ebook img

Reflected Brownian Motions in the KPZ Universality Class PDF

121 Pages·2017·1.755 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reflected Brownian Motions in the KPZ Universality Class

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 18 Thomas Weiss Patrik Ferrari Herbert Spohn Reflected Brownian Motions in the KPZ Universality Class 123 SpringerBriefs in Mathematical Physics Volume 18 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Cambridge, UK Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA SpringerBriefs are characterized in general by their size (50-125 pages) and fast production time (2-3 months compared to 6 months for a monograph). Briefsareavailableinprintbutareintendedasaprimarilyelectronicpublicationto be included in Springer’s e-book package. Typical works might include: (cid:129) An extended survey of a field (cid:129) A link between new research papers published in journal articles (cid:129) Apresentation ofcoreconceptsthatdoctoral students mustunderstand inorder (cid:129) to make independent contributions (cid:129) Lecture notes making a specialist topic accessible for non-specialist readers. SpringerBriefsinMathematicalPhysicsshowcase,inacompactformat,topicsof current relevance in the field of mathematical physics. Published titles will encompassallareasoftheoreticalandmathematicalphysics.Thisseriesisintended for mathematicians, physicists, and other scientists, as well as doctoral students in related areas. More information about this series at http://www.springer.com/series/11953 Thomas Weiss Patrik Ferrari (cid:129) Herbert Spohn fl Re ected Brownian Motions in the KPZ Universality Class 123 ThomasWeiss Herbert Spohn ZentrumMathematik ZentrumMathematik, M5 Technische UniversitätMünchen Technische UniversitätMünchen Garching Munich Germany Germany Patrik Ferrari Institut für Angewandte Mathematik UniversitätBonn Bonn Germany ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-3-319-49498-2 ISBN978-3-319-49499-9 (eBook) DOI 10.1007/978-3-319-49499-9 LibraryofCongressControlNumber:2016958720 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Inournotes,westudyamodelofinteractingone-dimensionalBrownianmotionsin considerabledetail.Atfirstsight,thedynamicslooksimple:theBrownianmotions are ordered, and Brownian motion with label j is reflected from the one with label j(cid:1)1. This model belongs to the Kardar–Parisi–Zhang universality class. Adding to the results as presented in our notes a recent contribution by Kurt Johansson, this model allows for the so far most complete asymptotic analysis. The limiting expressions are likely to be valid for all models in the KPZ class. The notes are based on two joint publications and the Ph.D. Thesis of Thomas Weiss. Our research was partially supported by the DFG under the grant numbers SP181/29-1 and SFB1060, project B04. Bonn, Germany Thomas Weiss Munich, Germany Patrik Ferrari September 2016 Herbert Spohn v Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... . 1 2 One-Sided Reflected Brownian Motions and Related Models .. .... . 9 3 Determinantal Point Processes.. .... .... .... .... .... ..... .... . 25 4 Airy Processes.. .... .... ..... .... .... .... .... .... ..... .... . 31 5 Packed and Periodic Initial Conditions ... .... .... .... ..... .... . 45 6 Stationary Initial Conditions ... .... .... .... .... .... ..... .... . 71 7 More General Initial Conditions and Their Asymptotics. ..... .... . 97 vii Chapter 1 Introduction Back in 1931 Hans Bethe diagonalized the hamiltonian of the one-dimensional Heisenbergspinchainthroughwhatisnowcalledthe“Betheansatz”(Bethe1931). Atthattimephysicistswerebusywithotherimportantdevelopmentsandhardlyreal- izedthemonumentalstep:forthefirsttimeastronglyinteractingmany-bodysystem hadbeen“solvedexactly”.Inthe1960sLiebandLiniger(1963),Yang(1967),and manymore (Sutherland2004)discoveredthatotherquantumsystemscanbehandled via Bethe ansatz, which triggered a research area known as quantum integrability. More details on the history of the Bethe ansatz can be found in Batchelor (2007). EvenwiththeBetheansatzatone’sdisposal,itisahighlynon-trivialtasktoarriveat predictionsofphysicalinterest.Thisiswhyeffortsinquantumintegrabilitycontinue even today, reenforced by the experimental realization of such chains through an arrayofcoldatoms(Simonetal.2011). On a mathematical level, quantum hamiltonians and generators of Markov processeshaveacomparablestructure.ThusonecouldimaginethattheBetheansatz is equally useful for interacting stochastic systems with many particles. The first indicationcamesomewhatindirectlyfromtheKardar-Parisi-Zhangequation(Kar- daretal.1986),forshortKPZ,inonedimension.Werefertobooks(Barabasiand Stanley1995;Meakin1998),lecturenotes(Johansson2006;Spohn2006;Quastel 2011; Borodin and Gorin 2012; Borodin and Petrov 2014; Spohn 2015), and sur- veyarticles(Halpin-HealyandZhang1995;Krug1997;SasamotoandSpohn2011; Ferrari and Spohn 2011; Corwin 2012; Takeuchi 2014; Quastel and Spohn 2015; Halpin-HealyandTakeuchi2015).TheKPZequationisastochasticPDEgoverning thetime-evolutionofaheightfunctionh(x,t)atspatialpointx andtimet,h ∈ R, x ∈R,t ≥0.Theequationreads ∂ h = 1(∂ h)2+ 1∂2h+W (1.1) t 2 x 2 x withW(x,t)normalizedspace-timewhitenoise.Weusehereunitsofheight,space, and time such that all coupling parameters take a definite value. For a solution of (1.1), the function x (cid:4)→ h(x,t) is locally like a Brownian motion, which is too singular for the nonlinearity to be well-defined as written. This difficulty was ©TheAuthor(s)2017 1 T.Weissetal.,ReflectedBrownianMotionsintheKPZUniversalityClass, SpringerBriefsinMathematicalPhysics,DOI10.1007/978-3-319-49499-9_1 2 1 Introduction resolvedthroughtheregularitystructuresof Hairer(2013),seealsoGubinelliand Perkowski(2015)forasomewhatdifferentapproach.Kardar(1987)notedonelinkto quantumintegrability.Heconsideredthemomentsofehandestablishedthattheyare relatedtotheδ-Bosegaswithattractiveinteractions,whichisanintegrablequantum many-bodysystem(LiebandLiniger1963).Moreprecisely,onedefines (cid:2)(cid:3)n (cid:4) E eh(yα,t) = f (y(cid:6)) (1.2) t α=1 with y(cid:6)=(y ,...,y ).Then 1 n ∂ f =−H f , (1.3) t t n t where H isthen-particleLieb-Linigerhamiltonian n (cid:5)n (cid:5)n Hn =−21 ∂y2α − 21 δ(yα−yα(cid:8)). (1.4) α=1 α(cid:7)=α(cid:8)=1 Almostthirtyyearslaterthegeneratoroftheasymmetricsimpleexclusionprocess (ASEP) was diagonalized through the Bethe ansatz. In case of N sites, the ASEP configuration space is {0,1}N signalling a similarity with quantum spin chains. In fact, the ASEP generator can be viewed as the Heisenberg chain with an imagi- naryXY-coupling.Forthetotallyasymmetriclimit(TASEP)andhalffilledlattice, GwaandSpohn(1992)establishedthatthespectralgapofthegeneratorisoforder N−3/2.ThesameorderisarguedfortheKPZequation.Thisledtothestrongbelief that,despitetheirverydifferentset-up,bothmodelshavethesamestatisticalprop- ertieson large space-time scales.Intheusual jargon of statisticalmechanics, both modelsareexpectedtobelongtothesameuniversalityclass,baptizedKPZuniver- salityclassaccordingtoitsmostprominentrepresentative. The KPZ equation is solved with particular initial conditions. Of interest are (i) sharp wedge, h(x,0) = −c |x| in the limit c → ∞, (ii) flat, h(x,0) = 0, 0 0 and (iii) stationary, h(x,0) = B(x) with B(x) two sided Brownian motion. The quantityofprimeinterestisthedistributionofh(0,t)forlarget.Moreambitiously, but still feasible in some models, is the large time limit of the joint distribution of {h(xα,t),α=1,...,n}. Inournotesweconsideranintegrablesystemofinteractingdiffusions,whichis governedbythecoupledstochasticdifferentialequations dxj(t)=βe−β(xj(t)−xj−1(t))dt +dBj(t), (1.5) where{B (t)}acollectionofindependentstandardBrownianmotions.Forthepara- j meterβ >0wewilleventuallyconsideronlythelimitβ →∞.Butforthepurpose of our discussion we keep β finite for a while. In fact there is no choice, no other systemofthisstructureisknowntobeintegrable.Theindexsetdependsontheprob- lem,mostlywechoose j ∈Z.Notethatx interactsonlywithitsleftindexneighbor j 1 Introduction 3 xj−1. The drift depends on the slope, as it should be for a proper height function. Buttheexponentialdependenceonxj−xj−1isveryspecial,howeverfamiliarfrom otherintegrablesystems.ThefamousTodachain(Toda1967)isaclassicalintegrable systemwithexponentialnearestneighbourinteraction.Itsquantizedversionisalso integrable(Sutherland1978). Interactionwithonlytheleftneighborcorrespondstothetotalasymmetricversion. Partialasymmetrywouldread (cid:6) (cid:7) dxj(t)= pβe−β(xj−xj−1)−(1− p)βe−β(xj+1−xj) dt +dBj(t) (1.6) with0≤ p ≤1.Thesearenon-reversiblediffusionprocesses.Onlyinthesymmetric case, p = 1, the drift is the gradient of a potential and the diffusion process is 2 reversible.ThenthemodelisnolongerintheKPZuniversalityclassandhasvery distinct large scale properties, see Guo et al. (1988); Chang and Yau (1992), for example. Equations(1.5)and(1.6)shouldbeviewedasadiscretizationof (1.1).Theinde- pendent Brownian motions are the natural spatial discretization of the white noise W(x,t). For the drift one might have expected the form (xj − xj−1)2 + xj+1 − 2xj +xj−1,butintegrabilityforcesanotherdependenceontheslope.For p =1the similaritywiththeKPZequationisevenstrongerwhenconsideringtheexponential moments (cid:2)(cid:3)n (cid:4) E eβxmα(t) = ft(m(cid:6)), (1.7) α=1 m(cid:6) ∈Zn.Differentiatingint oneobtains (cid:5)n (cid:5)n d β−2dt ft(m(cid:6))= ∂αft(m(cid:6))+ 21 δ(mα−mα(cid:8))ft(m(cid:6))−nft(m(cid:6)), (1.8) α=1 α,α(cid:8)=1 whereδ istheKroneckerdeltaand∂αf(m(cid:6)) = f(...,mα,...)− f(...,mα −1,...). Whencomparingwith(1.4),insteadof∂αonecouldhaveguessedthediscreteLapla- cian(cid:2)α = −∂αT∂α withT denotingthetranspose.Toobtainsucharesult,thedrift in (1.5) would have to be replaced by βe−β(xj−xj−1) +βe−β(xj−xj+1). But the linear equationsfortheexponentialmomentsarenolongerBetheintegrable.Notehowever thatthesemigroupsexp[∂αt]andexp[(cid:2)αt]differonalargescaleonlybyauniform translation proportional to t. With such a close correspondence one would expect system(1.5)tobeintheKPZuniversalityclassforanyβ >0,ashasbeenverifiedto someextent(Amiretal.2011;SasamotoandSpohn2010;Borodinetal.2015).Also partialasymmetry, 1 < p < 1,shouldbeintheKPZuniversalityclass.Infact,the 2 trueclaimisbymanyordersmoresweeping:theexponentialin(1.6), p (cid:7)= 1,canbe 2 replacedby“any”functionofxj−xj−1,exceptforthelinearone,andthesystemis stillintheKPZuniversalityclass.Theredoesnotseemtobeapromisingideaaround ofhowtoprovesuchaproperty.Currenttechniquesheavilyrelyonintegrability.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.