 1 − 5 for the Burgers-Schr¨odingerequation (24). For the semi-relativistic quantum mechanics (13) we have the B¨acklund transformation of the form ~ ∂ 1 V =V i ln x V t (35) 2 1 1 − m∂x  − 1+ 1 ( i~ ∂ +mV )2  m2c2 − ∂x 1 Itisworthtonotethatintheclassicqallimit~ 0,V V theaboveB¨acklund c → → transformations reduce to the trivial identity V =V . c1 c2 2 Integrable General NLS Hierarchy In previous sections we studied the so called C-integrable relativistic Burgers- Schr¨odingerequation. Now usingthe AKNS hierarchyfor theNLSequationwe are going to construct relativistic NLS. 2.1 NLS hierarchy We consider the Zakharov-Shabatlinear problem ∂ v ip κ2ψ¯ v v ∂x(cid:18) v12 (cid:19)=(cid:18) −ψ2 −2ip (cid:19)(cid:18) v12 (cid:19)=J1(cid:18) v12 (cid:19), (36) for the space evolution, and the generalized AKNS problem [6] ∂ v iA κ2C¯ v v ∂t v12 = −C − iA v12 =J0 v12 , (37) (cid:18) (cid:19) (cid:18) − (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) for the time evolution, where for the real A(x,t,p) and complex C(x,t,p) functions, determined by the zero-curvature condition, we substitute A = N N A(n) p n, C = N C(n) p n. It gives the evolution equation n=0 −2 N n=0 −2 ∂ ψ = ∂ C(0) + 2iA(0)ψ and C(N) = 0, A(N) = a = const.. We fix PtN x(cid:0) (cid:1) P (cid:0) (cid:1) N this constant so that a = ( 2)N−1. Then we have the recurrence rela- N tions C(n) = 1∂ C(n+1) + A(−n+1)ψ, ∂ A(n) = iκ2(C¯(n)ψ C(n)ψ¯), where 2i x x − n=0,1,2,...,N 1. Integrating the last equation one has − x A(n) = iκ2 (ψ¯C(n) ψC¯(n)) (38) − − Z Substituting (38) into recursion formula we find C(n) 1 C(n+1) = (39) C¯(n) −2R C¯(n+1) (cid:18) (cid:19) (cid:18) (cid:19) where is the matrix integro-differential operator - the recursion operator of R the NLS hierarchy [6] - ∂ +2κ2ψ xψ¯ 2κ2ψ xψ x − =iσ (40) 3 R  2κ2ψ¯ xRψ¯ ∂ +2κ2ψR¯ xψ  x −   R R 6 and σ - the Pauli matrix. Then we get 3 ψ ψ iσ = N (41) 3 ψ¯ R ψ¯ (cid:18) (cid:19)tN (cid:18) (cid:19) where t , N = 1,2,3,... is an infinite time hierarchy. In the linear approx- N imation, when κ = 0, the recursion operator is just the momentum operator =iσ ∂ andthe NLS hierarchy(41) becomes the linear Schrodingerhierar- R0 3∂x chy iψ =in∂nψ (42) tn x fromSection1. TheMadelungrepresentationforthishierarchy,producedbythe complex Cole-Hopf transformation, is given by the complex Burgers hierarchy [4]. Every equation of hierarchy (41) is integrable. The linear problem for the N-thequationisgivenby the Zakharov-Shabatproblem(36)forthe spacepart and ∂ v iA κ2C¯ v v ∂tN (cid:18) v12 (cid:19)=(cid:18) −CNN −−iANN (cid:19)(cid:18) v12 (cid:19)=J0N (cid:18) v12 (cid:19), (43) for the time part. Coefficient functions C can be found conveniently as N N C ψ ψ N = pN−k k−1 =(pN−1+pN−2 +...+ N−1) C¯N R ψ¯ R R ψ¯ (cid:18) (cid:19) k=1 (cid:18) (cid:19) (cid:18) (cid:19) X (44) To rewrite this expression in a compact form we introduce notation of the q- number operator 1+q+q2+...+qN−1 [N] (45) q ≡ where q is a linear operator. Hence, with operator q /p we have following ≡ R finite Laurent form in the spectral parameter p 2 N−1 1+ R + R +...+ R [N] (46) p p p ≡ R/p (cid:18) (cid:19) (cid:18) (cid:19) Then we have shortly C ψ N =pN−1[N] (47) C¯ R/p ψ¯ N (cid:18) (cid:19) (cid:18) (cid:19) In a similar way pN x x ψ A = iκ2pN−1 ψ¯, ψ [N] (48) N − 2 − − R/p ψ¯ (cid:18)Z Z (cid:19) (cid:18) (cid:19) Equations (43),(47) and (48) give the time part of the linear problem (the Lax representation) for the N-th flow of NLS hierarchy (41) in the q-calculus form. 7 2.2 General NLS hierarchy equation For time t determined by the formal series ∂ = ∞ E ∂ where E are t N=0 N tN N arbitrary constants, the general NLS hierarchy equation is P ψ ψ iσ = E +E +...+E N +... (49) 3 ψ¯ 0 1R NR ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) (cid:0) (cid:1) Integrability of this equation is associated with the Zakharov-Shabat prob- lem (36) and the time evolution ∞ iA κ2C¯ J0 = ENJ0N = −C − iA (50) N=0 (cid:18) − (cid:19) X where ∞ ∞ C C ψ = E N = E pN−1[N] (51) C¯ N C¯ N R/p ψ¯ N (cid:18) (cid:19) N=0 (cid:18) (cid:19) N=1 (cid:18) (cid:19) X X In the last equation we have used that for N =0, C =0. Then we have 0 ∞ 1 ∞ x x C A= E A = E pN iκ2 ψ¯, ψ (52) N N −2 N − − C¯ N=0 N=0 (cid:18)Z Z (cid:19)(cid:18) (cid:19) X X Theaboveequation(49)givesintegrablenonlinearextensionoflinearSchrd¨inger equation with generalanalytic dispersion considered in Section 1. Let one con- siders the classical particle system with the energy-momentum relation E(p)= E +E p+ E p2 +.... Then the corresponding time-dependent Schr¨odinger 0 1 2 wave equationis (1) where the Hamiltonian operator results from the standard substitutionformomentump i~ ∂ inthedispersion. Equation(1)together →− ∂x with its complex conjugate can be rewritten as ∂ ψ ∂ ψ i~σ =H i~σ (53) 3∂t ψ¯ − 3∂x ψ¯ (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) The momentum operator here is just the recursion operator in the linear ap- proximation = iσ ∂ . Hence, (53) is the linear Schr¨odinger equation with R0 3∂x arbitrary analytic dispersion. The nonlinear integrable extension of this equa- tion appears as (49), which corresponds to the replacement , (~ = 1), 0 R → R so that ψ ψ iσ =H( ) (54) 3 ψ¯ R ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) Fromthis point ofview, the standardsubstitution forclassicalmomentum p i~ ∂ orequivalentlyp i~σ ∂ = fortheequationinspinorform,giv→es − ∂x →− 3∂x R0 quantizationinthe formofthe linearSchr¨odingerequation. While substitution p gives ”nonlinear quantization” and the nonlinear Schr¨odinger hierarchy →R equation. 8 The related Lax representation for equation (54) is given by (51), (52). By definition of q-derivative D(ζ)f(ζ) = f(qζ)−f(ζ) for operator q = /p, we have q (q−1)ζ R relation D(p) ζN =[N] pN−1. Then equation (51) can be rewritten as R/p R/p ∞ ∞ C ψ ψ = E pN−1[N] = E D(p) pN (55) C¯ N R/p ψ¯ N R/p ψ¯ (cid:18) (cid:19) N=1 (cid:18) (cid:19) N=1 (cid:18) (cid:19) X X or using linearity of q-derivative and analytic dispersion form ∞ C ψ ψ =D(p) E pN =D(p) E(p) (56) C¯ R/p N ψ¯ R/p ψ¯ (cid:18) (cid:19) N=0 (cid:18) (cid:19) (cid:18) (cid:19) X Due to above definition it gives simple formula C E( ) E(p) ψ C¯ = R −p ψ¯ (57) (cid:18) (cid:19) R− (cid:18) (cid:19) Then for A we obtain 1 x x E( ) E(p) ψ A=−2E(p)−iκ2 ψ¯,− ψ R −p ψ¯ (58) (cid:18)Z Z (cid:19) R− (cid:18) (cid:19) Equations (57),(58) give the Lax representation of the general integrable NLS hierarchy model (54) in a simple and compact form. It is worth to note that specialformofthedispersionE =E(p)isfixedbyphysicalproblem. Inthenext Sectionwewilldiscusstherelativisticformofthisdispersionandcorresponding semi-relativistic NLS equation. 3 Semi-relativistic NLS In Section 1.2 we have considered the relativistic dispersion relation E(p) = m2c4+p2c2. Thismaybeusedtoconstructa“semi-relativistic”Schr¨odinger equationwithHamiltonian(13). Then,combiningtwocomplexconjugateequa- p tions together, we have 2 ψ 1 ∂ ψ iσ =mc2 1+ iσ (59) 3 ψ¯ s m2c2 3∂x ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19) (cid:18) (cid:19) We liketoemphasizethatifψ describesthe relativisticparticleforwardintime andwithpositiveenergy,ψ¯correspondstothebackwardtimeortothenegative energy. From this point of view equation (59) is complete since includes both states. Following the generalprocedure described in previous Section one may pro- ceed further: by replacing the derivative operator = iσ ∂ corresponding R0 3∂x to linear momenta p with the full recursion operator (40), one obtains an R integrable relativistic nonlinear Schr¨odinger equation 9 ψ 1 ψ iσ =mc2 1+ 2 (60) 3 ψ¯ m2c2R ψ¯ (cid:18) (cid:19)t r (cid:18) (cid:19) where the square root operator has meaning of the formal power series so that ψ 1 1 1 ψ iσ =mc2 1+ 2 4+ 6 ... 3 ψ¯ 2m2c2R − 8m4c4R 16m6c6R ± ψ¯ (cid:18) (cid:19)t (cid:18) (cid:19)(cid:18) (cid:19) (61) For the above relativistic dispersion and equation (60), we have the next linear problem ∂ v ip κ2ψ¯ v 1 = −2 − 1 , (62) ∂x(cid:18) v2 (cid:19) (cid:18) ψ 2ip (cid:19)(cid:18) v2 (cid:19) ∂ v iA κ2C¯ v 1 = − − 1 , (63) ∂t v2 C iA v2 (cid:18) (cid:19) (cid:18) − (cid:19)(cid:18) (cid:19) where C √m2c4+ 2c2 m2c4+p2c2 ψ C¯ = R − p ψ¯ (64) (cid:18) (cid:19) R−p (cid:18) (cid:19) 1 x x √m2c4+ 2c2 m2c4+p2c2 ψ A= m2c4+p2c2 iκ2 ψ¯, ψ R − −2 − − p ψ¯ (cid:18)Z Z (cid:19) R−p (cid:18) (cid:19) p (65) and the spectral parameter p has meaning of the classical momentum. The model (60), is an integrable nonlinear Schrodinger equation with relativistic dispersion: 1 ∂2 iψ =mc2 1 ψ+F(ψ) (66) t − m2c2∂x2 r where the nonlinearity expanded in 1/c2 is the infinite sum 1 F(ψ)= [ 2κ2 ψ 2ψ] 2m − | | 1 1 [2κ2(2ψ 2ψ+4ψ 2ψ +ψ¯ ψ2+3ψ¯ψ2)+6κ4 ψ 4ψ]+O( ) −8m3c2 | x| | | xx xx x | | c4 It is interesting to note that if we expand also the dispersion part in 1/c2, thenateveryorderof1/c2wegetanintegrablesystem. Itmeansthatweobtain integrable relativistic corrections to the NLS equation at any order. From the knownrelativisticintegrablemodels likethe Sine-Gordonorthe Liouvilleequa- tions, neither one has this property. Finally we note that nonlinear relativistic equationsconsideredinthispaperaredistinctfromthoseobtainedin[1]-[3]and references therein. They might be useful in analyzing relativistic corrections to solitons,Bose-Einsteincondensates or other condensed matter systems with an effective equation of relativistic form. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.