Registration and Machine Learning Methods for Brain Imaging of Alzheimer’s Disease Liam Cattell Brasenose College University of Oxford Supervisors Prof. Julia A. Schnabel Dr Chloe Hutton A thesis submitted for the degree of Doctor of Philosophy in Engineering Science Hilary Term 2016 Abstract Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder, char- acterised by memory loss and reduced cognitive function. One of the pathologic biomarkers of AD is the presence of neuritic plaques composed of beta amyloid pep- tides. Positron emission tomography (PET) imaging is increasingly used to assess the amyloid burden in patients with dementia, and therefore, tools for analysing amyloid PET scans could aid clinicians when diagnosing and treating AD. For this reason, this thesis presents novel methods for quantifying and classifying amyloid in brain PET images. The most important contributions made in this thesis are: 1) The formulation of a dual-modality deformable registration method, based on the demons framework, for simultaneously aligning PET and magnetic resonance (MR) images to a template space, in order to calculate standardised uptake value ratios (SUVRs). 2) The proposal of a novel machine learning method for classifying brain amyloid status, based on histograms of oriented image gradients. 3) An assessment of convolutional deep belief networks for amyloid status classification. 4) An initial investigation towards a complete classification framework for AD using multi-graph learning. The results of the registration experiments suggest that the proposed joint PET-MR registration method can perform as well as similar single-modality meth- ods in terms of registration accuracy, and could provide an improved separation between populations of AD patients and healthy controls when used in the calcula- tion of SUVRs. Although the investigation into convolutional deep belief networks indicated that, at present, they are impractical for amyloid status classification, our novel amyloid status classification method achieved a higher classification accuracy than two other established methods. Moreover, unlike SUVR, our proposed machine learning method does not require specific knowledge of neuroanatomy and can be applied to multiple amyloid PET tracers without substantial recalibration. I eat my peas with honey; I’ve done it all my life. It makes the peas taste funny, But it keeps them on the knife. – Anonymous Acknowledgements This work was made possible by an Industrial CASE studentship (11440394) jointly funded by the EPSRC and Siemens Molecular Imaging. However, I would like to use this opportunity to express my gratitude to a number people who have helped me over the last few years. Firstly, I am indebted to Julia A. Schnabel and Chloe Hutton for their supervi- sion and guidance during this research. Their support has been essential, especially when making the decision to change the focus of my research from image registra- tion to machine learning midway through my project. Julia, I thank you for giving me the opportunity to do this research, and for introducing me to some truly bril- liant people, both in Oxford and further afield. Chloe, thank you for your endless enthusiasm and encouragement, and countless discussions about my work. I must also extend my gratitude to my friends and colleagues at the IBME and Siemens. Notonlydidtheymaketheofficesamoreenjoyableplacetowork, butthey dispensedinvaluableadviceaboutresearch, andwerealwaysinterestedtohearabout my (lack of) progress. I also thank my friends at Brasenose College (which has been my home for almost eight years) for allowing me to escape the world of biomedical engineering and learn about other fascinating topics, including parasitoid wasps and Kant’s critiques of reason. I would also like to thank my Mill St housemates. You graciously allowed me to indulge in many disruptive side-projects, from baking outlandish cakes to renovating a 20-year-old campervan, and you made the tiresome parts of my DPhil infinitely more enjoyable. To my friends elsewhere, I thank you for the late-night Skype calls and pub chats that put this work in perspective. I owe an enormous amount of thanks to my parents for their everlasting support and love, and to my grandfather for reading this thesis at least once. Finally, Chelsea, thank you for everything. This is for you. Contents List of Tables vii List of Figures viii List of Algorithms xii 1 Introduction 1 1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background 6 2.1 Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Disease Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Alzheimer’s Disease Treatments . . . . . . . . . . . . . . . . . 13 2.1.3 Amyloid PET Quantification . . . . . . . . . . . . . . . . . . . 14 2.2 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Demons Registration . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Deformable Registration and the Brain . . . . . . . . . . . . . 25 2.3 Machine Learning in Medical Imaging . . . . . . . . . . . . . . . . . . 27 2.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Combined PET-MR Brain Registration 41 3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Local Correlation Coefficient Log-Domain Demons . . . . . . . 43 i 3.1.2 Combined PET-MR LCC-Demons Registration . . . . . . . . 46 3.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Alzheimer’s Disease Neuroimaging Initiative Data . . . . . . . 47 3.2.2 Data Acquisition and Pre-Processing . . . . . . . . . . . . . . 48 3.2.3 Template Construction . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Affine and Non-Linear Registration . . . . . . . . . . . . . . . 54 3.3.2 Dice Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.3 Amyloid PET Quantification . . . . . . . . . . . . . . . . . . . 56 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Visual Assessment of the Templates . . . . . . . . . . . . . . . 57 3.4.2 Registration Results Using the Real PET Template . . . . . . 58 3.4.3 Registration Results Using the Synthetic PET Template . . . 61 3.4.4 Registration Accuracy . . . . . . . . . . . . . . . . . . . . . . 62 3.4.5 Standardised Uptake Value Ratio . . . . . . . . . . . . . . . . 65 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.1 Visual Comparison of PET Templates . . . . . . . . . . . . . 67 3.5.2 Registration Quality . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.3 SUVR Separation . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.4 Methodological Considerations . . . . . . . . . . . . . . . . . . 72 3.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 The Effect of Registration on SUVR 75 4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.1 Dual-Modality Cost Function . . . . . . . . . . . . . . . . . . 76 4.1.2 Locally Adaptive Modality Weighting . . . . . . . . . . . . . . 79 4.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Data Acquisition and Pre-Processing . . . . . . . . . . . . . . 80 4.2.2 Template Selection . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ii 4.3.1 Affine and Non-Linear Registration . . . . . . . . . . . . . . . 81 4.3.2 Dice Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.3 Amyloid PET Quantification . . . . . . . . . . . . . . . . . . . 82 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.1 Registration Results . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2 Standardised Uptake Value Ratio . . . . . . . . . . . . . . . . 87 4.4.3 LAMW Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5.1 Registration Quality . . . . . . . . . . . . . . . . . . . . . . . 89 4.5.2 Robustness of SUVR Calculation . . . . . . . . . . . . . . . . 91 4.5.3 Optimal Modality Combination . . . . . . . . . . . . . . . . . 92 4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Amyloid Status Classification Using 3D HOG 94 5.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1.1 Data Acquisition and Pre-Processing . . . . . . . . . . . . . . 97 5.1.2 Visual Assessment . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.1 Histogram of Oriented 3D Gradients . . . . . . . . . . . . . . 101 5.2.1.1 Derivation of Feature Vectors . . . . . . . . . . . . . 101 5.2.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . 103 5.2.1.3 Parameter Optimisation . . . . . . . . . . . . . . . . 104 5.2.1.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2.2 Standardised Uptake Value Ratio . . . . . . . . . . . . . . . . 105 5.2.2.1 Quantification Software . . . . . . . . . . . . . . . . 105 5.2.2.2 SUVR Analysis . . . . . . . . . . . . . . . . . . . . . 106 5.2.3 Image Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.1 3D HOG Parameter Optimisation . . . . . . . . . . . . . . . . 108 5.3.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . 109 iii 5.3.3 Distance to Classification Boundary . . . . . . . . . . . . . . . 111 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 3D HOG Parameters . . . . . . . . . . . . . . . . . . . . . . . 117 5.4.3 Distance from the Classification Boundary . . . . . . . . . . . 118 5.4.4 Methodological Considerations . . . . . . . . . . . . . . . . . . 120 5.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6 The Generalisability of 3D HOG for Amyloid Classification 122 6.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.1 Parameter Optimisation . . . . . . . . . . . . . . . . . . . . . 124 6.2.2 Testing the 3D HOG + SVM Method . . . . . . . . . . . . . . 124 6.2.3 Standardised Uptake Value Ratio . . . . . . . . . . . . . . . . 125 6.2.4 Image Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.1 3D HOG Parameter Optimisation . . . . . . . . . . . . . . . . 126 6.3.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.3 Distance to Classification Boundary . . . . . . . . . . . . . . . 130 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.4.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 134 6.4.2 3D HOG Parameters . . . . . . . . . . . . . . . . . . . . . . . 136 6.4.3 Distance from the Classification Boundary . . . . . . . . . . . 139 6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7 Amyloid Status Classification Using Deep Learning 141 7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.1.1 Convolutional Restricted Boltzmann Machines . . . . . . . . . 143 7.1.2 Convolutional Deep Belief Networks . . . . . . . . . . . . . . . 145 7.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 iv 7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3.1 Constructing and Training the CDBNs . . . . . . . . . . . . . 146 7.3.2 Classification of CDBN Activations . . . . . . . . . . . . . . . 150 7.3.3 Training CDBNs Using Non-PET Data . . . . . . . . . . . . . 150 7.3.3.1 MR-CDBN . . . . . . . . . . . . . . . . . . . . . . . 150 7.3.3.2 Natural-CDBN . . . . . . . . . . . . . . . . . . . . . 151 7.3.4 Non-Deep Learning Classification Methods . . . . . . . . . . . 152 7.3.4.1 Standardised Uptake Value Ratio . . . . . . . . . . . 152 7.3.4.2 Intensity-Based Classification in 3D and 2D . . . . . 153 7.3.4.3 Histograms of Oriented 3D Gradients . . . . . . . . . 154 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.4.1 CDBN Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.4.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . 158 7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.5.1 CDBN Classification Results . . . . . . . . . . . . . . . . . . . 160 7.5.2 Results of the Non-Deep Learning Methods . . . . . . . . . . 162 7.5.3 Methodological Considerations . . . . . . . . . . . . . . . . . . 164 7.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8 Towards a Complete Classification Framework for AD 166 8.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.2.1 SVM-Based Classification . . . . . . . . . . . . . . . . . . . . 171 8.2.2 Manifold Learning . . . . . . . . . . . . . . . . . . . . . . . . 172 8.2.3 Disease State Index . . . . . . . . . . . . . . . . . . . . . . . . 175 8.2.4 Multi-Graph Learning . . . . . . . . . . . . . . . . . . . . . . 178 8.2.5 Evaluation of Classification Performance . . . . . . . . . . . . 181 8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.3.1 Classification Using Individual Data Sources . . . . . . . . . . 182 8.3.2 Binary Classification Using Multiple Data Sources . . . . . . . 184 v 8.3.3 Multiclass Classification Using Multiple Data Sources . . . . . 187 8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4.1 Classification Performance . . . . . . . . . . . . . . . . . . . . 190 8.4.2 Methodological Considerations . . . . . . . . . . . . . . . . . . 194 8.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9 Conclusion 198 9.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.2 Limitations of this Work . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 List of Publications 208 Bibliography 209 vi
Description: