ebook img

Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1 PDF

12 Pages·2009·3.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1

TheJournalofNeuroscience,June17,2009•29(24):7857–7868•7857 NeurobiologyofDisease Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1 AnnaE.Cartier,1,2,3StevanN.Djakovic,1AfshinSalehi,1ScottM.Wilson,4EliezerMasliah,2,3andGentryN.Patrick1 1SectionofNeurobiology,DepartmentofBiologicalSciences,UniversityofCalifornia,SanDiego,LaJolla,California92093-0347,Departmentsof 2Neurosciencesand3Pathology,UniversityofCalifornia,SanDiego,LaJolla,California92093-0624,and4DepartmentofNeurobiology,CivitanResearch Center,UniversityofAlabama,Birmingham,Alabama35294 UbiquitinC-terminalhydrolaseL1(UCH-L1)isadeubiquitinatingenzymethatisselectivelyandabundantlyexpressedinthebrain,andits activityisrequiredfornormalsynapticfunction.Here,weshowthatUCH-L1functionsinmaintainingnormalsynapticstructureinhippocam- palneurons.WefoundthatUCH-L1activityisrapidlyupregulatedbyNMDAreceptoractivation,whichleadstoanincreaseinthelevelsoffree monomericubiquitin.Conversely,pharmacologicalinhibitionofUCH-L1significantlyreducesmonomericubiquitinlevelsandcausesdramatic alterationsinsynapticproteindistributionandspinemorphology.InhibitionofUCH-L1activityincreasesspinesizewhiledecreasingspine density.Furthermore,thereisaconcomitantincreaseinthesizeofpresynapticandpostsynapticproteinclusters.Interestingly,however,ectopic expressionofubiquitinrestoresnormalsynapticstructureinUCH-L1-inhibitedneurons.ThesefindingspointtoasignificantroleofUCH-L1in synapticremodeling,mostlikelybymodulatingfreemonomericubiquitinlevelsinanactivity-dependentmanner. Introduction disease(Leroyetal.,1998),leadstoa50%reductionincatalyticof Theubiquitinproteasomesystem(UPS)isamajorcellularpath- UCH-L1activityinvitro,implyingthatlossofUCH-L1activity wayforproteindegradationineukaryoticcells.TheUPSisin- mayreducetheavailabilityoffreeubiquitinandcontributetoan volvedinthedevelopment,maintenance,andremodelingofsyn- impairedclearanceofproteinsbytheUPS.Furthermore,trans- apticconnectionsinthemammalianCNS(Patrick,2006;Yiand genicmice,whichexpresstheI93Mmutant,exhibitasignificant Ehlers,2007).UbiquitinC-terminalhydrolaseL1(UCH-L1)be- reductionindopaminergicneuronsinthesubstantianigraand longstoafamilyofdeubiquitinatingenzymes(DUBs)compris- thedopaminecontentinthestriatum(Setsuieetal.,2007). ingUCH-L1–5.Itisahighlyconservedproteinthatisselectively UCH-L1isalsocommonlyfoundintheneurofibrillarytan- andabundantlyexpressedinneurons,representing1–2%oftotal gles observed in Alzheimer’s Disease (AD) brains in which the solubleproteininthebrain(Wilkinsonetal.,1989).UCH-L1is levels of soluble UCH-L1 are decreased (Choi et al., 2004). A known to generate free monomeric ubiquitin from ubiquitin recent study revealed that pharmacological inhibition of precursors(Finleyetal.,1989;Larsenetal.,1998).Recentinvitro UCH-L1activityleadstoanimpairmentinsynaptictransmission studieshaveshownthatUCH-L1possessesubiquitinligaseactivity andmaintenanceoflong-termpotentiation(LTP)(Gongetal., (Liuetal.,2002).Inadditiontoitsenzymaticactivities,UCH-L1 2006), a form of synaptic plasticity that is involved in learning associates with ubiquitin to inhibit its degradation and therefore and memory in the hippocampus. Moreover, transduction of maintainmonomericubiquitinlevels(Osakaetal.,2003). UCH-L1 protein into the hippocampus restored both synaptic NumerouslinesofevidencehavelinkedUCH-L1toneurode- andbehavioraldefectsobservedintheAPP/PS1mousemodelof generative disorders. The gracile axonal dystrophy (gad) mice AD(Gongetal.,2006). haveanaturallyoccurring,spontaneousmutationintheUch-l1 Here,weinvestigatedtheroleofUCH-L1atsynapses.Wefind genethatcausesalossofdetectableUCH-L1expression(Saigoh thatUCH-L1activityisregulatedbysynapticactivity.Synaptic etal.,1999).Gadmiceexhibitseveresensoryataxiaatearlystages activationofUCH-L1iscorrelatedwithanincreaseinthelevels of pathogenesis caused by axonal degeneration in the gracile of free monomeric ubiquitin. Pharmacological suppression of tract, followed by motor paresis at later stages (Kikuchi et al., UCH-L1activityreducesmonomericubiquitinlevelsandleads 1990).TheI93MmutationintheUCH-L1gene,whichwasre- todramaticalterationstosynapticstructure.Strikingly,overex- portedinaGermanfamilywithautosomaldominantParkinson’s pressionofubiquitinrescuestheeffectsofUCH-L1inhibition. ThesedatasuggestthatUCH-L1isoneofthemajorDUBsinthe brainthatcontrolsubiquitinhomeostasis.Moreover,ourfind- ReceivedApril15,2009;revisedMay14,2009;acceptedMay15,2009. ingsindicatealteredUCH-L1activityleadstodeleteriouseffects ThisworkwassupportedbyaNationalInstitutesofHealth(NIH)postdoctoraltraininggrant(A.E.C.);NIHGrants onsynapsestructureandfunction. AG18440,AG10435,andAG22074(E.M.);TheRayThomasEdwardsFoundation(G.N.P.);andUniversityofCalifornia, SanDiegostartupfunds(G.N.P.).WethankMariaMoribito,DarwinBerg,AnirvanGhosh,andthePatrickLaboratory MaterialsandMethods foradviceandcriticalreviewofthismanuscript.WealsothankAlanOkadafortechnicalassistance. CorrespondenceshouldbeaddressedtoGentryN.Patrickattheaboveaddress.E-mail:[email protected]. Reagents. UCH-L1 [LDN-57444 (LDN)] and UCH-L3 (4,5,6,7- DOI:10.1523/JNEUROSCI.1817-09.2009 tetrachloroindan-1,3-dione) inhibitors were purchased from Calbio- Copyright©2009SocietyforNeuroscience 0270-6474/09/297857-12$15.00/0 chem.NMDAandD((cid:1))-2-amino-5-phosphonopentanoicacid(APV) 7858•J.Neurosci.,June17,2009•29(24):7857–7868 Cartieretal.•RegulationofSynapticStructurebyUCH-L1 (NMDAreceptorantagonist)werepurchasedfromTocrisBioscience. cloned in the pEGFP-N1 vector. The single point mutations in the The hemagglutinin (HA)-tagged ubiquitin probe (HAUb-VME; vinyl UCH-L1DNAwereintroducedbyPCR-basedsite-directedmutagenesis methylesterfunctionalizedprobe)wassynthesizedasdescribedprevi- oftemplateplasmidcDNAusingprimersdesignedtointroducespecific ously(Borodovskyetal.,2002)andwasprovidedbyDr.H.Ovaa(The mutations (C90S, 5(cid:4)-CCATTGGGAATTCCTCTGGCATCGGAC-3(cid:4), NetherlandsCancerInstitute,Amsterdam,TheNetherlands). and D30A, 5(cid:4)-TTCGTGGCCCTGGGGCTG-3(cid:4)). All constructs were UCH-L1-deficientmice.TheUCH-L1-deficientandwild-typelitter- verified by sequencing and by expression of proteins of the expected matemouse(Uch-L1nm3419)brains(8weeksofage)wereobtainedfrom molecularweightinHEK293Tcells. Dr.ScottWilson(UniversityofAlabama,Birmingham,AL).Thisisa Drugtreatmentsandvirusinfections.Forproteinexpressionanalysisby spontaneousmousemutationthataroseatTheJacksonLaboratoryand Westernblottingorimmunofluorescencestainingexperiments,cultured subsequentlymappedbytheScottWilsongroup(Waltersetal.,2008). neuronsweretreatedwith10(cid:1)MUCH-L1(LDN)orUCH-L3inhibitor