Ravi P. Agarwal · Claudio Cuevas Carlos Lizama Regularity of Diff erence Equations on Banach Spaces Regularity of Difference Equations on Banach Spaces Ravi P. Agarwal • Claudio Cuevas (cid:129) Carlos Lizama Regularity of Difference Equations on Banach Spaces 123 RaviP.Agarwal ClaudioCuevas DepartmentofMathematics DepartamentodeMatemática TexasA&MUniversity UniversidadeFederaldePernambuco Kingsville,TX,USA Recife,PE,Brazil CarlosLizama DepartamentodeMatemática y CienciadelaComputación UniversidaddeSantiagodeChile Santiago,Chile ISBN978-3-319-06446-8 ISBN978-3-319-06447-5(eBook) DOI10.1007/978-3-319-06447-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014940724 MathematicsSubjectClassification:39A12,39A06,39A60,47D09 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface EvolutionaryequationsinaBanachspaceX oftheform u.kC1/(cid:2).Au/.k/Df.k/; k 2Z ; .(cid:3)/ C ariseinseveralbranchesofscienceandtechnology[1,26,61,75,81,89,116,125,129, 144,146].DependingonthepropertiesofthefunctionAWF.Z IX/!F.Z IX/ C C where F.Z IX/ is a space of vector-valued sequences, such equations exhibit C manynewandinterestingphenomena.Here,manyproblemsstillneedtobesolved, inparticularinconnectionwithnonlinearanaloguesof.(cid:3)/.Forexample,thereare onlyfewresultsdealingwiththesemilinearcasewhentheright-hand-sidefunction depends not only on the discrete time k but also on the unknown solution u, i.e., f DF.k;u/. Suppose that we know something about the behavior of the forcing function f in .(cid:3)/. For example, f could be bounded, asymptotic in some sense, or f might satisfyf 2 l .Z IX/,whereX isaBanachspaceand1 (cid:4) p (cid:4) 1.Themaximal p C regularityproblemisthentofindconditionsonthedataAsothatthesolutionuof .(cid:3)/hasthesamebehaviorasf. Blunck considered in 2001 [22,23] the maximal regularity problem for the discrete-timeevolutionequation x.kC1/(cid:2)Tx.k/Df.k/; k 2Z ; C onthevector-valuedsequencespacesl .Z IX/,i.e., p C AWl .Z IX/!l .Z IX/ p C p C isdefinedby.Au/.k/ D Tu.k/;whereT isaboundedlinearoperatordefinedon aBanachspaceX whichbelongstotheclassHT;thatis,thespaceX satisfiesthe propertythattheHilberttransformdefinedby v vi Preface Z 1 f.t (cid:2)s/ .Hf/.t/WD lim ds .(cid:3)(cid:3)/ (cid:2)!0R!1(cid:2) (cid:2)<jsj<R s is bounded in the vector-valued Lebesgue space Lp.RIX/ for some p 2 .1;1/: The limit in .(cid:3)(cid:3)/ is to be understood in the Lp-sense. Such Banach spaces are also called UMD; by unconditional martingale difference, because they have an importantroleinprobabilitytheory[65]. In their work, Blunck has characterized the discrete maximal regularity of the above first-order evolution equation by two types of conditions: firstly, by R-boundedness properties of the discrete-time semigroup .Tk/k2ZC and of the resolventoperatorR.(cid:3);T/ WD .(cid:3)(cid:2)T/(cid:2)1.Werecallfrom[65]thatasubset T of thesetofallboundedoperatorsdefinedonX iscalledR-bounded(orRademacher- bounded),ifthereexistsaconstantC >0suchthat jj.Tx ;:::;Tx /jj (cid:4)Cjj.x ;:::;x /jj ; 1 n R 1 n R forallx ;:::;x 2X; n2N,andallT 2T;where 1 n X Xn 1 jj.x ;:::;x /jj WD k (cid:4) x k: 1 n R 2n j j (cid:2)2f(cid:2)1;1gN jD1 Secondly,bythemaximalregularityforthecontinuous-timeevolutionequation,i.e., u0.t/(cid:2)Tu.t/Df.t/; t (cid:5)0: SeealsoPortal[160,162]. In the continuous case, it is well known that the study of maximal regularity is very useful for treating semilinear and quasilinear problems. Fourier multiplier theoremsareamongthemostimportanttoolstoprovemaximalregularity.Theyplay animportantroleintheanalysisofellipticandparabolicproblems.Inpastyearsit hasbecomeevidentthatoneneedsnotonlytheclassicaltheoremsbutalsovector- valued extensions with operator-valued multiplier functions or symbols. These extensions allow one to treat certain problems for evolution equations with partial differential operators in an elegant and efficient manner in analogy to ordinary differential equations (see, e.g., Amann [6], Denk et al. [65], Clément et al. [46], thesurveybyArendt[10],andthebibliographytherein). However, we note that for nonlinear discrete-time evolution