ebook img

Relations to Energy and Abundance PDF

142 Pages·2014·15.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Relations to Energy and Abundance

Allometry – Relations to Energy and Abundance ZurErlangungdesGradeseinesDoctorrerumnaturalium(Dr.rer.nat.) genehmigteDissertationvonDipl.Biol.RoswithaB.EhnesausFulda Januar2014—Darmstadt—D17 FachbereichBiologie AGBrose Allometry–RelationstoEnergyandAbundance Vom Fachbereich Biologie genehmigte Dissertation von Dipl. Biol. Roswitha B. EhnesausFulda 1. Gutachten: Prof. Dr. UlrichBrose 2. Gutachten: Prof. Dr. NicoBlüthgen TagderEinreichung: 16. Oktober2013 TagderPrüfung: 12. Dezember2013 Januar2014—Darmstadt—D17 Wir sind so gerne in der freien Natur, weil diese keine Meinung über uns hat. — Friedrich Nietzsche i Contents 1 AimsandScope 1 2 Introduction 2 2.1 Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Body-masseffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Temperatureeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 AllometricScaling–currentDebate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 MetabolicTheoryofEcologyforendothermsandectotherms? . . . . . . . . . . . . . . 12 2.6 Foodbalancesmetabolicdemand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.7 Diversityofinvertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.8 Communityenergyuse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.9 Investigatinganimalsinthesoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.10 Shortoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.11 Contributionstothepublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Temperature,predator-preyinteractionstrengthandpopulationstability 20 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 MaterialandMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Respirationandingestionexperiments . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.2 Statisticalanalysisofexperimentaldata. . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Longterminteractionstrength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 Respirationandingestionexperiments . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Ingestionefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.3 Short-terminteractionstrength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.4 Predictionoflong-terminteractionstrength . . . . . . . . . . . . . . . . . . . . . 30 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.2 Body-masseffectsoningestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.3 Temperature effects on ingestion, ingestion efficiencies and interaction strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.4 Temperatureeffectsonpopulationstability. . . . . . . . . . . . . . . . . . . . . . 33 3.6 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Warmingupthesystem: higherpredatorfeedingratesbutlowerenergeticefficien- cies 36 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ii 4.3.2 Statisticalanalyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Phylogeneticgrouping,curvatureandmetabolicscalinginterrestrialinvertebrates 47 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Respiration rates, assimilation efficiencies and maintenance consumption rates de- pendonconsumertypes: energeticimplicationsofenvironmentalwarming 58 6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3 Materialsandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.2 Statisticalanalyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.3 Simulationofmaintenanceconsumptionrates. . . . . . . . . . . . . . . . . . . . 62 6.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.1 Respirationrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.2 Assimilationefficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.3 Maintenanceconsumptionrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7 Positive correlation between density and parthenogenetic reproduction in oribatid mites(Acari)supportsthestructuredresourcetheoryofsexualreproduction 69 7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.3 MaterialsandMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.3.1 Regionalscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.3.2 Globalscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3.3 Statisticalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.4.1 Regionalscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.4.2 Globalscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5.1 Parthenogeneticreproductioninoribatidmites . . . . . . . . . . . . . . . . . . . 75 7.5.2 Regionalscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.5.3 Globalscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5.4 Thestructuredresourcetheoryofsexualreproductionasanintegrativetheory 77 7.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 iii 8 Lackofenergeticequivalenceinforestsoilinvertebrates 79 8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9 GeneralDiscussion 93 10 GeneralSummary 98 11 Zusammenfassung 100 Bibliography 102 ListofFigures 124 ListofTables 127 12 Appendix 128 13 Acknowledgements/Danksagung 130 14 CurriculumVitae 133 iv 1 Aims and Scope The species in assemblages are linked by interactions. Many of these are trophic interactions, indicating who eats what and thus, also, the flow of energy through the system. These feed- ing interactions constitute the food web and are themselves determined by the attributes of the interactingorganisms. The complexity of such a food web cannot be understood using only a single methodology. Different concepts must be used to gain insight into the structure of the system. Likewise, the system cannot be well understood by examining only a single level and several levels have to be taken into account. I therefore concentrated on several different aspects and attributes of the organismsinteractinginfoodwebs. Itisenormouslydemandingtoderivedetaileddescriptionsoffeedinginteractionsbylaboratory study. However, such studies do provide precise information on the strengths of the interactions. Obtaining such precise information for large systems of interacting organisms is, unfortunately, logistically impossible. It is therefore necessary, for large assemblages, to obtain estimations of interaction strengths. I therefore used different approaches during my thesis. In the laboratory, I investigated specific feeding interactions and determined how they are driven by predator body massandbytemperature. Then,Ifocusedonthemetabolicneedsofdifferentinvertebratesdiffer- entiating their phylogenetic group and feeding type. I then combined these findings with a field studytotestdifferenttheoriesoffood-webstructure. 1 2 Introduction Natural ecosystems consist of many organisms, large or small, rare or abundant. How do all these organisms relate to each other and how is this assemblage structured? The structure of these species communities can be characterized by the feeding interactions between the species. The majority of these organisms are heterotrophs feeding on different resources such as plants (i.e. herbivores), detritus (i.e. detritivores), or other animals (i.e. predators). The question of theircoexistenceengagesecologistsanditcannotbeansweredreclusivelybyconcentratingonone individual organism as it involves factors inherent to the many organisms and also depends on thehabitat. Forexample,eachorganimsneedstotakeupcertainamountsofenergy,accordingto certain intrinsic factors, and can conversely be fed on by other organisms. These intrinsic factors includeforexamplebodymassoftheorganism,itsphysiology,feedingtype,phylogeny,andactivity level(Fig.2.1). However,alsotheenvironmentwithitsspecificpropertiesinfluencestheenergetic demandofanorganismviatemperatureeffects,orfactorslikehabitattype,possibledisturbances (human land use), or properties of the occurring resources (for instance their type, body mass (energeticcontent),availability,orabundance,Fig.2.1). temperature habitat type body mass disturbance physiology feeding type land use phylogeny activity level resource (type, body mass, availability) Figure2.1:Factorsthatinfluencethemetabolicdemandofanorganism.Greenbackgroundrepre- sentstheenvironmentanditsinfluencesontheorganism,theintrinsicfactorsaregiven insidetheorganism. Animalcommunitiesconsistofmanyorganismswhichbelongtodifferentspeciesandshowdif- ferentabundances. Asitisnotaneasytasktodeterminetheenergydemandofoneorganism,itis nottrivialtodeterminehowmuchenergythewholecommunityneeds. Aspeciesenergydemand isinfluencedbyseveralfactorstheinterplayofwhichmakesitsassessmentevenmorecomplicated (HumphriesandMcCann,2013). Whilealotofstudiesonenergydemandormetabolismfocused on mammals little is known about invertebrates. Communities consist of many species and small speciesaregenerallymoreabundantthanlargeones. Thesedifferentorganismspossessdifferent energydemands,feedingtypes,trophiclevelsandabundances. However,allofthemneedto–at least–balancetheirenergydemands. Thus,everyorganism,basically,needstoabsorbenergy(sun 2 light,plantmaterial,preyorganisms,deadorganicmatter,etc.) formetabolism,growthandrepro- duction. I concentrated on invertebrate organisms to investigate their energetic demand and the consequencesofdifferentenergeticneedsofvariousorganisms(differentphylogeneticgroups)for communities. Invertebratesarepoikilothermicanimalsandthusareoffadifferentmetabolictype thanmammalsandbirds. Theirbodytemperaturedependsontheenvironmentaltemperatureand followsenvironmentaltemperaturechanges,butthisdependencycanbemodifiedbythebehaviour oftheanimal. Thus,bodytemperatureofpoikilothermicanimalsismuchmorevariablethanthat of mammals or birds. As a consequence of this temperature dependency, the body temperature of poikilothermic animals can be estimated by measuring environmental temperature. However, thebiochemicalreactions, thedeterminantsofmetabolismand, therebyenergydemand, proceed moreeasilyinwarmerenvironments(Arrhenius,1889)andlessactivationenergyisneededwhen itiswarmer. Furthermore,thelifestageoftheorganismalsohasanimportanteffect: istheanimal growing or a full-grown adult? Is the animal moving – fast or slow – is it sitting, resting or even hibernating? Allthesefactorsinfluencemetabolicratesandaccordinglyenergydemand. Tobeabletoanswerthequestionsofcoexistenceandenergydistributioninnaturalcommunities severalotherquestionshavetobeansweredfirst. ThequestionsIwanttoanswerinmythesisare: What determines the metabolic rate and hence, the demand of an organism, is it body mass or the environmental temperature? Are there applicative models for this description? What further influenceshavetobeaccountedfor? Inwhatwaydoestheenergeticdemandofanindividualaffect thestructureofcommunities? Whatistheimpactoftheseenergeticrestrictionsonthedistribution ofanimalsandmayitbeaffectedbyhumanlanduse? Some of these questions cannot be answered in the field, because there are no methods for direct measurement. Thus, we need data from laboratory work to be able to draw conclusions about what may happen in the field, especially if it is a "field" that is difficult to observe like soil- animal communities. In the following, I will introduce some theories and models which aim to explainvariousfactorsthat,puttogether,areabletoexplainthemetabolicconstraintsthatshape food-webassemblages. 2.1 Metabolism Everyorganismneedsenergyforsurvival(sustainthevitalfunctions)andfurthermoreforgrowth, movement, andreproduction. Metabolismisthesumofallprocessesthatalloworganismstoob- tain energy for their functioning. Thus, metabolic rates can be described as the combined rates ofenergyuptake,transformationandallocation(Brownetal.,2004;HickmanandWeber,2008). Phototrophicorganisms(plants,algaeandsomebacteria)useenergyfrom(sun-)light,carbondiox- ide,andwatertogeneratecarbohydratesandoxygen. Heterotrophicorganismsontheotherhand usechemical compounds (carbohydrates, lipids, andproteins) andoxygen foraerobic organisms, to yield energy and set free carbondioxide and water. Nutrients are digested to generate smaller compoundswhichwillbeprocessedfurther. Thus, passingthroughdifferentmetabolicsteps, like digestion,glycolysis,tricarboxylicacidcycleandrespiratorychain,resourcesaredigested,energy rich compounds like ATP (Adenosine-5’-triphosphate) are produced (Hickman and Weber, 2008) andindigestibleresiduesareexcreted. Energyfromorganiccompoundsaretransferedtoenergy- richcompoundsinstepwiseenzymaticreactionsforstorageandfortransportationtoallowusage in different parts. The most important energy-storage compounds are ATP and NADPH (Nicoti- namide adenine dinucleotide phosphate). The products of the cellular respiration, that needs carbohydrates and oxygen (for aerobic organisms) are carbondioxide and water (Brown et al., 3 2004). Theoverallreactionofglucoseandoxygentocarbondioxideandwatercanbesummarized asfollows: C H O +6O −→6CO +6H O+energy (2.1) 6 12 6 2 2 2 However, this reaction is not possible in a single reaction, but requires multiple steps. The differentstepsareassociatedwithspecificcellularcompartmentsineukaryotes. At first, in the glycolysis, which takes place in the cytosol, glucose is degraded to pyruvate. In a second step acetyl-CoA is formed from degraded pyruvate in the mitochondria. The third part is the tricarboxylic acid cycle, which with its small number of reactions makes up the core of metabolism (Morowitz et al., 2000) and leads to the creation of energy-rich compounds (ATP, NADH or NADPH), water, and carbondioxide. During these reactions electrons are transported acrosstheinnermitochondrialmembranewhichleadstothecreationofaprotongradientacross the membrane which is then used to synthesize ATP. The nascent energy is stored as energy-rich molecules. WhileATPisrelativelystableinaphysiologicalenvironment,itcaneasilybehydrolized inacatalyticcycletosetfreethecontainedenergy. Thus, a breathing animal ‘consumes’ the amount of oxygen needed for the chemical reactions and releases the ‘used’ oxygen as carbon dioxide. The oxygen content of the respiratory air is re- ducedandthecarbondioxidecontentisenrichedcomparedtobeforebreathing. Theconsumption ofoxygenandtheproductionofcarbondioxideenablesexternalmeasurementofenergyusedbyan heterotrophic organism. As the stoichiometry of respiratory gas exchange and the rate of oxygen consumption is fixed, estimating the decrease in oxygen concentration or the increase in carbon- dioxide concentration will enable calculation of the metabolic demand. Different methods have been developed for measurement of the oxygen reduction and carbondioxide accumulation. For the measurements in this thesis an automated electrolytic microrespirometer (Scheu, 1992) has beenused(Chapter3,4,5). Basal, standard or resting metabolic rate describe the energy an organism needs for mere sur- vival. Thus,basalmetabolicrateistheminimumvalueofmetabolicrate. Ifanorganismmoves,the metabolic rate increases. Two types of metabolic rates above basal metabolic rates are common: field and maximum metabolic rate. Field metabolic rate can be described as the mean metabolic rate of an animal that moves and rests alternately. Whereas maximum metabolic rate is a de- scription for a continuously running (heavily respiring) animal. Therefore, field metabolic rate is somewhatintermediatebetweenbasalandmaximummetabolicrate,andquitecomplicatedtode- termine. Causedbythedifficultytocontrolforthemovementofanorganism,metabolicratesare oftendeterminedfromanimalsatrest. Theserestinganimalsshowarelativelyconstantmetabolic ratewithoutlargeorabruptfluctuationsandprovideinformationaboutthebasalenergeticneeds ofaninactiveorganisminthelaboratoryandthus,itsessentialenergydemand. Measuredoxygenuptakeofanorganismcanbetransferredintoenergeticequivalentsbyusing therelationshipdescribedbyPeters(1983): 1431.03µgO ≡20.1J (2.2) 2 This conversion allows the estimation of the energy demand of an organism at rest from the amountofoxygenitusesperunittime. Measuredoxygenuseofanorganismatdifferenttemper- aturescanbeusedtogainvaluesforbasalmetabolicrateofanindividualwithadeterminedbody mass. Fromthis,themetabolicrateperunitmassofdifferentorganismscanbecalculatedtoallow furthercomparison. 4

Description:
Dezember 2013. Januar 2014 . 3.5.3 Temperature effects on ingestion, ingestion efficiencies and interaction strengths mites (Acari) supports the structured resource theory of sexual reproduction. 69 . 12 Appendix. 128 .. occupied hemisphere (Addo-Bediako et al., 2002 and references therein).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.