ebook img

Reduction Theory and Arithmetic Groups PDF

374 Pages·2022·2.892 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reduction Theory and Arithmetic Groups

ReductionTheoryandArithmeticGroups Arithmeticgroupsaregeneralisations, tothesettingof algebraicgroupsover aglobal field,of the subgroupsoffiniteindexinthegenerallineargroupwithentriesintheringofintegersofanalgebraic numberfield.Theyarerich,diversestructures,andtheyariseinmanyareasofstudy. Thistextenablesyoutobuildasolid,rigorousfoundationinthesubject.Itfirstdevelopsessential geometricandnumberoftheoreticalcomponentstotheinvestigationsofarithmeticgroupsandthen examinesanumberofdifferentthemes,includingreductiontheory,(semi)-stablelattices,arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adeliccoset spaces. Alsoincludedisathorough treatment of theconstruction ofgeometric cycles in arithmetically defined locally symmetric spaces and some associated cohomological questions. Writtenbyarenowned expert, thisbook willbeavaluable reference for researchers andgraduate studentsalike. JOACHIM SCHWERMERisEmeritusProfessorofMathematicsattheUniversityofVienna,and recentlyGuestResearcherattheMax-Planck-InstituteforMathematics,Bonn.HewasDirectorofthe Erwin-Schrödinger-InstituteforMathematicsandPhysics,Vienna,from2011to2016.Hisresearch focuses on questions arising in the arithmetic of algebraic groups and the theory of automorphic forms. Published online by Cambridge University Press NEWMATHEMATICAL MONOGRAPHS EditorialBoard JeanBertoin,BélaBollobás,WilliamFulton,BrynaKra,IekeMoerdijk, CherylPraeger,PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visitwww.cambridge.org/mathematics. 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.ŚniatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.VolićCubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetricMeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups 31. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryI 32. J.-H.EvertseandK.GyőryDiscriminantEquationsinDiophantineNumberTheory 33. G.FriedmanSingularIntersectionHomology 34. S.SchwedeGlobalHomotopyTheory 35. M.Dickmann,N.SchwartzandM.TresslSpectralSpaces 36. A.BaernsteinIISymmetrizationinAnalysis 37. A.Defant,D.García,M.MaestreandP.Sevilla-PerisDirichletSeriesandHolomorphicFunctionsinHigh Dimensions 38. N.Th.VaropoulosPotentialTheoryandGeometryonLieGroups 39. D.ArnalandB.CurreyRepresentationsofSolvableLieGroups 40. M.A.Hill,M.J.HopkinsandD.C.RavenelEquivariantStableHomotopyTheoryandtheKervaire InvariantProblem 41. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryII 42. S.KumarConformalBlocks,GeneralizedThetaFunctionsandtheVerlindeFormula 43. P.F.X.MüllerHardyMartingales 44. T.KalethaandG.PrasadBruhat–TitsTheory Published online by Cambridge University Press Reduction Theory and Arithmetic Groups JOACHIM SCHWERMER UniversityofVienna Published online by Cambridge University Press UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108832038 DOI:10.1017/9781108937610 © JoachimSchwermer2023 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2023 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Schwermer,Joachim,author. Title:Reductiontheoryandarithmeticgroups/JoachimSchwermer. Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2023.| Series:Newmathematicalmonographs|Includesbibliographicalreferencesandindex. Identifiers:LCCN2022022858|ISBN9781108832038(hardback)| ISBN9781108937610(ebook) Subjects:LCSH:Arithmeticgroups.|Numbertheory.| BISAC:MATHEMATICS/NumberTheory Classification:LCCQA174.2.S3492023|DDC512.7/4–dc23/eng20220902 LCrecordavailableathttps://lccn.loc.gov/2022022858 ISBN978-1-108-83203-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Published online by Cambridge University Press Contents Preface pageix PARTI ARITHMETICGROUPSINTHEGENERAL LINEARGROUP 1 1 Modules,Lattices,andOrders 3 1.1 Modules 4 1.2 Projective 𝑅-modules 7 1.3 Modulesoffractionsandlocalisation 10 1.4 Lattices 14 1.5 Integrality properties 18 1.6 Discretevaluation rings,Dedekinddomains, andoverrings 20 1.7 ModulesoverDedekinddomains 26 1.8 Centralsimplealgebras 28 1.9 Ordersinalgebras 37 1.10 Non-abelian Galoiscohomology 43 2 TheGeneralLinearGroupoverRings 46 2.1 Elementarymatrices 47 2.2 ThestablestructureofGL𝑛 53 2.3 ThestablerangeofaDedekinddomain 59 2.4 Thestablerangeofordersindivision algebras 61 2.5 Anapplication: Mennicke symbolsandtheirproperties 63 3 AMenagerieofExamples:AHistorical Perspective 70 3.1 Reductiontheoryofquadratic forms 71 3.2 LatticesinEuclidean space 78 3.3 Unitgroupsofnumberfields 82 Published online by Cambridge University Press vi Contents 3.4 Unitgroupsindivision algebras: thetheoremofKäteHey 83 3.5 Themodulargroup 85 4 ArithmeticGroups 90 4.1 RingsofS-integers:generalconcept andresults 91 4.2 Globalfields 93 4.3 RingsofS-integersinglobalfields 97 4.4 ArithmeticandS-arithmeticgroups 102 4.5 Arithmeticgroups:theirambientLiegroups 104 4.6 S-arithmetic groups:theirambientLiegroups 105 4.7 Thegenerallineargroupovertheringofadeles 108 4.8 Strongapproximation property andconsequences 113 4.9 ElementsoffiniteorderinGL𝑛(Z) 118 5 ArithmeticallyDefinedKleinianGroupsandHyperbolic3-Space 122 5.1 Kleiniangroupsactingonhyperbolic 3-space 122 5.2 Bianchigroups 124 5.3 ReductiontheoryforBianchigroups 126 5.4 Arithmetic groups originating from orders in quaternion division algebras 135 PARTII ARITHMETICGROUPSOVERGLOBALFIELDS 139 6 Lattices:ReductionTheoryforGL𝒏 141 6.1 Thebasiccasesofaglobalfield:thenumberfieldQ andarational function field 𝐹𝑞(𝑡) 142 6.2 Minkowskiinequalities orsuccessive minima 143 6.3 Mahler’scompactness criterion 150 7 ReductionTheoryand(Semi)-StableLattices 152 7.1 Euclidean Z-lattices 153 7.2 Arithmetic O𝑘-lattices 159 7.3 Canonical filtration,(semi)-stable lattices 164 7.4 Reductiontheoryandthecanonical filtrationforZ-lattices 167 7.5 Comparison 171 8 ArithmeticGroupsinAlgebraic 𝒌-Groups 174 8.1 Arithmeticgroups 175 8.2 ChevalleygroupschemesoverZ 178 8.3 Integral structuresforinner 𝑘-formsofSL𝑛 186 8.4 Integral structuresforarbitrary 𝑘-formsofSL𝑛 191 8.5 Divisionalgebras withprescribed localbehaviour 199 Published online by Cambridge University Press Contents vii 9 ArithmeticGroups,AmbientLieGroups,andRelated GeometricObjects 202 9.1 Homogeneous spaces, locallysymmetricspaces 203 9.2 S-arithmetic groupsandaffinebuildings 205 9.3 Arithmeticgroupsinunipotent groups 206 9.4 Arithmeticgroupsinalgebraic 𝑘-tori 211 9.5 Godement’s compactness criterion 219 9.6 Constructions ofcompactornon-compact arithmeticquotients 232 10 GeometricCycles 237 10.1 Construction ofgeometriccycles 238 10.2 Orientability 241 10.3 Intersection numbers, excessbundles, andEulernumbers 245 11 GeometricCyclesviaRationalAutomorphisms 249 11.1 Prelude 250 11.2 Fixedpointsandnon-abelian Galoiscohomology 252 11.3 Intersection numbersofspecial geometriccycles 256 11.4 TheEulernumberoftheexcessbundle 258 11.5 Non-vanishing of the intersection number of two geometric cycles 268 11.6 Construction ofcohomology classes:anoutlook 272 12 ReductionTheoryforAdelicCosetSpaces 274 12.1 Preliminaries: adeliccosetspaces 275 12.2 Theadelegroups𝐺(A𝑘) and𝐺(A𝑘)1 276 12.3 Adelicheightsandtheirproperties 279 12.4 ReductiontheoryforGL𝑛:Minkowskirevisited 285 12.5 Compactness criterionandSiegeldomains 289 12.6 Thecaseofconnected reductive 𝑘-splitgroups:asketch 291 PARTIII APPENDICES 297 AppendixA LinearAlgebraicGroups:AReview 299 A.1 Affine 𝑘-groupschemeswith 𝑘 aring 299 A.2 Hopfalgebrasandaffine 𝑘-group schemes 304 A.3 Smoothness 307 A.4 Operations andrepresentations 308 A.5 Restrictionandinduction of𝐺-modules 311 A.6 Cohomology of𝐺-modules 313 A.7 Weilrestriction orrestrictionofscalars 314 A.8 Unipotent groups 317 A.9 Diagonalisable andmultiplicative groups 319 Published online by Cambridge University Press viii Contents A.10 Algebraic 𝑘-tori 321 A.11 Reductivegroups 322 A.12 Formsofalgebraicgroups 324 AppendixB GlobalFields 326 B.1 Absolutevaluesandlocalfields 326 B.2 Globalfields 328 B.3 Restrictedproducts oftopological spaces 330 B.4 Theringofadeles 331 B.5 Theidelegroup 333 B.6 S-integers andS-units 334 AppendixC TopologicalGroups,HomogeneousSpaces, andProperActions 335 C.1 Topological groups 335 C.2 Topological transformation groups 339 C.3 Locallycompacttransformation groups 341 C.4 Propermaps 341 C.5 Properactions oftopological groups 343 C.6 Characterisation ofproperactions 346 References 350 Index 357 Published online by Cambridge University Press Preface Arithmetic groups are generalisations, to the setting of algebraic groups defined over a global field, of the subgroups of finite index in the general linear group GL𝑛(Λ) with entries in the ring of integers Λ of an algebraic number field 𝑘 or, moregenerally, anorderΛinafinite-dimensional divisionalgebraover 𝑘.Histori- cally suchgroups arosenaturally inthestudyofarithmetic properties ofquadratic forms.Thestudyofreduction ofsuchforms,asdeveloped byGauss,Hermite,and Minkowski, amongothers, gaveapowerfulwaytoselect, fromtheinfinitelymany forms, that are integrally equivalent to a given form, one that is intrinsically char- acterised by suitable conditions on its entries. Minkowski, following a suggestion made by Gauss in 1831, created a new version of reduction theory by working with lattices as geometric objects. His works, especially his geometric point of view, served as substantial stimuli for Siegel’s studies of quadratic, symplectic, or Hermitianformsandtheirassociateddiscontinuous groups.Sincethedevelopment of the general theory of linear algebraic groups over fields, it has been natural to view arithmetic groups as a rich integral extension of that algebro-geometric the- ory.Thus,thankstotheworkofChevalley,Borel,Serre,Harder,andRaghunathan, the study ofarithmetic groups today can start from the theory of algebraic groups definedoverafield𝑘,whichiseitheranalgebraicnumberfieldorafiniteseparable extension of 𝐹𝑞(𝑡),where 𝐹𝑞 isafinitefieldand𝑡 istranscendental over 𝐹𝑞,i.e. 𝑘 isaglobalfield. An arithmetic group Γ acts on a homogeneous space which is defined by the ambientalgebraicgroup.Thisactionandthestudyoftheorbitspaceareofinterest, bothintrinsicallyandfortheinsightintothestructureofΓ.Thus,thereisanessential geometric component to the investigations of these groups. Further, arithmetic groups arise in a wide variety of mathematical contexts, ranging from differential geometry,inparticular,thetheoryoflocallysymmetricspaces,topology,geometric group theory, to number theory and arithmetic algebraic geometry, the theory of automorphic formsoverglobalfields,andevenlatelyquantum computing. https://doi.org/10.1017/9781108937610.001 Published online by Cambridge University Press x Preface Therefore, on theone hand, ‘Arithmetic Groups’ donot present themselves asa coherent limitedtheory,sothatabookdealingwiththisareafacesachallenge. On theother hand, there aresomeoverarching results andconstructions, inparticular, regarding reduction theory, whichare fundamental tomany oftheareas discussed above and which are likely to be used in different contexts. Thus, as a resolution, inspired by the approach in Carl E.Schorske’s Fin-de-Siècle Vienna, each chapter ofthismonographis‘issuedfromaseparateforayintotheterrain,varyinginscale andfocusaccording tothenatureoftheproblem’. Itisintendedtolayrigorousandsolidgroundwork indealingwithS-arithmetic groupsinalgebraicgroupsdefinedoveraglobalfield 𝑘.Attheoutset,weexamine the fundamental case ofthe general linear group. Additionally, wesurvey someof thehistoricalsources,whichmightbehelpfulforunderstanding thegenesisofthis mathematical area. Webeginwithananalysisofthenormalsubgroupstructureofthegenerallinear group GL𝑛 overa(non-commutative) ringwithidentity andanintroduction ofthe basicconceptsregarding S-arithmeticgroupsinGL𝑛.Bydefinition,theringO𝑘,S ofS-integersinaglobalfield 𝑘,associated withafinitesetS ofplacesof 𝑘 which includes thearchimedean onesinthecaseofanalgebraic number field,isthering ofelementsof𝑘integralateachplaceoutsideofS.If𝑘isanalgebraicnumberfield andSconsistsonlyofthearchimedeanplacesof𝑘,theringofS-integersin𝑘isthe usualringofintegersO𝑘 in𝑘.AnS-arithmeticsubgroupof𝐺𝐿𝑛(𝑘)isdefinedtobe asubgroupwhichiscommensurablewith𝐺𝐿𝑛(O𝑘,S).Anyideal𝔮inO𝑘,S givesrise totheprincipalS-congruencesubgroupGL𝑛(O𝑘,S,𝔮)oflevel𝔮.Itisdefinedasthe kernel ofthegrouphomomorphism GL𝑛(O𝑘,S) −→ GL𝑛(O𝑘,S/𝔮),thusanormal subgroup of finite index in the S-arithmetic group GL𝑛(O𝑘,S). Any S-arithmetic subgroup that contains a principal S-congruence subgroup for some ideal 𝔮 is called a congruence subgroup. We indicate how S-arithmetic groups, depending on the form of S, can be naturally viewed as discrete subgroups in a reductive (cid:2) Lie group, real, 𝑝-adic or product of such groups, to be denoted 𝑣∈S𝐺𝑣 =: 𝐺S.Foreachplace𝑣 ∈ S,thereisacorresponding homogeneousspace 𝑋𝑣,andan S-arithmetic sub(cid:2)group, viewedasadiscretesubgroup of𝐺S,naturally actsonthe product 𝑋S := 𝑣∈S 𝑋𝑣. The resulting orbit spaces are the objects that concern us. Having these essentials in place, we follow different thematic branches. As a conclusiontothefirstpartofthebook,pointingtowardsthegeometricperspective, wediscuss reduction theory inthe case ofarithmetically defined subgroups of the groupoforientationpreservingisometriesofhyperbolic3-spaceandstudytheorbit spaces. The second part begins with the uniform construction of Siegel sets in the case GL𝑛 overthebasic cases ofaglobal field,namely, thefield Qofrational numbers or the field 𝐹𝑞(𝑡) of rational functions in the variable 𝑡 and having coefficients in https://doi.org/10.1017/9781108937610.001 Published online by Cambridge University Press

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.