ebook img

Reference-Free CMOS Pipeline Analog-to-Digital Converters PDF

189 Pages·2013·3.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reference-Free CMOS Pipeline Analog-to-Digital Converters

Analog Circuits and Signal Processing Series Editors Mohammed Ismail Mohamad Sawan For furthervolumes: http://www.springer.com/series/7381 Michael Figueiredo João Goes • Guiomar Evans Reference-Free CMOS Pipeline Analog-to-Digital Converters 123 Michael Figueiredo Guiomar Evans Centre of Technologyand Systems Departamento de Física Universidade Novade Lisboa Faculdade de Ciências Quintada Torre Universidade deLisboa Monteda Caparica Edifício C8 2829-516 1749-016 Caparica Lisboa Portugal Portugal João Goes Department of ElectricalEngineering Universidade Novade Lisboa Quintada Torre Monteda Caparica 2829-516 Caparica Portugal ISBN 978-1-4614-3466-5 ISBN 978-1-4614-3467-2 (eBook) DOI 10.1007/978-1-4614-3467-2 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012940964 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To our families Preface Moreandmoresignalprocessingisbeingtransferredtothedigitaldomaintoprofit from the technological enhancement of digital circuits. Where technology scaling enhancesthecapabilitiesofdigitalcircuits,itdegradestheperformanceofanalog circuits. However, it is important to note that the impact that technology scaling has on digital circuits is becoming smaller and smaller, which means that, in nanotechnologies,toenhanceenergyandareaefficiency,wecannotsimplydepend on the benefits of this scaling. Although a share of the efficiency can be obtained from the technology, new circuit architectures and techniques have to be devel- oped to really push the limits of efficiency. In data converters, more specifically analog-to-digital converters (ADCs), a decision can be made: research energy and area efficient analog circuit tech- niques and architectures that cope with technological scaling issues, or design algorithms that use digital circuitry to assist the poor analog technological per- formance. The former option is the premise for the work developed in this book. The work reported in this book explores various design techniques with the purposeofenhancingthepowerandareaefficiencyofbuildingblocksmainlytobe used in multiplying digital-to-analog converter-based ADCs. Therefore, novel analog techniques are developed for the three main blocks of an MDAC-based stage, namely, the flash quantizer, the amplifier, and the switched capacitor net- work of the MDAC. These techniques include self-biasing and inverter-based design for the flash quantizer and amplifier. Regarding the MDAC, it combines three techniques: unity feedback factor, insensitivity to capacitor mismatch, and current-mode reference shifting. In the second part of this work, the designed amplifier is implemented and experimentally characterized demonstrating its practical feasibility and performance. The final part of this work explores the design and implementation of a med- ium-low resolution high speed pipeline ADC incorporating all the developed circuits. Experimental results validate the feasibility of the techniques and dem- onstrate its attractiveness in terms of power dissipation and reduced area. vii Acknowledgments We would like to thank various people, who, through their support and work, improved the design of some of the circuits presented in this book and enhanced the quality of the text of some chapters. Thesepeople,innoparticularorder,are:Prof.RuiTavares,Prof.NunoPaulino, Prof.LuisOliveira,Prof.A.Steiger-Garção,Prof.M.MedeirosSilva,Prof.F.Barúqui, andProf.A.Petraglia. We would like to thank all our colleagues and friends at the research lab, especially Edinei Santin and João Ferreira. Mr. Faustino for all the wirebonding work of all the ADC and amplifier chips. We would also like to thank the Department of Electrical Engineering of the Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, CTS-UNINOVA, and the Department of Physics/CFMC of the Faculdade de Ciências of the Universidade de Lisboa, which, through projects IMPACT (PTDC/EEAELC/101421/2008), OBiS FRET (PTDC/CTM/099511/2008), and FCT/CAPES (227/09), financed the trips to all conferences, workshops, and cooperations, where some of the work developed in this book was presented. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Book Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 General Overview of Pipeline Analog-to-Digital Converters. . . . . . 5 2.1 MDAC-Based Analog-to-Digital Converter Architectures. . . . . . 5 2.1.1 Two-Step Flash ADC . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Pipeline ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Multi-Step Algorithmic ADC. . . . . . . . . . . . . . . . . . . . 8 2.1.4 Time-Interleaving ADCs . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Building Blocks of Pipeline Analog-to-Digital Converters . . . . . 12 2.2.1 Sample-and-Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Multiplying-DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Local Flash Quantizer and Comparators. . . . . . . . . . . . . 17 2.2.4 Operational Amplifier and Common-Mode Feedback Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 Reference V/I and Buffering . . . . . . . . . . . . . . . . . . . . 23 2.2.6 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.7 Digital Backend and Decimation. . . . . . . . . . . . . . . . . . 29 2.3 Performance Metrics of Analog-to-Digital Converters . . . . . . . . 31 2.3.1 Static Performance Parameters . . . . . . . . . . . . . . . . . . . 32 2.3.2 Dynamic Performance Parameters. . . . . . . . . . . . . . . . . 36 2.4 Overview and Comparison of Published Work . . . . . . . . . . . . . 39 2.4.1 Two-Stage Opamps. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Medium-Low Resolution High-Speed MDAC-Based ADCs. . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.3 ADC Reference Voltage Circuitry. . . . . . . . . . . . . . . . . 42 xi xii Contents 3 Capacitor Mismatch-Insensitive Multiplying-DAC Topologies with Unity Feedback Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Conventional MDAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Principle of Operation. . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.2 Gain and Reference Shifting Error Analysis. . . . . . . . . . 48 3.1.3 Feedback Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.4 Thermal Noise Analysis. . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Current-Mode Reference Shifting MDAC. . . . . . . . . . . . . . . . . 52 3.2.1 Principle of Operation. . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 Gain Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.3 Reference Shifting Error Analysis. . . . . . . . . . . . . . . . . 59 3.2.4 Feedback Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Thermal Noise Analysis. . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Sampling Phase Reference Shifting MDAC . . . . . . . . . . . . . . . 66 3.3.1 Principle of Operation. . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Gain Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.3 Reference Shifting Error Analysis. . . . . . . . . . . . . . . . . 68 3.3.4 Feedback Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.5 Thermal Noise Analysis. . . . . . . . . . . . . . . . . . . . . . . . 71 3.4 Performance Summary and Comparison of 1.5-bit MDACs . . . . 71 4 Application of Circuit Enhancement Techniques to ADC Building Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Inverter-Based Self-Biased 1.5-bit Flash Quantizer . . . . . . . . . . 73 4.1.1 Principle of Operation. . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Circuit and Performance Analysis. . . . . . . . . . . . . . . . . 77 4.1.3 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1.4 Performance Summary and Comparison. . . . . . . . . . . . . 90 4.2 Two-Stage Inverter-Based Self-Biased Opamp . . . . . . . . . . . . . 92 4.2.1 Principle of Operation. . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.2 Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.3 Design Procedure and Optimization . . . . . . . . . . . . . . . 112 5 Design of a 7-bit 1 GS/s CMOS Two-Way Interleaved Pipeline ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3.1 Sample-and-Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3.2 CMRS Multiplying-DAC. . . . . . . . . . . . . . . . . . . . . . . 121 5.3.3 Flash Quantizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3.4 Opamp and CMFB . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Contents xiii 5.3.5 Switches and Clock-Bootstrapping Circuits . . . . . . . . . . 130 5.3.6 Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3.7 Common-Mode Voltage Buffer. . . . . . . . . . . . . . . . . . . 134 5.3.8 Digital Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.9 Decimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3.10 Complete ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Integrated Prototypes and Experimental Results. . . . . . . . . . . . . . 141 6.1 Two-Stage Inverter-Based Self-Biased Amplifier. . . . . . . . . . . . 141 6.1.1 Floorplan and Layout . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.1.2 Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1.3 PCB and Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.1.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2 7-bit 1 GS/s CMOS Two-Way Interleaved Pipeline ADC. . . . . . 150 6.2.1 Floorplan and Layout . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.2.2 Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . 151 6.2.3 PCB and Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2.4 Employed Methodology for Tuning the Reference Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 157 7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.1 Final Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Appendix: Solution for Current Reference Shifting Integration. . . . . . 167 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Description:
This book shows that digitally assisted analog to digital converters are not the only way to cope with poor analog performance caused by technology scaling. It describes various analog design techniques that enhance the area and power efficiency without employing any type of digital calibration circ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.