Antibodies.Thefollowingantibodieswereusedinthisstudy:mouse for24h.InexperimentsinwhichneuronsweresubjectedtoLDNtreat- anti-Myc, rabbit anti-CDK5, rabbit anti-green fluorescent protein mentandinfections,neuronswerefirsttreatedwithLDNandthenin- (GFP),andrabbitanti-guanylatekinase-associatedprotein(GKAP)an- fectedbyaddingvirionsdirectlytotheculturemediumandallowing tibodies (purchased from Santa Cruz Biotechnology); mouse anti- proteinexpressionfor12–14h.ThetotaltimeofexposuretoLDNwas postsynapticdensity-95(PSD-95)andrabbitanti-GluR1(obtainedfrom keptconstant(24h).Activitystimulationexperimentswereperformed Calbiochem);rabbitanti-Shankantibody(agenerousgiftfromDr.Eu- bytreatingcultureswithNMDAandglycineat50and10(cid:1)M,respec- njoonKim,KoreaAdvancedInstituteofScienceandTechnology,Dae- tively,for10minat37°C.Whereindicated,neuronswerepretreatedwith jeon,Korea);rabbitanti-GluR1,mouseanti-NR1,andrabbitanti-NR2A UCH-L1inhibitor(10(cid:1)M)for24horAPV(50(cid:1)M)for10minbefore antibodies;ratanti-Homerandrabbitanti-SynapsinI(MilliporeBio- additionofNMDA/glycinetotheculturemedia. scienceResearchReagents);mouseanti-Bassoon(NventaBiopharma- Immunostaining.Attheendofeachexperiment,hippocampalneu- ceuticals); chicken anti-Map2 (Abcam); rabbit anti-UCH-L1 (BI- rons plated on coverslips or 35 mm glass-bottom dishes were rinsed OMOL);rabbitanti-ubiquitin(Dako);andrabbitanti-Vamp2(Synaptic brieflyinPBSandfixedwith4%paraformaldehyde(PFA)and4%su- Systems). Primaryneuronalcultures.Hippocampalneuroncultureswerepre- croseinPBS-MC(PBSwith1mMMgCl2and0.1CaCl2)for10minat roomtemperature.NeuronswerethenrinsedthreetimeswithPBS-MC pared from postnatal day 1 (P1) or P2 rat hippocampi as previously andsubsequentlyblockedandpermeabilizedwithblockingbuffercon- described(Patricketal.,2003).Briefly,forimmunostainingexperiments, taining2%BSAand0.2%TritonX-100inPBS-MCfor20min.After rathippocampiweredissected,dissociatedbypapaintreatmentandme- rinsing neurons three times with PBS-MC, primary antibodies were chanicaltrituration,andplatedatmediumdensity(45,000cells/cm2)on addedinblockingbufferandcultureswereincubatedovernightat4°C. poly-D-lysine-coated coverslips (12 mm in diameter) or glass-bottom Thefollowingantibodiesanddilutionswereusedforimmunofluores- dishes (MatTek; 35 mm). For biochemical experiments, mixed hip- cencestainings:mouseanti-PSD-95(1:500),rabbitanti-SynapsinI(1: pocampalandcorticalneuronswereplatedathighdensityonsix-well 2000),mouseanti-Bassoon(1:2000),rabbitanti-Shank(1:2000),rabbit plates((cid:2)500,000cellsperwell)coatedwithpoly-D-lysine.Cultureswere anti-GluR1 (1:20), chicken anti-Map2 (1:5000), and mouse anti-Myc maintainedinB27supplementedNeurobasalmedia(Invitrogen)until (1:1000).AfterthreewasheswithPBS-MC,neuronswereincubatedin 14–21dinvitro(DIV). goatanti-rabbit,-mouse,or-chickensecondaryantibodiesconjugatedto FractionationsandDUBlabelingassay.Fractionsfromratbrainswere Alexa 488, Alexa 568, or Alexa 678 (1:500 each; Invitrogen) at room preparedaspreviouslydescribed(Carlinetal.,1980;Choetal.,1992). TheDUBactivityassaywasdonebyincubating20(cid:1)goflysatesfrom temperaturefor1h.NeuronswerewashedthreetimeswithPBS-MCand mountedonslideswithAquaPoly/Mount(Polysciences).Forlivelabel- neuronalculturesorratbrainfractionswiththeHAUb-VMEsubstratein ingofsurfaceGluR1,theanti-GluR1antibodyagainsttheNterminus labelingbuffer(50mMTris,pH7.4,5mMMgCl2,250mMsucrose,1mM extracellular epitope of the receptor was added to neurons in culture DTT,and1mMATP)for1hat37°C.Proteinswerethenresolvedby mediumat1:20dilutionfor10minbeforewashingoutexcessantibody SDS-PAGE4–20%gradientgels,andblotsweresubsequentlyprobed andfixingwith4%PFA/4%sucrose. with anti-HA monoclonal antibody. Labeled proteins were identified Electronmicroscopy.Maturehippocampalneurons((cid:5)21DIV)were basedontheirmigrationonSDS-PAGEgels,andbycomparisonwith platedin35mmglass-bottomdishesandtreatedwithDMSO(control) previouslypublisheddatainwhichthespecificbandswereanalyzedby massspectroscopy(Borodovskyetal.,2002). orLDN(10(cid:1)M).After24h,cellswerefixedin2%paraformaldehydeand 1%glutaraldehyde,andthenfixedinosmiumtetraoxideandembedded RecombinantDNAandSindbisconstructs.TheSindbisenhancedgreen inEponAraldite.Oncetheresinhardened,blockswiththecellswere fluorescent protein (EGFP) viral construct was made by cloning the detachedfromeachdishandmountedforsectioningwithanultramic- EGFP(Clontech)openreadingframedirectlyintopSinRep5(Invitro- gen).GFPu(inpEGFP-C1plasmidbackbone;Clontech),afusionofthe rotome(Leica).Gridswerestainedwith1%uranylacetateandanalyzed CL1degron(degradationsignal)ontheCterminusofGFP,waskindly withaZeissOM10electronmicroscopeaspreviouslydescribed(Rock- providedbyDr.RonKopito(StanfordUniversity,PaloAlto,CA).GFPu ensteinetal.,2001).Manualanalysisofpresynapticterminaldiameter, isubiquitinatedandspecificallydegradedbytheUPS(Gilonetal.,1998; vesiclenumber,andsynapticcontactzonewasperformed.Atotalof10 Benceetal.,2001,2005).TheAgeI–BsrGIfragmentfromphotoactivat- micrographswasobtainedandfromeachgrid(ninegridspercondition) able(pa)GFP(akindgiftprovidedbyJenniferLipponcott-Schwartz, foratotalof90electronmicrographsanalyzedpercondition.Analysis National Institutes of Health, Bethesda, MD) was subcloned into the wasperformedusingImageQuant.Magnificationwas30,000(cid:6).Statisti- GFPuplasmid.paGFPuwasthensubclonedintopSinRep5(Invitrogen). calsignificancewasdeterminedbyunpairedtwo-tailedStudent’sttest. Orientationwasverifiedbyrestrictiondigestandconstructswerecon- LiveimagingofpaGFPudegradation.Culturedhippocampalneurons firmedbyDNAsequencing.TheHis6-Myc-ubiquitinwasprovidedby ((cid:5)21DIV)on35mmglass-bottomdisheswereincubatedfor24hbefore Dr.RonKopitoandwasclonedintopSinRep5.Theyellowfluorescent imaginginmediacontainingeitherDMSO(control)orLDN(10(cid:1)M). protein(YFP)-actinpSinRep5plasmidswaskindlyprovidedbyDr.E. paGFPuvirionswereaddeddirectlytoculturemediaafter12hofLDN Schuman(CaliforniaInstituteofTechnology,Pasadena,CA).Forpro- treatmentandproteinexpressionwasallowedtocontinuefor12–14h. ductionofrecombinantSindbisvirions,RNAwastranscribedusingthe CulturemediawasthenreplacedwithwarmHBS[HEPES-bufferedsa- SP6mMessagemMachineKit(Ambion)andelectroporatedintoBHK linesolutioncontainingthefollowing(inmM):119NaCl,5KCl,2CaCl2, cellsusingaBTXECM600at220V,129(cid:3),and1050(cid:1)F.Virionswere 2MgCl ,30glucose,10HEPES].Cellsweremaintainedat(cid:2)35°Cusing 2 collected after 24–32 h and stored at (cid:1)80°C until use. For UCH-L1 aceramicheatlamp(ZooMed),andbathtemperaturewascontinually expressionconstructs,theUCH-L1openreadingframewasobtained monitoredbyadigitalprobethermometer.Infectedneurons(identified fromIncytefull-lengthhumancDNAclone(OpenBiosystems)encoding bymCherryexpression)werethenphotoactivatedfor10–15swith100 wild-typeUCH-L1andwasamplifiedbyPCRwitha5(cid:4)-oligocontaining W Hg2(cid:7) lamp and a D405/40(cid:6) with 440 DCLP dichroic filter set anXhoIsiteanda3(cid:4)-oligocontaininganAgeIsite,andsubsequently (Chroma).Forliveimaging,pyramidal-likeneuronswereselectedina Cartieretal.•RegulationofSynapticStructurebyUCH-L1 J.Neurosci.,June17,2009•29(24):7857–7868•7859 microplate fluorometer (HTS 7000 Plus; PerkinElmer) every 5 min for 2 h at room temperature. Westernblotanalysis.Culturedneuronswere lysed in radioimmunoprecipitation assay (RIPA)lysisbuffer(50mMTris,pH7.4,150mM NaCl, 1% Triton X-100, 0.1% SDS, 1 mM EDTA)containingproteaseinhibitors(Roche). Rat or mouse brains were homogenized in RIPAbufferat900rpminTeflon-glasshomog- enizers.Neuronalcelllysatesorbrainhomoge- nateswerecentrifugedat14,000rpm,andsu- pernatants were removed and protein concentrationwasdeterminedbyBSAprotein assaykit(Pierce)usingbovineserumalbumin asastandard.Proteinsampleswereresolvedby SDS-PAGEandelectrophoreticallytransferred tonitrocellulosemembranes.Membraneswere thenblockedfor1hinTBSTblockingbuffer (TBS,0.1%Tween20,and5%milk)atroom temperatureandthenincubatedwithprimary antibodiesinblockingbufferovernightat4°C. Theantibodiesusedwereatthefollowingdilu- tions:mouseanti-PSD-95(1:5000),rabbitanti- Synapsin I (1:10,000), rabbit anti-GluR1 (1:5000), rabbit anti-Shank (1:10,000), rabbit anti-GFP (1:10,000), rabbit anti-UCH-L1 (1:5000),rabbitanti-GKAP(1:2000),ratanti- Homer (1:2000), mouse anti-NR1 (1:2000), rabbit anti-NR2A (1:2000), rabbit anti- ubiquitin (1:2000), rabbit anti-Vamp2 (1:5000), and rabbit anti-CDK5 (1:10,000). Blots were then washed three times in TBST washingbuffer(TBS,0.1%Tween20)andin- cubatedwithgoatanti-rabbit,-mouse,or-rat IgG conjugated to horseradish peroxidase (1: 5000).Proteinbandswerevisualizedbychemi- luminescenceplusreagent(PerkinElmer)and weredigitizedandquantifiedusingNIHImageJ software.Forstatisticalanalysis,unpairedStu- dent’s t test was performed between any two conditions. Imageacquisitionandquantification.Confo- Figure1. UCH-L1expressionandactivitylevelsinratbrainandmatureculturedhippocampalneurons.A,Representative cal images were acquired using a Leica imageofahippocampalneuronimmunolabeledwithanti-PSD-95andanti-UCH-L1antibodies.B,GFP-expressinghippocampal DMI6000invertedmicroscopeoutfittedwitha neuronsimmunostainedwithanti-PSD-95andanti-UCH-L1antibodies.ThestraighteneddendritesinAandBcorrespondtothe Yokogawaspinningdiskconfocalhead,anOrca regionsindicatedbyarrowsinthewhole-cellimages.ThearrowheadsindicateselectedregionsinwhichUCH-L1colocalizeswith ER high-resolution black-and-white cooled PSD-95andGFP-filledspines.Representativemaximumz-projectedconfocalimages(cellandstraighteneddendrites)aredepicted. CCD camera (6.45 (cid:1)m/pixel at 1(cid:6)) Whole-cellscalebar,20(cid:1)m;dendritescalebar,5(cid:1)m.C,ActiveDUBprofilingwithHAUb-VMEinsubcellularfractionsofratbrain.The (Hamamatsu),PlanApochromat40(cid:6)/1.25nu- immunoblotwasprobedwithanti-HAantibodytodetectactiveDUBs.D,Comparisonoflabeled(active)andunlabeled(inactive)UCH-L1 mericalaperture(NA)and63(cid:6)/1.4NAobjec- (HAUb-UCH-L1andUCH-L1,respectively)inratbrainfractionsinanimmunoblotthatwasprobedwithanti-UCH-L1antibody.E,The tive,andaMellesGriotargon/krypton100mW postsynapticmarker,PSD-95,wasusedascontrolforfractionation.Numberscorrespondtothefollowingfractions:(1)whole-brain air-cooled laser for 488/568/647 nm excita- homogenate(H);(2)crudesynaptosomalfraction(P2);(3)cytosolpluslightmembranes(S2);(4)lightmembranes(Golgi,ER)(P3);(5) tions.Exposuretimeswereheldconstantdur- cytosolicfraction(S3);(6)PSD-1T(oneTritonX-100extraction);(7)PSD-2T(twoTritonX-100extraction). ing acquisition of all images for each experi- ment. Pyramidal-like cells were chosen in a randommanner.Confocalz-stackimages(with0.5(cid:1)msections)were randommanner.Confocalz-stacksweretaken acquiredwitha63(cid:6)objectiveevery2min. at0.4–0.5(cid:1)mdepthintervalsinallexperiments.Forimageanalysis, Invitroproteasomeactivityassay.Proteasomeactivitywasmeasuredas maximum z-projections were used. Images were thresholded equally previouslydescribedwithslightmodifications(KisselevandGoldberg, 1.5–2timesabovebackground.Dendritesfromindividualneuronswere 2005).Briefly,culturedneuronswereincubatedfor24hinmediacon- thenstraightenedandusedforanalysis.Fluorescenceintensityassociated taining either DMSO (control) or LDN (10 (cid:1)M). Neurons were then withpresynapticandpostsynapticproteinpunctawasmeasuredtode- lysed in proteasome assay buffer (50 mM Tris-HCl, pH 7.5, 250 mM terminethesizeandnumberofpuncta(normalizedtodendriticlength) sucrose,5mMMgCl2,0.5mMEDTA,2mMATP,1mMDTT,and0.025% incontrolandLDN-treatedneurons.GFP-expressinghippocampalneu- digitonin)for15minonice.Lysateswereclearedbycentrifugationat ronswereusedforspinemorphologyanalysisusingtheEdgefitterNIH 14,000rpmfor15min.Onehundredmicromolarfluorogenicprotea- ImageJplug-in(GhoshLaboratory,UniversityofCalifornia,SanDiego, some peptide substrate N-succinyl-Leu-Leu-Val-Tyr-7-amido-4- LaJolla,CA).Todeterminethelengthofaspine,thedistancefromthetip methylcoumarin(Suc-LLVY-AMC)(BIOMOLInternational)wasthen oftheprotrusiontothedendriticshaftwasmeasuredmanually.Tomea- addedtoequalamountsofclearedlysatesina96-wellmicrotiterplate. surethewidthofaspine,themaximallengthofthespineheadperpen- Fluorescence(380nmexcitation;460nmemission)wasmonitoredona diculartothelongaxisofthespineneckwasmeasured.Thenumberof 7860•J.Neurosci.,June17,2009•29(24):7857–7868 Cartieretal.•RegulationofSynapticStructurebyUCH-L1 spinesvisiblealongthedendritewascounted manuallyper1(cid:1)mdendriticlength.Measure- ments were then automatically logged from NIH ImageJ into Microsoft Excel. Statistical significancewasdeterminedbyunpairedtwo- tailedStudent’sttest.Allimagingandanalysis of ubiquitin rescue experiments (see Fig. 8) wereperformedinablindedmanner.Forquan- tificationoftheproteasomereporterdegrada- tion, images were thresholded above back- ground equally between conditions. Total integratedfluorescenceintensitywasmeasured from dendrites at each time interval and ex- pressedasthepercentagechangefromtime0. Groupedanalysisofdendriticfluorescencede- cayovertimefromeachtreatmentgroupwas plottedaslinegraphs(mean(cid:8)SEM).Thedeg- radationrateofreporterfluorescencedecaywas obtainedbytakingthedifferenceoftotalfluo- rescenceloss[arbitraryunits(AU)]overtime (F (cid:1)F /time )fromindividualexperiments. i n n Themeanrate(cid:8)SEMpertreatedgroupwas thennormalizedtothecontrolrates.Forstatis- ticalanalysis,groupeddegradationrateswere analyzed by unpaired two-tailed t tests. One- halfofthepaGFPureporterdegradationexper- iments were performed in a blinded manner. Therewasnosignificantdifferencebetweenex- periments performed blind and unblind, and thereforethedatawerecombined. Results CharacterizationofUCH-L1 distributionandactivityinneurons To determine the subcellular localization of UCH-L1, cultured hippocampal neu- ronswereimmunostainedforendogenous UCH-L1 and the postsynaptic marker PSD-95(Fig.1A,B).Insomeexperiments, GFP was used as a cell-filling marker to Figure2. Activity-dependentupregulationoffreemonomericubiquitinlevelsinneuronsisdependentonUCH-L1activity. visualizespines(Fig.1B).UCH-L1expres- A–C,Culturedneuronsweretreatedwith50(cid:1)MNMDA/10(cid:1)Mglycineor50(cid:1)MNMDA/10(cid:1)Mglycineplus50(cid:1)MAPVfor10min. sionwasdetectedinbothsomaandden- LysatesfromcontrolandtreatedneuronswerelabeledwithHAUb-VMEsubstrateandsubjectedtoWesternblotanalysis.A,A drites of hippocampal neurons. UCH-L1 representativeimmunoblotprobedwithanti-HAantibodydemonstratesthelevelsoflabeled(active)UCH-L1incontroland isdistributedinamicropunctatemanner treatedneuronsinthepresenceorabsenceoftheDUBlabelingreagent(toppanel).Theblotwassubsequentlystrippedand reprobedwithanti-UCH-L1antibodytodemonstratethelevelsoflabeledandunlabeledUCH-L1(HAUb-UCH-L1andUCH-L1, andpartiallycolocalizedwithPSD-95(Fig. respectively)(bottompanel).B,Arepresentativeimmunoblotprobedwithanti-HAantibodydemonstratesactivitylevelsof 1A,B).Moreover,UCH-L1wasfoundto UCH-L1inresponsetodrugtreatments(toppanel).ThebottompanelofBshowsequalamountsofUCH-L1betweentreatments. belocalizedtodendriticspinesofneurons C,DensitometryanalysisofsixindependentexperimentsfromDublabelingassaysisshown.D–F,Culturedneuronsweretreated (Fig.1B).Tofurthercharacterizethesub- with50(cid:1)MNMDA/10(cid:1)Mglycinefor10min(D)or10(cid:1)MUCH-L1inhibitor(LDN)for24hwithorwithoutanadditional10min cellulardistributionofUCH-L1,weused treatmentwith50(cid:1)MNMDA/10(cid:1)Mglycine(E,F),respectively.Lysateswereresolvedon15%SDS-PAGEandimmunoblotswere differentialanddensitygradientcentrifu- probedwithanti-ubiquitinantibody.Representativeblotsfromeachexperimentareshown.Relativebandintensitiesofcorre- gationtoenrichforvarioussynapticcom- spondingmonomericubiquitinwerequantifiedandaredepictedinthebottompaneloffigureF.Meanvalues(cid:8)SEMoffourto partments from rat brain. In addition, fiveindependentexperimentsareshown.Forstatisticalanalysis,one-wayANOVAwithposthocBonferroni’smultiple-comparison testwasused.*p(cid:9)0.05;**p(cid:9)0.01;***p(cid:9)0.001. we used a novel hemagglutinin-tagged ubiquitin-vinyl methyl ester-derived ac- fractionscomparedwiththeotherDUBsdetectedandispresent tivesite-directedprobe(HAUb-VME)thatcovalentlymodifies inanactiveform.AcomparisonbetweenactiveUCH-L1modi- DUBsincludingUCHs(Borodovskyetal.,2002)toprofileactive fiedbythesubstrate(upperband)andtheunmodified,inactive DUBspresentinthebrain.Thisassayprovidesahighlysensitive approachfordetectingUCH-L1activityasourprobeisspecifi- UCH-L1(lowerband)isdemonstratedinFigure1Dandindi- callytargetedtoUCH-L1whenitisinanactiveform.Usingthis catesthat(cid:2)50%ofUCH-L1ispresentinactiveforminthetotal probe,wemonitoredtheactivityofUCH-L1inlysatesgenerated homogenate (Fig. 1D, lane 1). Interestingly, we found that fromratbrainfractions.TheprofileofactiveDUBspresentin UCH-L1associatedwiththePSDisprimarilyinanactiveform thesevariousratbrainfractionsisshowninFigure1C.Alower (Fig.1D,lanes6,7).ToverifythattheHAUb-VMElabelingof exposureoftheblotpresentedinFigure1Cisgiveninsupple- the DUB at (cid:2)35 kDa is primarily modified UCH-L1 and not mentalFigure1A(availableatwww.jneurosci.orgassupplemen- UCH-L3,weperformedtheDUBlabelingassayonlysatesfrom tal material). As observed, UCH-L1 is highly expressed in all UCH-L1-deficient mice (nm3419) (Walters et al., 2008). Here, Cartieretal.•RegulationofSynapticStructurebyUCH-L1 J.Neurosci.,June17,2009•29(24):7857–7868•7861 wefoundvirtuallynolabelingofanyotherDUBthatrunsator monoubiquitinlevelsinLDN-treatedneurons(Fig.2E)(con- nearthesamemolecularweightofUCH-L1(supplementalFig. trol, 1.0 (cid:8) 0.11; LDN-treated, 0.59 (cid:8) 0.01). Moreover, the S1B,toppanel,availableatwww.jneurosci.orgassupplemental levelsoffreemonomericubiquitininneuronalculturespre- material). Together, our data demonstrate that UCH-L1 is ex- treated with LDN before NMDA receptor stimulation were pressed ubiquitously in neurons with a subpopulation distrib- reduced to the levels observed in control untreated neurons utedtospinesandpostsynapticdensities. (Fig. 2F) (control, 1.0 (cid:8) 0.02; LDN-treated, 0.64 (cid:8) 0.05; NMDA/Gly-treated, 2.0 (cid:8) 0.13; NMDA/Gly plus LDN- treated,1.04(cid:8)0.08;p(cid:9)0.001,one-wayANOVA).Thissug- NMDAreceptoractivationupregulatesUCH-L1activity geststhatNMDAreceptoractivationinneuronsincreasesfree Arecentstudyhasdemonstratedthatpharmacologicalinhibi- monomeric ubiquitin in an UCH-L1-dependent manner. In tion of UCH-L1 activity by 40% is sufficient to significantly addition, we tested whether LDN affected the ability of attenuate LTP in rat hippocampal slices (Gong et al., 2006). UCH-L1 to bind ubiquitin. We performed in vitro ubiquitin ThissuggeststhatUCH-L1functionmayberequiredforsyn- binding assays with either bacterially expressed glutathione apticplasticityandmayitselfberegulatedbysynapticactivity. S-transferase (GST) or GST-UCH-L1 and ubiquitin. We Indeed,depolarization-dependentCa2(cid:7)influxintosynapto- found that pretreatment of GST-UCH-L1 with LDN greatly somes has been shown to produce a rapid decrease in ubiq- diminished its ability to bind ubiquitin (supplemental Fig. uitinconjugates(Chenetal.,2003).Totestthepossibilitythat S2B,toppanel,availableatwww.jneurosci.orgassupplemen- UCH-L1 might be regulated by synaptic activity, we stimu- tal material). Together, this indicates LDN affects both the lated neuronal cultures (DIV 21) with NMDA receptor ago- catalyticandubiquitinbindingactivitiesofUCH-L1. nist.WefoundthatstimulationofsynapticactivitybyNMDA/ glycinesignificantlyupregulatedUCH-L1activityincultured InhibitionofUCH-L1activityaffectssynaptic neurons(Fig.2A,toppanel).Acomparisonoflabeled(active) proteinclusters and unlabeled (inactive) UCH-L1 in response to NMDA re- Recent electrophysiological studies on gad mice and hip- ceptorstimulationisshowninFigure2A,bottompanel.On pocampal slices treated with LDN have demonstrated that average, the activity of UCH-L1 increased by (cid:2)1.5-fold in UCH-L1 is required for LTP and maintenance of memory responsetoNMDAreceptorstimulation(Fig.2B,C)(control, (Gongetal.,2006;Sakuraietal.,2008).Thebrainsofgadmice 1.0 (cid:8) 0.07; NMDA/Gly, 1.63 (cid:8) 0.16; p (cid:10) 0.003, one-way shownogrossstructuralabnormalities;however,itispossible ANOVA). Moreover, the NMDA-induced upregulation of that discrete alterations in neuronal morphology or synaptic UCH-L1 activity was efficiently blocked by pretreatment of structure occur because of the lack of UCH-L1 activity. To neurons with the NMDA receptor antagonist APV demon- examinethispossibility,wecomparedtheimmunocytochem- strating the specificity of our treatment (Fig. 2B,C). This ical distribution of synaptic proteins in control and LDN- novel and potentially important finding demonstrates that treatedneurons,severalofwhicharetargetsforubiquitination synapticactivitycanmodulatetheactivityofUCH-L1. and degradation by the UPS (Colledge et al., 2003; Ehlers, 2003; Guo and Wang, 2007; Lee et al., 2008). Moreover, the UCH-L1activityisrequiredforNMDA-inducedupregulation postsynapticproteinsweexaminedaremajorcomponentsof offreemonomericubiquitin thePSD,whichisahighlydynamicstructureanditsmolecular MultiplefunctionshavebeenascribedtoUCH-L1invitroand composition and biochemical stability is very responsive to invivo.ItisknownthatUCH-L1canactasaubiquitinhydro- changes in synaptic activity. Furthermore, these activity- laseandgeneratefreeubiquitinspeciesfromprecursorubiq- dependentmolecularchangesareregulatedinpartbytheUPS uitinpolypeptides(Wilkinsonetal.,1989).UCH-L1canalso (Ehlers,2003).Wefoundthatexposureofmaturehippocam- bindtoubiquitinandactasaubiquitinstabilizertopreventits palneuronstoLDNleadstodramaticalterationsinsynaptic degradationbylysosomes(Osakaetal.,2003).Therefore,we structure (Fig. 3). We observed a significant increase in the wereinterestedtodeterminewhetherNMDAreceptorstimu- size of several synaptic protein puncta in LDN-treated neu- lationhadanyeffectonthelevelsoffreemonomericubiquitin ronscomparedwiththoseincontrolneurons.Onaverage,the (alsoreferredtoasmonoubiquitin)andwhetherUCH-L1ac- size of postsynaptic proteins PSD-95, Shank, and surface tivityplayedaroleinmodulatingubiquitinlevelsinresponse GluR1punctaincreasedby77,70,and39%,respectively(Fig. toNDMAreceptoractivation.Wefoundthatstimulationwith 3A–D) (PSD-95 puncta, control, 1.0 (cid:8) 0.03; LDN-treated, NMDA/glycine(10min)increasedfreemonomericubiquitin 1.77(cid:8)0.04;Shankpuncta,control,1.0(cid:8)0.04;LDN-treated, levels approximately twofold in cultured neurons (Fig. 2D) 1.69(cid:8)0.04;surfaceGluR1puncta,control,1.0(cid:8)0.07;LDN- (control, 1.0 (cid:8) 0.11; NMDA, 1.8 (cid:8) 0.14). We next asked treated,1.39(cid:8)0.08).Wealsodetectedanincreaseinthesize whether inhibiting UCH-L1 activity blocks the upregulation ofpresynapticproteinpunctaasmeasuredbyimmunolabel- ofmonoubiquitininNMDAreceptor-stimulatedneurons.To ingforpresynapticnerveterminalswithSynapsinIandBas- assessthis,weusedapreviouslydescribedUCH-L1inhibitor, soon. We found that, on average, there was a 34 and 25% LDN,whichspecificallyinhibitsUCH-L1whilehavingnoef- increaseinthesizeofSynapsinIandBassoonpuncta,respec- fectonotherUCHfamilymembers(Liuetal.,2003;Gonget tively (Fig. 3A,B,D) (Synapsin I puncta, control, 1.0(cid:8) 0.05; al.,2006).TodemonstratetheefficacyofUCH-L1inhibition LDN-treated, 1.34 (cid:8) 0.07; Bassoon puncta, control, 1.0 (cid:8) by LDN, neuronal lysates were preincubated with increasing 0.03; LDN-treated, 1.25 (cid:8) 0.02). Interestingly, we found no amountsofLDNbeforeDUBlabelingassays.Wefoundthat observable difference in the dendritic protein marker MAP2 10 (cid:1)M LDN significantly inhibited UCH-L1 activity in vitro stainingbetweencontrolandLDN-treatedneurons(Fig.3C). (supplemental Fig. S2A, top panel, available at www. This indicates that UCH-L1 inhibition preferentially affects jneurosci.orgassupplementalmaterial).Neuronstreatedwith synapses while having no effect on the overall integrity of LDNat10(cid:1)Mhadsignificantlydecreasedmonoubiquitinlev- dendrites.Wealsoexaminedwhethertherewasaconcomitant els (Fig. 2E). On average, we observed a 40% reduction in alterationinthedensityofsynapticproteinpuncta.Wefound 7862•J.Neurosci.,June17,2009•29(24):7857–7868 Cartieretal.•RegulationofSynapticStructurebyUCH-L1 that the density of PSD-95 puncta was decreased by 30% (Fig. 3E) (control, 1.0 (cid:8) 0.04; LDN-treated, 0.8 (cid:8) 0.3). However, we did not observe any changesinthenumberofShank,surface GluR1, Synapsin I, and Bassoon puncta (Fig.3E).Todemonstratethespecificity ofourUCH-L1inhibitor,neuronswere treatedwithaUCH-L3inhibitor(LDN- L3). UCH-L3 is a closely related DUB andhasalsobeenshowntobeinvolved ingeneratingfreemonomericubiquitin. However,wedidnotfindanyalterations in synaptic structures in LDN-L3- treated neurons (supplemental Fig. S3A–C, available at www.jneurosci.org as supplemental material). Together, thesedatashowthatUCH-L1activityis specifically involved in maintenance of synapsestructure. UCH-L1regulatesspinemorphology anddensity Abundant evidence demonstrates that spines undergo activity-dependent changesinshapeandnumber,andthere- fore, spines could serve as a cellular sub- strateforchemicalandstructuralsynaptic plasticity (Segal, 2002, 2005). Therefore, weaskedwhethertheobservedalterations inthesynapticproteinclusterscouldpos- sibly be accompanied by any changes in spine size and density. To detect alter- ations in spine morphology, we analyzed spines from GFP-expressing neurons treated with vehicle or LDN. We found Figure3. InhibitionofUCH-L1activityalterssynapticstructure.A–C,CulturedneuronsweretreatedwithLDNfor24h.Atthe strikingalterationsinthesizeofspinesin endofLDNtreatments,neuronswerefixed,permeabilized,andimmunolabeledwithanti-PSD-95andanti-SynapsinI(A), LDN-treatedneurons.Spinesexhibitedan anti-Shankandanti-Bassoon(B),orlive-labeledwithanti-GluR1forsurfaceGluR1staining,andthenfixedandstainedwith enlargementof(cid:2)80%inspineheadwidth anti-PSD-95andanti-MAP2antibodies(C).Representativemaximumz-projectedconfocalimagesandstraighteneddendrites and 37% increase in spine length (Fig. fromcontrolandLDN-treatedneuronsaredepicted.Scalebar,5(cid:1)m.D,E,Presynapticandpostsynapticproteinpunctasizeand 4C,F) (spine head width, control, 1.0 (cid:8) numberwereanalyzedincontrolandLDN-treatedneurons.ThemeanpunctasizeandnumberinLDN-treatedneuronswere 0.09; LDN-treated, 1.8 (cid:8) 0.22) (Fig. normalizedtothoseofcontrolneuronsfromthreetofourindependentexperiments.Thenumberofpunctawascalculatedper10 4D,G)(spinelength,control,1.0(cid:8)0.03; (cid:1)mdendritelength.Measurementsforindividualstainingsweremadeonthefollowingnumberofdendritescorrespondingto LDN-treated, 1.37 (cid:8) 0.08). We also ob- controlandLDN-treatedneurons,respectively:PSD-95,84and99;Shank,70and102;SynapsinI,46and55;Bassoon,66and93; servedthatblockingUCH-L1activitydra- andGluR1,51and56.Meanvalues(cid:8)SEMareshown.Forstatisticalanalysis,unpairedStudent’sttestwasperformedbetween anytwoconditions.*p(cid:9)0.001. matically reduced the number of spines (Fig. 4E). LDN-treated neurons had a (cid:2)50% reduction in the number of spines compared with the changes observed in spines were accompanied by alterations controluntreatedneurons(spines/micrometer:control,0.72(cid:8) intheactincytoskeleton.Tovisualizeactin-filledspines,neu- 0.05; LDN-treated, 0.35 (cid:8) 0.05). These data demonstrate that ronswereinfectedwithYFP-actinSindbisvirus(supplemen- alterations in synaptic structure induced by inhibition of tal Fig. S4, available at www.jneurosci.org as supplemental UCH-L1activityarealsoaccompaniedbychangesinspinemor- material).Inlinewithourpreviousobservation,wefoundthat phology.Indeed,weobserveda30%decreaseinthedensityof YFP-actin-filled spines were enlarged in neurons that were PSD-95 puncta in LDN-treated neurons. This potentially indi- treated with LDN. In addition, neurons were stained with catesthatspinelossprecedesthedisassemblyofthepostsynaptic phalloidin to label F-actin in dendritic spines (supplemental densityinUCH-L1-inhibitedneurons. Fig. S4B,C, available at www.jneurosci.org as supplemental Filamentous actin (F-actin) accumulates at high concen- material).WefoundthatF-actinpunctatoalsobeenlargedin tration in dendritic spines, and actin filaments provide the LDN-treatedneuronsandthattheycolocalizedwithsynaptic structuralbasisforcytoskeletalorganizationinspines.Actin- markers PSD-95 (supplemental Fig. S4B, available at www. based changes in the morphology of spines are regulated by jneurosci.org as supplemental material) or Shank (supple- synaptictransmissionandareknowntocontributetosynaptic mental Fig. S4C, available at www.jneurosci.org as supple- plasticity (Fischer et al., 1998, 2000; Fukazawa et al., 2003; mentalmaterial).Together,ourdataindicatethatalterations Okamoto et al., 2004). We examined whether structural to the actin cytoskeleton occur concomitantly with altered Cartieretal.•RegulationofSynapticStructurebyUCH-L1 J.Neurosci.,June17,2009•29(24):7857–7868•7863 sitieswithanaveragelengthof0.64(cid:8)0.04 (cid:1)m (Fig. 5I–K). The synaptic terminals were irregular and contained abundant clearsynapticvesiclesandcoatedpits(Fig. 5F).Thedendriteswerealsoirregularand displayedenlargedmitochondria,andfo- cal vacuolization (Fig. 5G,H). Together, ourEMstudiescorroborateourimmuno- fluorescencestudiesandfurthersubstanti- atearoleforUCH-L1functioninmain- tainingnormalsynapticstructure. AlteredUCH-L1activityaffectssynaptic proteincomposition Since inhibition of UCH-L1 activity re- sulted in a reduction in the levels of free monomericubiquitinandstructuralalter- ationsatsynapses,weaskedwhetherthese changeswereaccompaniedbyalterations inthestabilityofsynapticproteins(Fig.6). Oftheproteinsexamined,weonlyfound alteredPSD-95expressionlevelsinLDN- treated neurons. We observed a 60% in- creaseinthelevelsofPSD-95inneurons treated with LDN (Fig. 6A,C) (control, 1.0(cid:8)0.12;LDN-treated,1.6(cid:8)0.16).We alsoexaminedproteinexpressionlevelsin brain homogenates obtained from wild- type and UCH-L1-deficient mice (Fig. 6B). Interestingly, we found that protein expression levels of PSD-95 and Shank were increased by 70 and 47% in mouse brain homogenates deficient in UCH-L1 activity (Fig. 6D) (PSD-95, wild type, 1.0 (cid:8) 0.15; UCH-L1 null, 1.7 (cid:8) 0.19; Shank,wildtype,1.0(cid:8)0.09;UCH-L1null, 1.47(cid:8)0.10).Thesedatashowthatlossof Figure4. InhibitionofUCH-L1activityaltersspinesizeanddensity.A,B,CulturedneuronsweretreatedwithLDNfor24h. UCH-L1activityaffectsthestabilityofcer- EGFPSindbisvirionswereaddeddirectlytoculturemediaafter10–12hofLDNtreatment,andproteinexpressionwasallowedto continuefor12–14h.AttheendofLDNtreatments,neuronswerefixed,permeabilized,andimmunolabeledwithanti-PSD-95 tainscaffoldproteinsbutnotallsynaptic andanti-SynapsinIantibodies.ThestraighteneddendritesinBcorrespondtotheregionsindicatedbyarrowsinthewhole-cell proteins. imagesinA.C–G,Quantificationofthenumber,widths,andlengthsofGFP-filledspinesincontrolandLDN-treatedneuronsis shown.C,D,Measurementsforspineheadwidthsandspinelengthswerenormalizedtothoseofcontrolvalues.F,G,Cumulative EffectsofUCH-L1inhibitiononglobal frequencyplotsshowingdistributionofspineheadwidth(inmicrometers)andspinelength(inmicrometers)incontroland UPSactivity LDN-treatedneuronsareshown.E,Quantificationofspinedensityisrepresentedasthenumberofspinesper1(cid:1)mdendrite Since our data clearly demonstrate that length.Thequantifieddatawereobtainedfromthreeindependentexperiments,inwhich(cid:5)20dendritesand(cid:5)900spineswere blockingUCH-L1activityreducesthelev- analyzedpercondition.Meanvalues(cid:8)SEMareshown.*p(cid:9)0.05,**p(cid:9)0.01,unpairedStudent’sttest. elsoffreemonomericubiquitin,wesetout todeterminewhetherinhibitingUCH-L1 presynapticandpostsynapticproteinpunctaandspinesizein activityplaysaroleinmodulatingglobalUPSfunction.Weas- UCH-L1-inhibitedneurons. sessedproteasomeactivityinvitrobymonitoringthecleavageof TofurtheranalyzetheeffectsofUCH-L1inhibitiononsyn- a synthetic fluorogenic substrate (Suc-LLVY-AMC) in total ly- aptic structure, we performed electron microscopy on LDN- sates from control and LDN-treated neurons and detected no treatedneurons(Fig.5).Inuntreatedhippocampalcultures,as differencesbetweenconditions(Fig.7A).Sinceoneofthemajor expected,abundantandwellorganizedneuriticprocesseswere functions of UCH-L1 is generating free ubiquitin, we assessed identified (Fig. 5A–D). Most synaptic contacts were synapto- whetheralteringubiquitinlevelsbyoverexpressingUCH-L1has dendritricratherthanaxo-somatic.Onaverage,presynapticter- anyeffectonUPSactivity.Wegeneratedwild-typeandmutant minalscontained81.4(cid:8)6.2vesiclespersynapseandmeasured GFP-taggedUCH-L1mammalianexpressionconstructs.Allof 0.89(cid:8)0.07(cid:1)mindiameter,displayingsymmetricalpostsynaptic ourconstructswereequallyexpressedinHEK293Tcells(Fig.7B, densitiesof(cid:2)0.59(cid:8)0.06(cid:1)minlength(Fig.5I–K).Incontrast, top panel). Furthermore, HAUb-VME labeling assay on these hippocampalculturestreatedwithLDNdisplayedabnormalpre- lysatesshowedwild-typeUCH-L1-GFPtobeactive,whereasno synapticandpostsynapticterminals(Fig.5E–H).Thepresynap- activitywasdetectedforeitherthecatalyticallyinactiveC90Sor ticterminalscontainedonaverage107.2(cid:8)6.2vesiclespersyn- ubiquitin binding-deficient D30A mutants (Fig. 7B, bottom apseandwereenlarged,averagingindiameterfrom1.64(cid:8)0.14 panel).Ourdataareconsistentwithpreviousreportsdescribing (cid:1)mindiameter,anddisplayedthickenlargedpostsynapticden- theseUCH-L1mutants(Sakuraietal.,2006).Wenextexamined 7864•J.Neurosci.,June17,2009•29(24):7857–7868 Cartieretal.•RegulationofSynapticStructurebyUCH-L1 Figure5. UltrastructuralsynapticalterationsinprimaryneuronstreatedwithLDN.A–H,Representativeelectronmicrographsofculturedneuronstreatedwithvehicleor10(cid:1)MLDNfor24h. A–D,Control,untreatedneuronsexhibitnormalcharacteristicsforpresynapticterminals(pst),postsynapticdensities(psd),mitochondria(m),anddendriticprocesses(dp).E–H,LDN-treated neuronsdisplayabnormalsynapticstructuresdemonstratedbyenlargedpresynapticterminals,irregularpostsynapticdensities,abundantcoatedpits(cp)andclearsynapticvesicles(sv),and vacuolizationofdendrites.Magnification,30,000(cid:6).QuantificationsofPSDdiameter(I),numberofvesicles(J),andsynapticzonecontact(K)incontrolandLDN-treatedneuronsareshown. Averagedresultsfromatotalof10micrographsforeachgrid(9gridspercondition)wereusedfordataanalysis.Meanvalues(cid:8)SEMareshown.*p(cid:9)0.01,unpairedStudent’sttest. thelevelsofpolyubiquitinconjugatesbyWesternblotanalysisas UCH-L1(supplementalFig.S5A,B,availableatwww.jneurosci. itisknownthatinhibitionoftheproteasomeactivitycandirectly org as supplemental material). Together, these experiments affectthelevelsofubiquitin-conjugatedproteins.Interestingly, suggest that altered UCH-L1 activity does not directly affect althoughwefoundthatoverexpressionofwild-typeormutant proteasomefunction.Furthermore,anincreasedmonomeric UCH-L1-GFP had no effect on the levels of polyubiquitinated ubiquitinlevelsgeneratedbyoverexpressionofUCH-L1does proteins(Fig.7C,toppanel),therewasanapproximatelyfour- nothaveaneffectonthelevelofpolyubiquitinconjugatesand foldtofivefoldincreaseinthelevelsoffreemonomericubiquitin proteasomefunction. in cells overexpressing wild-type and the C90S mutant of However,tobetterdeterminewhetherglobalUPSfunctionis UCH-L1 (Fig. 7C, middle panel; D) (GFP, 1.0 (cid:8) 0.16; wild- affected,wemonitoredthedegradationofGFPuinhippocampal typeUCH-L1,4.3(cid:8)0.23;C90S-UCH-L1,4.7(cid:8)0.67;D30A- neuronsusingtime-lapseconfocalmicroscopy.Weusedapho- UCH-L1, 0.97 (cid:8) 0.07). These data are quite interesting be- toactivatablevariantofGFPu(paGFPu),whichisaUPS-specific cause although both the C90S and D30A mutants lack reporter protein substrate and requires polyubiquitination for hydrolytic activity, the C90S mutant still maintains its ubiq- degradationbytheproteasome(Benceetal.,2005).Weobserved uitin binding ability, which is thought to be important for a 50% decrease in the degradation rate of paGFPu in LDN- stabilizing ubiquitin levels (Osaka et al., 2003; Sakurai et al., treatedneurons(Fig.7E,F).Together,thissuggeststhatthecata- 2006).Wealsomeasuredproteasomeactivityinvitroinlysates lytic activity of the proteasome is not affected by decreased from wild-type and mutant UCH-L1 overexpressing HEK UCH-L1activity.However,UCH-L1inhibitioncanaffectglobal 293Tcells.Wedidnotdetectanychangesinproteasomeac- ubiquitin-dependent UPS function, most likely because of de- tivitylevelsbetweenwild-typeandC90SorD30Amutantsof creasedmonomericubiquitinlevels. Cartieretal.•RegulationofSynapticStructurebyUCH-L1 J.Neurosci.,June17,2009•29(24):7857–7868•7865 there was no significant difference in the density of PSD-95 punctabetweencontrol(GFPandDMSO-treatedneurons)and myc-ubiquitin-expressingneurons(Fig.8A–D,F)(GFP-DMSO, 1.0(cid:8)0.04;ubiquitin-DMSO,0.97(cid:8)0.05;GFPplusLDN,0.89(cid:8) 0.03;ubiquitinplusLDN,1.1(cid:8)0.03).Moreover,expressionof ubiquitinitselfhadnoeffectonsynapticstructure.Together,our datademonstratethatreductionsinthelevelsoffreemonomeric ubiquitinbecauseofthelackofUCH-L1activityleadtomajor structuralsynapticalterationsinhippocampalneurons. Discussion Activity-dependent remodeling of synaptic connections in the brain is thought to be crucial for modulations in synaptic strength.Recently,theUPShasbeenshowntobeanimportant factor for this remodeling and for synaptic plasticity. Interest- ingly, very little is understood about the UPS components in- volvedandtheirregulationatsynapses.Inthepresentstudy,we setouttounderstandthefunctionofUCH-L1,thehighestex- pressed DUB in the brain, at synapses to uncover regulatory mechanismswhichexistinneuronstocontrolitsfunction.Our data demonstrate that UCH-L1 is distributed throughout so- maticanddendriticcompartmentsofhippocampalneurons.Us- ing a specific substrate that can monitor UCH-L1 activity, we showthatUCH-L1ispartiallyactiveintotallysatesfromcultured neuronsandinthepostsynapticdensityfractionspreparedfrom rat brain. Strikingly, however, we found that NMDA receptor activationrapidlyincreasesUCH-L1activityandconcomitantly increasesfreemonomericubiquitinlevels.Furthermore,block- ingUCH-L1activitybyLDNsignificantlyreducedthelevelsof monomeric ubiquitin. Together, these findings suggest that UCH-L1 may be responsible for modulating the levels of free monomeric ubiquitin pools available for various cellular pro- cesses. Furthermore, NMDA receptor-dependent activation of UCH-L1 may potentially have a significant effect on synaptic transmission by controlling ubiquitin levels in neurons. This novelfindingisthefirstreportdemonstratingthatthefunctionof UCH-L1ismodulatedbyneuronalactivity. ManytargetsoftheUPSexistatsynapsesincludingscaffold Figure6. ComparisonofsynapticproteinexpressionlevelsincontrolandLDN-treatedneu- and structural proteins whose function is critical for several ronsandinwild-typeandUCH-L1-deficientmousebrains.A,B,LysatesfromcontrolandLDN- forms of plasticity (Patrick, 2006; Yi and Ehlers, 2007). Since treatedculturedneurons(A)orhomogenatesfromwild-typeandUCH-L1-deficientmouse decreased UCH-L1 activity is associated with several neurode- brains(B)weresubjectedtoWesternblotanalysis.C,D,Relativebandintensitieswerequan- generativedisorders,andpharmacologicalinhibitionofUCH-L1 tifiedandnormalizedtothoseofcontrolneuronsorwild-typemousebrains.Thequantified datawereobtainedfromtwoandfourindependentexperimentsforbrainhomogenatesand activitysubstantiallyreducesLTP,weassessedanystructuralal- LDN-treatedneurons,respectively.Meanvalues(cid:8)SEMareshown.*p(cid:9)0.01,unpairedStu- terationstosynapsesinUCH-L1-inhibitedneurons.Wefound dent’sttest. that spines became greatly enlarged in LDN-treated neurons whiletheirdensitysignificantlydecreased.Theseenlargedspines were associated with presynaptic and postsynaptic proteins, in Ectopicexpressionofubiquitinrestoressynapticstructurein particular, important scaffold proteins such as PSD-95 and LDN-treatedneurons Shank.Wefoundapositivecorrelationbetweenthesizeofspines ThemajorfunctionofUCH-L1isthoughttomaintainthelevels and the size of synaptic protein clusters associated with those offreemonomericubiquitinusedforvariouscellularprocesses. spines. Furthermore, we observed alterations to the actin cy- Todeterminewhetheralterationinsynapticstructureinducedby toskeletonastherewasasignificantaccumulationofF-actinin inhibitionofUCH-L1weremainlyattributabletoareductionin spines. The increased spine size together with the striking de- thelevelsoffreemonomericubiquitin,weperformedubiquitin crease in spine number potentially reveals heterogeneity in the rescueexperimentsinLDN-treatedneurons(Fig.8).Wefound sensitivitytoalteredmonomericubiquitinlevelsbetweenspines. thattheexpressionofubiquitinfor12hcompletelyrescuedthe ThesealterationsinsynapticstructuremaycontributetotheLTP effects of UCH-L1 inhibition on PSD-95 size and distribution. defects observed in UCH-L1-inhibited neurons (Gong et al., AlthoughPSD-95punctawasincreasedinLDN-treatedneurons, 2006).Wealsoanalyzedthedensityofsynapticproteinpuncta theexpressionofmyc-ubiquitincompletelyblockedtheeffectof andfoundadecreaseonlyinPSD-95.Thiscouldreflectchanges LDN (Fig. 8A–E) (GFP-DMSO, 1.0 (cid:8) 0.05; ubiquitin-DMSO, inthestabilityortraffickingofPSD-95.Indeed,theretentionof 0.93 (cid:8) 0.04; GFP plus LDN, 1.6 (cid:8) 0.04; ubiquitin plus LDN, PSD-95inindividualspineshasbeenshowntobehighlydynamic 1.0(cid:8)0.03).Aspreviouslyobserved,therewasaslightdecreasein (Grayetal.,2006).Wealsoanalyzedproteinexpressionlevelsfor thedensityofPSD-95punctainLDN-treatedneurons;however, severalsynapticproteinstodeterminewhethertheobservedal- 7866•J.Neurosci.,June17,2009•29(24):7857–7868 Cartieretal.•RegulationofSynapticStructurebyUCH-L1 terationsinthesizeordensityofsynaptic punctacorrelatedwiththeirstability.We only detected changes in the protein ex- pressionlevelsofPSD-95andShank.Al- though the levels of PSD-95 increased in both LDN-treated neurons and brain ly- sates from UCH-L1-deficient mice, the levels of Shank protein expression were only elevated in the brains of UCH-L1- deficientmice.However,itisquiteplausi- blethatthestabilityofsynapticproteinsis not equally sensitive to altered UCH-L1 activityand/orlevelsofmonomericubiq- uitin. Alternatively, UCH-L1 may have specifictargetsinneuronsasotherinter- actingpartnersforUCH-L1havebeenre- ported (Caballero et al., 2002; Liu et al., 2002;Kabutaetal.,2008).However,itis alsofeasibletohypothesizethatdecreased UCH-L1activityresultsindecreasedmo- nomeric ubiquitin levels, which elicits a pathogenicprogramthatinitiateswiththe lossofunstablespineswithaconcomitant redistributionandaccumulationofsynap- ticproteinssuchasPSD-95andShankinto more stable spines. Strikingly, we found that overexpression of ubiquitin restored normalsynapticstructureinLDN-treated neurons.Thisindicatesmonomericubiq- uitin levels to be regulatory for normal synaptic structure. Together, these find- ingspointtoasignificantroleofUCH-L1 insynapticremodelingbymodulatingfree Figure7. EffectsofalteredUCH-L1activityonUPSfunction.A,CulturedneuronsweretreatedwithvehicleorLDNfor24h. ubiquitinlevelsmostlikelyinanactivity- ProteasomeactivitywasmeasuredintotalcelllysatesfromcontrolandLDN-treatedneuronsinvitrobyfluorimetricassayusinga dependentmanner. Suc-LLVY-AMCfluorogenicsubstrate.RelativefluorescenceunitsovertimeincontrolandLDN-treatedneuronsareshowninaline Does altered UCH-L1 activity affect graph.Meanvalues(cid:8)SEMoffiveindependentexperimentsareshown.B–D,HEK293Tcellsweretransfectedwithwild-type, UPS function? To address this question, C90SandD30AUCH-L1-GFPconstructsfor48h.B,ExpressionlevelsofGFP,wild-type,andmutantUCH-L1-GFPwereassessedby weexaminedproteasomeactivitylevelsin Westernblotanalysis.Immunoblotswereprobedwithanti-GFPantibody(toppanel).Activitylevelsofwild-typeandmutant vitroincontrolandLDN-treatedneurons. UCH-L1-GFPwereassessedbyDUBlabelingassay(HAUb-VME)oflysatesfromHEK293T-transfectedcells.Arepresentative Westernblotoflabeledlysatesisdemonstrated(bottompanel).C,Expressionlevelsoffreemonomericubiquitinandpolyubiq- Wedidnotdetectanychangesinprotea- uitinconjugatesintransfectedHEK293Tcellsareshown.Westernblotprobedwithanti-UCH-L1andanti-CDK5(loadingcontrol) someactivitylevelsmeasuredintotalcell antibodiesdemonstratingequalexpressionlevelsofwild-typeandmutantUCH-L1-GFPandequalproteinloading,respectively. lysates from control and UCH-L1- D,RelativeintensitiesoffreemonomericubiquitinlevelsinGFP,wild-type,andmutantUCH-L1-GFPtransfectedcellsobtainedby inhibitedneurons.Kyratzietal.(2008)re- densitometryanalysisofubiquitinblotsfromthreeindependentexperiments.Meanvalues(cid:8)SEMareshown.*p(cid:9)0.01, ported similar findings. They found that unpairedStudent’sttestbetweencontrol(GFP)andanytestgroup.E–G,CulturedneuronsweretreatedwithLDNfor24h.paGFPuvirions the loss of UCH-L1 in neurons derived wereaddeddirectlytoculturemediaafter10–12hofLDNtreatment,andproteinexpressionwasallowedtocontinuefor12–14h.E, fromgadmicedidnotaffectproteasome Representativestraighteneddendritesoftime-lapseexperimentsfromcontrolorLDN-treatedculturedneuronsexpressingpaGFPuare activity when assayed in vitro. Further- shown.Scalebar,10(cid:1)m.F,Groupedanalysis(plottedaslinegraphs;mean(cid:8)SEM)ofdendriticpaGFPufluorescenceintensitynormalized more,theyalsofoundthatoverexpression totime0forcontrol(paGFPualone)orLDN-treatedneurons.LiveimagingofpaGFPudegradationwasmadeon6and11cells,two ofwild-typeUCH-L1,whichsignificantly dendritespercell,fromcontrolandLDN-treatedneurons,respectively.RFU,Relativefluorescenceunit.Thecolorlook-upscaleforpaGFPu degradationisblack(lowest)towhite(highest).*p(cid:9)0.01,unpairedStudent’sttest. upregulated free monomeric ubiquitin levels,didnotalterproteasomeactivityin vitro (Kyratzi et al., 2008). This is consistent with our findings uitination(Benceetal.,2005).Indeed,thestabilityofPSD-95 (supplemental Fig. 5A,B, available at www.jneurosci.org as and Shank, two PSD scaffolds shown to be regulated by supplemental material). This would suggest that the excess ubiquitin-mediatedproteasomaldegradation,issignificantly availabilityofmonomericubiquitindoesnotincreasethepro- increasedinUCH-L1-deficientmice. teolytic activity of the proteasome. Interestingly, however, a Together,ourfindingshaveuncoveredanovellinkbetween significant decrease in the degradation rate of the paGFPu neuronal activity, UCH-L1 function, the maintenance of free reporter was found in neurons that were treated with LDN. monomericubiquitinlevels,andtheregulationofsynapticstruc- This could potentially reflect the sensitivity of our live- ture.Importantly,thisstudysuggeststhatalteredsynapsestruc- imagingreporterassaystoalteredubiquitinlevelsinUCH-L1- turecausedbythemisregulationofUCH-L1activityandmono- inhibitedneurons.Althoughourinvitromeasurementofpro- meric ubiquitin homeostasis may serve as an underlying teasome activity is independent of substrate ubiquitination, mechanismfordefectsinsynapticplasticityseeninneurodegen- paGFPudegradationbytheproteasomeisdependentonubiq- erativedisease.

Description:
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and studies have shown that UCH-L1 possesses ubiquitin ligase activity generative disorders.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.