equations, some additionaldifficultiesappear.Infact,weobservethatthisapproachcannotbedone byadirecttranslationoftheproofsfromthecontinuous-timesettingtothediscrete- time setting. Indeed, the former only allows to construct a solution on a possibly veryshorttimeinterval,theglobalsolutionbeingthenobtainedbyextensionresults. Thistechniquewillobviouslyfailinthediscrete-timesetting,wherenosuchthing asanarbitraryshorttimeintervalexists. Preface vii In this book we propose a way around the short time interval problem by assuming a summability in time on the constants appearing in Lipschitz-type conditionsforthenonlinearity.Thisallowsustorunanaturalargument:Assuming maximal regularity of the linear part to obtain a priori estimates, we use these estimatestogetherwithadequateassumptiononthenonlinearitytoobtainasolution asafixedpointofsuitableoperatordefinedinasuitablediscreteSobolev-typespace. Weemphasizethattheimplementationofthisapproachisapriori,nottrivial,asthe readerwillperceivethroughthisbook. Fromanappliedperspective,wegiveasetofresultsandtechniquesonabstract difference equations which are interesting when applied to concrete difference equations. This monograph is an outgrowth of the authors’ research on the subject during the past 10years. Our expectation is that this book will be very useful as a source ofinformationandmotivationtoresearcherswhoareenteringthesubject.Wehope thatthebookisalsovaluableformathematiciansinrelatedfieldswhoareinterested innewmethodsinBanachspacetheoryforthepurposeofusingitinappliedareas andcontributetothedevelopmentofthetheory. Wehavetriedtopreserveaninformalstyleandreducetechnicalitiesasmuchas possible.Wedoincludeindicationsofproofofsomeresultswiththehopethatthis willhelpthereadertounderstandandgetafeelingfortheinterplayofthevarious conceptsandtechniqueswhicharediscussed. Thisbookisdividedintosevenchapters.Inthefirstchapterweconsiderseveral examples of discrete evolution equations arising in diverse contexts. The chapter alsodealswithsomeresultsonthetransformmethod,whichareusedinapplications (Sect.1.2). We present the basic discrete semigroup theory and introduce the discretecosineandsineoperators(Sect.1.4). Thesecondchapterconsistsofacollectionofresultsthatarescatteredinmany publications,essentiallydealingwithmaximalregularity.InSect.2.1weintroduce theconceptofUMDspaceandreviewitsbasicproperties.InSect.2.2weintroduce thenotionofR-boundedness,whichhasprovedtobeasignificanttooltodealwith maximal regularity. R-boundedness has a number of nice permanence properties which are summarized in this subsection. In Sect.2.3 we give an overview of the mainresultsonthissubject.Wenotethatonewaytotreattheproblemofmaximal regularity is by applying the operator-valued Fourier multiplier theorems. In Sect.2.4wecollectsomeofthemostimportantvector-valuedmultipliertheorems. Inthediscrete-timesetting,theoperator-valuedFouriermultipliertheoremisdueto Blunck(seeTheorem2.4.9). Chapter3dealswithBlunck’scharacterizationofmaximall -regularityforfirst- p order linear difference equations by R-boundedness properties of the semigroup associated. It is the indispensable basis for the theory of semilinear discrete evolution equations, which we present in Chap.4. More precisely, it is devoted to theexistenceofboundedsolutionsforafirst-ordersemilineardifferenceequation, whose first discrete derivative of the solution belongs to the Banach space of all p-summablesequences,denotedbyl . p viii Preface In Chap.5 we introduce the notion of maximal l -regularity for second-order p linear difference equations and we characterize the maximal l -regularity for p such equations. We also include in this study results on exact discretizations of the harmonic oscillator (see Sects.5.2, 5.3, and 5.4). The classical reference is Agarwal’sbook[1],whereexactdiscretizationsarediscussedindetail,inaddition tomanyapplications.Section5.5dealswiththeproblemofregularityinweighted spaces.InSect.5.6,therelationbetweenwell-posednessandthemaximalregularity ispresented. Chapter 6 is concerned with the study of the existence of bounded solutions whose second discrete derivative is in l for second-order semilinear difference p equations. The essential technique employed in this treatment is the knowledge of maximal regularity of the associated homogeneous equation. We also develop thistheoryforexactsemilinearsecond-orderequationsandsemilinearproblemson weightedspaces.Questionsregardinglocalperturbationshavealsobeenconsidered. Chapter 7 has practical importance because it deals with applications of the theory of discrete maximal regularity to stability of concrete discrete process. We present a useful R-boundedness criterion and study both the boundedness and the asymptotic profile of the solutions of some discrete evolution equations. We use themethodspresentedinChap.4tostudytheexistenceanduniquenessofbounded solutionswhichareinl forsemilinearfunctionaldifferenceequationswithinfinite p delay (RFDE for short). We also present results about asymptotic behavior for RFDE. In the last section of Chap.7, we present applications to discrete Volterra differenceequationswithinfinitedelay. We have included a section of comments at the end of each chapter, which describes further aspects of the theory. The book concludes with an extensive bibliography. The authors acknowledge partially support from the following institutions and grants: C. Cuevas and C. Lizama by project Anillo ACT-1112 (CONICYT- Chile);C.CuevasbyProgramaAtraccióneInserción(PAI-MEC)Grant80112008 (CONICYT-Chile). PartsofthisbookwerewrittenwhilethesecondauthorwasvisitingUniversity of Nantes (September–November 2011) and University of La Frontera (July– September 2012). He wants to express his gratitude for the hospitality of the Departments of Mathematics at these institutions. Finally, the authors take this opportunity to express the appreciation and thanks to their respective wives: Sadhna Agarwal, Gilca Cuevas, and Maricel Lizama for the encouragement and understandinginwritingthismonograph. Kingsville,TX RaviP.Agarwal Recife,Brazil ClaudioCuevas Santiago,Chile CarlosLizama Contents 1 DiscreteSemigroupsandCosineOperators .............................. 1 1.1 DifferenceEquationsonBanachSpaces ............................. 2 1.2 TheTransformMethod................................................ 3 1.3 DiscreteSemigroupsOperators....................................... 7 1.4 DiscreteCosineandSineOperators .................................. 11 1.5 Comments.............................................................. 15 2 MaximalRegularityandtheMethodofFourierMultipliers ........... 19 2.1 UMDSpaces.......................................................... 20 2.2 R-Boundedness........................................................ 21 2.3 MaximalLp-Regularity............................................... 27 2.4 Vector-ValuedFourierMultipliers:Blunck’sTheorem.............. 30 2.5 Comments.............................................................. 34 3 First-OrderLinearDifferenceEquations................................. 47 3.1 ACharacterizationofMaximall -Regularity ....................... 47 p 3.2 Maximall -Regularityforp 2f1;2;1g............................ 51 p 3.3 Comments.............................................................. 54 4 First-OrderSemilinearDifferenceEquations ............................ 57 4.1 ExistencefortheSemilinearProblem ................................ 57 4.2 LocalPerturbations.................................................... 65 4.3 Comments.............................................................. 69 5 Second-OrderLinearDifferenceEquations .............................. 71 5.1 DiscreteMaximalRegularity ......................................... 71 5.2 ExactDiscretizations.................................................. 74 5.3 ExactSecond-OrderDifferenceEquation............................ 77 5.4 ACharacterizationofMaximall -Regularity ....................... 79 p 5.5 RegularityinWeightedl Spaces .................................... 82 p 5.6 Well-PosednessandtheMaximalRegularitySpace................. 89 5.7 Comments.............................................................. 91 ix
Description: