Regional gravity field modeling using airborne gravimetry data Bas Alberts Publications on Geodesy 70 NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission Delft, September 2009 Regional gravity field modeling using airborne gravimetry data Bas Alberts Publications on Geodesy 70 ISBN: 978 90 6132 312 9 ISSN 0165 1706 Published by: NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission, Delft, the Netherlands Printed by: Optima Grafische Communicatie, Optima Graphic Communication, Rotterdam, the Netherlands Cover illustration: Bas Alberts NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission P.O. Box 5030, 2600 GA Delft, the Netherlands T: +31 (0)15 278 28 19 F: +31 (0)15 278 17 75 E: [email protected] W: www.ncg.knaw.nl The NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission is part of the Royal Netherlands Academy of Arts and Sciences (KNAW). Acknowledgments Many years ago someonementionedto me, ’Isn’t itgreat thatgravity can be measured in such a dynamic environment as aboard an aircraft?’. This caught my attention, and sincethenIhavebeenworkingonvariousprojectsrelatedtoairbornegravimetry,finally resultinginthisPhDthesis. Icannowconfirmthatmeasuringgravityaboardanaircraft isagreatfeatindeed. Abookonthistopicandtheresearchitrepresentscannotbecom- pletedsuccessfullywithoutthesupportfromalargenumberofpeople. Foremost,IwouldliketothankRolandKleesforhissupervisionandguidanceduringmy PhD.Itisimpossiblenottogetaffectedbyhisenthusiasmandbothhisencouragement and expertise have helped me very much in completing this work. Many thanks go to PavelDitmar,whosefeedback, resourcefulnessandcreativitycontributedgreatlytomy work. Iconsidermyselfveryluckyhavinghadtwosupervisorswhowerealwayswilling tolistenandgivevaluableadvice.Iespeciallyappreciatedtheweeklymeetingswithboth ofthem,whichwerethesourceofmanygoodideasandfruitfuldiscussions. Furthermore,Ithankallmy(former)colleaguesatDEOSandespeciallythePSGgroup for their support and for providing an enjoyable working environment. Special thanks go to Jasper van Loon, with whom it has been a pleasure sharing an office throughout thepastsevenyears. Ireallyenjoyedthediscussionswhichrangedfromworktosoccer, butalsothetripstoconferencesinEuropeandAustralia. Ialsothankeveryoneinvolved in the GAIN project, especially Brian Gunter for his support and discussions on strap- down airborne gravimetry. I hope the GAIN project will be very successful and many testflightswillbeperformedinthenearfuture. IthankRellyvanWingaardenandFiona Tuynmanfortheadministrativesupport. IamgratefultoGFZPotsdamforprovidingtheairbornegravitydataoftheAGMASCO andCHICAGO campaigns. IthankJu¨rgenNeumayerofGFZ andUwe MeyerofBGR for explainingthe airborne gravity pre-processing sofware (AGS) to me and Guochang XuofGFZforhishelpwithGPSdataprocessing. IappreciatethewillingnessofmytwoparanymphsFreekvanLeijenandLucAlbertsto readthemanuscript,whichhelpedreducethenumberofremainingerrorssignificantly. Thankstoallmyfriendsfor themanynicetimesoutsideworkinghourssuchasduring i Acknowledgments holidays,barevenings,boardgames,cycling,soccer,snowboarding(ok,skiingaswell), barbecuesandalltheotherrelaxingmoments. Focusingisonlypossibleiftherearemo- mentsthatyoudonothavetofocus. I would like to say special thanks to my mother and John, to my brother Luc, and to my father and Anjenet, for their overall support, encouragement and showing so much interestinmywork. Finally, I would like to thank Hanne for helping me with the graphics, correcting my English,butforemostforhersupportthroughoutlastyear. ThefinalyearofmyPhDwas theoneIenjoyedmost. ii Contents Summary vii Samenvatting ix Nomenclature xiii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Airbornegravimetry 7 2.1 Historicaloverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Theprincipleofairbornegravimetry . . . . . . . . . . . . . . . . . . . . 10 2.3 Mathematicalmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Measurementmodel . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Errormodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Applicationsandopportunities . . . . . . . . . . . . . . . . . . . . . . . 16 3 Processingofairbornegravitydata 21 3.1 Pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Low-passfiltering . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Cross-overadjustment . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Inversionofairbornegravitydata . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Remove-restoretechnique . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Integralmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Least-squarescollocation. . . . . . . . . . . . . . . . . . . . . . 31 3.2.4 Sequentialmultipoleanalysis . . . . . . . . . . . . . . . . . . . 35 3.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Combineddataprocessingandinversion 41 4.1 Gravityfieldrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Inversionmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Least-squaresestimation . . . . . . . . . . . . . . . . . . . . . . 44 iii Contents 4.2.2 Solutionstrategies . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Regularizationandparameterchoicerule . . . . . . . . . . . . . . . . . 47 4.3.1 Regularizationmethod . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.2 Regularizationerror . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Relationtoleast-squarescollocation . . . . . . . . . . . . . . . . 50 4.3.4 Parameterchoicerule. . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Frequency-dependentdataweighting . . . . . . . . . . . . . . . . . . . . 54 4.4.1 ARMAfiltersandToeplitzsystems . . . . . . . . . . . . . . . . 55 4.4.2 ARMAfilteringinthepresenceofdatagaps. . . . . . . . . . . . 58 4.4.3 Descriptionofthenoisemodel . . . . . . . . . . . . . . . . . . . 60 4.5 Estimationofnon-gravitationalparameters. . . . . . . . . . . . . . . . . 64 4.5.1 Biasanddrifthandling . . . . . . . . . . . . . . . . . . . . . . . 64 4.5.2 Estimationofscalefactors . . . . . . . . . . . . . . . . . . . . . 66 4.5.3 Testingofnon-gravitationalparameters . . . . . . . . . . . . . . 67 4.6 Edgeeffectreduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6.1 Extensionofthecomputationarea . . . . . . . . . . . . . . . . . 69 4.6.2 Modificationofthebasefunctions . . . . . . . . . . . . . . . . . 71 4.7 Combinationwithpriorinformation . . . . . . . . . . . . . . . . . . . . 73 4.7.1 Additionofpseudo-observations . . . . . . . . . . . . . . . . . . 74 4.7.2 Additionoffixedconstraints . . . . . . . . . . . . . . . . . . . . 74 5 Applicationtosimulateddata 77 5.1 Descriptionofthedata . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Computationswithnoise-freedata . . . . . . . . . . . . . . . . . . . . . 79 5.2.1 Gravityfieldrepresentationanddownwardcontinuation . . . . . 79 5.2.2 Reductionofedgeeffects. . . . . . . . . . . . . . . . . . . . . . 82 5.3 Computationswithdatacorruptedbywhitenoise . . . . . . . . . . . . . 86 5.3.1 Choiceofregularizationmatrix . . . . . . . . . . . . . . . . . . 87 5.3.2 Parameterchoicerules . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.3 ComparisonwithLSC . . . . . . . . . . . . . . . . . . . . . . . 91 5.4 Computationswithdatacorruptedbycolorednoise . . . . . . . . . . . . 93 5.4.1 Simulationofcolorednoise . . . . . . . . . . . . . . . . . . . . 93 5.4.2 Dataweightingusingtheexactnoisemodel . . . . . . . . . . . . 94 5.4.3 Comparisonwithlow-passfiltering . . . . . . . . . . . . . . . . 95 5.4.4 Noisemodelestimationfromresiduals. . . . . . . . . . . . . . . 97 5.5 Biasanddrifthandling . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.5.1 Estimationandfilteringofbiasparameters . . . . . . . . . . . . 99 5.5.2 Cross-overadjustment . . . . . . . . . . . . . . . . . . . . . . . 101 5.5.3 Simultaneousestimationofbiasanddriftparameters . . . . . . . 101 5.6 Summaryoftheoptimalsolutionstrategy . . . . . . . . . . . . . . . . . 103 iv Contents 6 Applicationtoairbornegravimetricsurveydata 105 6.1 Skagerrakdataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.1 Descriptionofthedata . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.2 Frequency-dependentdataweighting . . . . . . . . . . . . . . . 109 6.1.3 Outlierdetection . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.4 Estimationofbiasparameters . . . . . . . . . . . . . . . . . . . 117 6.1.5 Geoiddetermination . . . . . . . . . . . . . . . . . . . . . . . . 118 6.1.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Chiledataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.1 Descriptionofthedata . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.2 Gravityfielddetermination . . . . . . . . . . . . . . . . . . . . . 122 6.2.3 Estimationofnon-gravitationalparameters . . . . . . . . . . . . 126 6.2.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3 Timmins,Ontariodataset. . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.1 Descriptionofthedata . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.2 Estimationofthenoisemodel . . . . . . . . . . . . . . . . . . . 131 6.3.3 Biasestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3.4 Downwardcontinuation . . . . . . . . . . . . . . . . . . . . . . 136 6.3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.4 Summaryanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7 Conclusionsandrecommendations 141 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 A Pre-processingofairbornegravitydata 147 A.1 GPSprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A.2 Gravityprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 B Coordinatetransformation 153 C Least-squarescollocationandHilbertspaces 155 C.1 DefinitionofaHilbertspaceandsomeproperties . . . . . . . . . . . . . 155 C.2 ReproducingkernelHilbertspaces . . . . . . . . . . . . . . . . . . . . . 157 C.3 Least-squarescollocation . . . . . . . . . . . . . . . . . . . . . . . . . . 157 D DerivationoftheZOTregularizationmatrix 161 E Modificationofthebasefunctions 163 Bibliography 165 CurriculumVitae 179 v Summary Regionalgravityfieldmodelingusingairbornegravimetrydata Airborne gravimetry is the most efficient technique to provideaccurate high-resolution gravitydata in regionsthatlack gooddata coverageand thatare difficulttoaccess oth- erwise. With current airborne gravimetry systems gravity can be obtained at a spatial resolution of 2 km with an accuracy of 1-2 mGal. It is therefore an ideal technique to complementongoingsatellitegravitymissionsandestablishthebasisformanyapplica- tionsofregionalgravityfieldmodeling. Gravityfield determinationusingairborne gravitydata can be dividedintwo major steps. The first step comprises the pre-processing of raw in-flight gravity sensor mea- surements to obtain gravity disturbances at flight level and the second step consists of the inversion of these observations into gravity functionals at ground level. The pre- processingofairbornegravitydataconsistsofseveralindependentstepssuchaslow-pass filtering,across-overadjustmenttominimizemisfitsatcross-oversofintersectinglines, andgridding. Eachofthesestepsmayintroduceerrorsthataccumulateinthecourseof processing,whichcanlimittheaccuracyandtheresolutionoftheresultinggravityfield. Fortheinversionoftheairbornegravitydataatflightlevelintogravityfunctionalsat theEarth’ssurface,severalapproachescanbeused. Methodsthathavebeensuccessfully applied to airborne gravity data are integral methods and least-squares collocation, but bothmethodshavesomedisadvantages.Integralmethodsrequirethatthedataareavaila- ble in a much larger area than for which the gravity functionalsare computed. A large capsizeisrequiredtoreduceedgeeffectsthatresultfrommissingdataoutsidethetarget area. Least-squarescollocationsuffersmuchlessfromtheseerrorsandcanyieldaccurate results, provided that the auto-covariance function gives a good representation of data in- and outside the area. However, the number of base functions equals the number of observations,whichmakesleast-squarescollocationnumericallylessefficient. Inthisthesisanewmethodologyforprocessingairbornegravitydataisproposed. It combinesseparatepre-processingstepswiththeestimationofgravityfieldparametersin onealgorithm. Importantly,theconceptoflow-passfilteringisreplacedbyafrequency- dependent data weighting to handle the strong colored noise in the data. Frequencies at which the noise level is high get a lower weight than frequencies at which the noise levelislow.Furthermore,biasparametersareestimatedjointlywithgravityfieldparam- etersinsteadofapplyingacross-overadjustment.Toparameterizethegravitypotentiala spectralrepresentationisused,whichmeansthattheestimationresultsinasetofcoeffi- vii Summary cients. Thesecoefficientsareusedtocomputegravityfunctionalsatanylocationonthe Earth’ssurfacewithinthesurveyarea. Theadvantageofthedevelopedapproachisthat itrequiresaminimumofpre-processingandthatalldatacanbeusedasobtainedatthe locationswheretheyareobserved. The performance of the developed methodology is tested using simulated data and data acquired in airborne gravimetry surveys. The goal of the simulationsis to test the approach in a controlled environment and to make optimal choices for the processing of real data. For the numerical studies with simulated data, the new methodology out- performs the more traditional approaches for airborne gravity data processing. For the applicationofthedevelopedmethodologytorealdata,threedatasetsareused. Thefirst data set comprises airborne gravity measurements over the Skagerrak area, obtained as part of a joint project between several European institutionsin 1996. This survey pro- videdaccurateairbornegravitydata,andbecausegoodsurfacegravitydataareavailable withinthearea, thedatasetisveryusefultotesttheperformance oftheapproach. The seconddatasetwasobtainedbytheGeoForschungsZentrumPotsdamduringasurveyoff thecoastofChilein2002. Thisdataset,whichhasaloweraccuracythanthefirstdata set, is used to investigatethe estimation of non-gravitational parameters such as biases and scaling factors. The final data set that is used consists of airborne gravity data ac- quiredbySanderGeophysicsLimitedin2003. ThesurveyareaislocatednearTimmins, Ontario and is much smaller than the area of the other data sets. The small size of the areaandthehighaccuracyofthedatamakeitachallengingdatasetforregionalgravity modeling. Thecomputationalexperimentswithreal data showthatthe performance of thede- velopedmethodologyisatthesamelevelastraditionalmethodsintermsofgravityfield errors. However, itprovidesa more flexible and powerful approach to airborne gravity data processing. It requiresa minimumof pre-processingandall observationsare used inthedeterminationofaregionalgravityfield. Thefrequency-dependentdataweighting issuccessfullyappliedtoeachdataset. Theapproachprovidesastatisticallyoptimalso- lutionandisaformalizedwaytohandlecolorednoise. Anoisemodelcanbeestimated fromaposteriorileast-squaresresidualsinaniterativeway.Theprocedureispurelydata- drivenand,unlikelow-passfiltering,doesnotdependonpreviousexperienceoftheuser. Thedevelopedmethodologyallowsforthesimultaneousestimationofnon-gravitational parameters with the gravity field parameters. A testing procedure should be applied, however,toavoidinsignificantestimationsandhighcorrelations. FortheChiledataset asignificantimprovementoftheestimatedgravityfieldisobtainedwhenbiasandscale factorsareestimatedfromtheobservations.Theresultsofthecomputationswiththereal datasetsshowthehighpotentialofusingairbornegravimetrytoobtainaccurategravity forgeodeticandgeophysicalapplications. viii
Description: