Reduction of Vibrations in Engines using Centrifugal Pendulum Vibration Absorbers Master’sThesisintheMaster’sprogrammeAutomotiveEngineering ANDERS WEDIN DepartmentofProductandProductionDevelopment DivisionofProductDevelopment CHALMERSUNIVERSITYOFTECHNOLOGY Go¨teborg,Sweden2011 Master’sThesis2011 MASTER’STHESIS2011 Reduction of Vibrations in Engines using Centrifugal Pendulum Vibration Absorbers –aStudywithModelingandSimulationofCentrifugalPendulumVibrationAbsorbersinthe DualMassFlywheel Master’sThesisintheMaster’sprogrammeAutomotiveEngineering ANDERSWEDIN DepartmentofProductandProductionDevelopment DivisionofProductDevelopment CHALMERSUNIVERSITYOFTECHNOLOGY Go¨teborg,Sweden2011 ReductionofVibrationsinEnginesusingCentrifugalPendulumVibrationAbsorbers – a Study with Modeling and Simulation of Centrifugal Pendulum Vibration Absorbers in the DualMassFlywheel ANDERSWEDIN (cid:13)c ANDERSWEDIN,2011 Master’sThesis2011 DepartmentofProductandProductionDevelopment DivisionofProductDevelopment ChalmersUniversityofTechnology SE-41296Go¨teborg Sweden Telephone: +46(0)31-7721000 Cover: Sketch of Simple, Bifilar, Roll Form, and a possible design of a Bifilar CPVA with General Path (inblue). DrawnbyAnnaWedin. ChalmersReproservice Go¨teborg,Sweden2011 ReductionofVibrationsinEnginesusingCentrifugalPendulumVibrationAbsorbers – a Study with Modeling and Simulation of Centrifugal Pendulum Vibration Absorbers in the DualMassFlywheel Master’sThesisintheMaster’sprogrammeAutomotiveEngineering ANDERSWEDIN DepartmentofProductandProductionDevelopment DivisionofProductDevelopment ChalmersUniversityofTechnology Abstract ThedevelopmentanduseofCPVAs(CentrifugalPendulumVibrationAbsorbers)started in the beginning of the 20th century, and one of the first traces is a model by Kutzbach in 1911. Most of the models were developed and patented during the 1930s, and those types are still used today. CPVAs came to play a vital role in the development of radial aircraft engines, which were used extensively in World War II. With the aid of correctly tunedCPVAs,vibrationsofdifferentorderscouldbereducedsignificantly,ensuringreliable operation. TheCPVAisparticularlyusefulforenginessinceitisnotdependentonfrequency, but the order of the applied torque. The CPVA can therefore reduce vibrations in the entire enginespeedrange. CPVAs are now finding use in powertrains of cars, more specifically in the DMF (Dual Mass Flywheel). The problem automotive manufacturers face today, from a vibration per- spective, is that engines generally tend to become smaller in size and have fewer cylinders, whilethepoweroutputtendtoincrease. TheDMFhasbeenaneffectivewayofreducingvi- brationsfromenginetotransmissionforsometimenow,buteverincreasingvibrationlevels fromnewlydevelopedenginescreateaneedofusingCPVAs. The main goal of this thesis work is to, at Volvo Cars engine development department, modelandsimulatedifferenttypesofCPVAsinthesoftwareSimdrive3DbyContecsEng, wheresimplevibrationmodelscanbemadeforfirstinvestigations. DifferentCPVAshavebeenmodeledthroughafullycustomizableelement,programmed inC/C++forSimdrive. SpecialattentionhasbeengiventomodelCPVAswithcycloidaland epicycloidalpaths,sincetheyareimportantforpracticaluse. TheCPVAunitperformanceis analyzedinonemodelwithann:thordersine-signaltorque,andalsoinamorerealisticpow- ertrain model with cylinders, DMF with CPVAs attached, FEAD (Front Engine Accessory Drives),andrealisticinputtorquefromcombustionsintheenginecylinders. Insimulationswithsine-signaltorque,allCPVAtypesconsideredseemtohavecapabil- itiesofabsorbingvibrations. Someofthetypeswithcycloidalorepicycloidalpathsreduce vibrationsofthedesignatedordertoalevelveryclosetozero,foramajorpartoftheengine speedrange. Intheadvancedpowertrainmodel,wherethependulummassisrestrictedto1 kg, the CPVA units are stretched to their limit. Types with regular circular paths either fail to reduce or amplify vibrations, while types with cycloidal or epicycloidal paths manage to reducevibrationsforpartsoftheenginespeedrange. Withmoresimulationtime,theCPVA parameterscouldbeoptimizedfurther. Future work suggestions include further development of models, introduction of ”stop- pers” in models, and introduction of multiple independent absorbers to account for non- unisonmotion. Keywords: Torsional Vibrations, Centrifugal Pendulum Vibration Absorbers, Dual Mass Fly- wheel, Bifilar, Salomon, General-Path Representation, Cycloid, Epicycloid, Tautochrone, Mod- eling,Simulation,Car,Powertrain,Crankshaft ,ProductandProductionDevelopment,Master’sThesis2011 I Sammanfattning I bo¨rjan av 1900-talet bo¨rjade utvecklingen och anva¨ndandet av centrifugal-pendelda¨mpare (en- gelska: CentrifugalPendulumVibrationAbsorbers),da¨rettavdefo¨rstaspa˚rena¨renmodellfra˚n 1911avKutzbach. Deflestaavmodellernautveckladesochpatenteradesunder1930-talet,vilka anva¨ndsa¨nnuidag. Pendelda¨mparespeladeenstorrolliutvecklingenavdemotoreravstja¨rntyp som satt i ma˚nga flygmaskiner under andra va¨rldskriget. Med hja¨lp av pendelda¨mpare kunde vibrationer av olika ordningar reduceras och fo¨rhindra motorhaveri. Pendelda¨mpare a¨r sa¨rskilt va¨lla¨mpadefo¨rfo¨rbra¨nningsmotorereftersomdeda¨mparvibrationerihelavarvtalsregistret,inte baravidenvissfrekvens. Pendelda¨mparebo¨rjarnuanva¨ndasidrivlinanhosbilar,na¨rmarebesta¨mtitva˚massesva¨nghjul (TMS).Idagensutvecklingtenderarmotorerattblialltmindre,hafa¨rrecylindrar,ochsamtidigt utveckla mer effekt vilket skapar problem pa˚ vibrationssidan. TMS har anva¨nts under en tid fo¨r attda¨mpavibrationerfra˚nmotortilltransmission,mensenaremotorermedho¨geffektskaparett behovattanva¨ndapendelda¨mpareiTMS:et. Dethuvudsakligama˚letmeddettaexamensarbetea¨r att,pa˚Volvopersonbilarsmotorutveckling,modelleraochsimuleraolikatyperavpendelda¨mpare iprogramvaranSimdrive3DavContecsEng,da¨renklarevibrationsmodellerkanskapas. Olikatyperavpendelda¨mpareharmodelleratsmanuelltiettelement,somharprogrammerats iC/C++fo¨rSimdrive. Sa¨rskiltfokusharlagtspa˚ attmodellerapendelda¨mparemedcykloid-och epicykloidbanor, eftersom dessa typer a¨r viktiga i praktiken. Prestandan hos pendelda¨mparna underso¨ks i en modell med ett sinus-vridmoment som insignal, och ocksa˚ i en mer realistisk drivlina-modell med cylindrar, TMS med pendelda¨mpare, hja¨lpapparatdrivning, och realistiskt motor-vridmoment. Simuleringaravmodellenmedsinus-vridmomentvisarattallatyperavpendelda¨mpareverkar hafo¨rma˚ganattda¨mpavibrationer. Vissaavtypermedcykloid-ochepicykloidbanorda¨mparvi- brationernasa˚ passbraattdena¨ranogelimineras,o¨verhelavarvtalsregistret. Idrivlina-modellen med realistiskt motor-vridmoment, da¨r den totala tilla˚tna massan fo¨r pendlarna a¨r 1 kg, verkar pendelda¨mparna befinna sig pa˚ stabilitetsgra¨nsen. De typer som har vanliga cirkula¨ra banor ly- ckas inte da¨mpa vibrationer, vissa av modellerna fo¨rsta¨rker till och med vibrationerna. Typerna med cykloid- eller epicykloidbanor lyckas att da¨mpa vibrationerna o¨ver vissa delar av varvtal- sregistret. Omflersimuleringarko¨rskanparametrarnafo¨rdeolikatypernaoptimerasytterligare. Na˚gra rekommendationer fo¨r framtida arbete a¨r fortsatt arbete med utveckling av modeller, info¨rande av ”stopp” fo¨r pendelro¨relsen och info¨rande av modeller med flera oberoende pendlar pa˚ sammapendelda¨mparenheteftersomdeiverklighetenintero¨rsigunisont. II ,ProductandProductionDevelopment,Master’sThesis2011 Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Sammanfattning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V ListofAbbreviationsandNotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 CompanyBackground–VolvoCars . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 HistoricalUseandDevelopmentofCPVAs . . . . . . . . . . . . . . . . . . . . 1 1.3 ProblemBackgroundandDescription . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 ThesisPurposeandGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.7 Simdrive3DandotherusedSoftware . . . . . . . . . . . . . . . . . . . . . . . 5 1.8 ThesisOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 THEORETICALFOUNDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 VibrationsinMulticylinderEngines . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 LagrangianFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 EquationsofMotionasaSystemofFirst-OrderOrdinaryDifferentialEquations . 9 2.4 BasicFunctionandTuningofCPVAs . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Cycloids,EpicycloidsandTautochrones . . . . . . . . . . . . . . . . . . . . . . 13 2.6 StabilityandPerformanceofCPVAs . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 DescriptionofCPVAsModeledinThisWork . . . . . . . . . . . . . . . . . . . 16 2.7.1 SimpleTypewithCircularPath . . . . . . . . . . . . . . . . . . . . . . 16 2.7.2 BifilarType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7.3 RollForm(Salomon)Type . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7.4 CycloidalPathType . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7.5 Epicycloidal(Cardoid)PathType . . . . . . . . . . . . . . . . . . . . . 24 2.7.6 Bifilar Type with Rollers and General-Path Representation (Epicycloid Path) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 LITERATUREREVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 METHODOLOGY–MODELINGANDSIMULATION . . . . . . . . . . . . . . 31 4.1 CPVAModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 DerivationofEquationsofMotionforSimdriveorMatlab . . . . . . . . 31 4.1.2 C/C++ProgrammingandCompilationtodll-fileinVisualStudio . . . . 31 4.1.3 Implementationofdll-fileinSimdrive . . . . . . . . . . . . . . . . . . . 33 4.2 SimdriveModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 VerificationModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 ModelwithSine-signalTorque . . . . . . . . . . . . . . . . . . . . . . . 34 ,ProductandProductionDevelopment,Master’sThesis2011 III 4.2.3 AdvancedModelwithDMF,FEAD,DieselEngineTorque . . . . . . . . 35 4.3 SimulationsinSimdrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 RESULTSFROMSIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1 ModelwithSine-signalTorque . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 AdvancedModelwithDMF,FEAD,DieselEngineTorque . . . . . . . . . . . . 43 6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 CONCLUSIONSANDRECOMMENDATIONSFOR FUTUREWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A MatlabCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A.1 CPVADynamicsSimulationCode . . . . . . . . . . . . . . . . . . . . . . . . . 55 A.2 Circular/Cycloidal/EpicycloidalPathCode . . . . . . . . . . . . . . . . . . . . . 56 B C/C++CodefordllSimpleTypeCPVAElementinSimdrive . . . . . . . . . . . . 58 C EquationsofMotionforBifilarTypewithRollersandGeneral-PathRepresentation (Mathematica) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 D VisualStudioInstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 E CPVAParametersinSimdriveSimulations . . . . . . . . . . . . . . . . . . . . . . 71 IV ,ProductandProductionDevelopment,Master’sThesis2011 Preface In this study, several types of Centrifugal Pendulum Vibration Absorbers (CPVAs) have been modeled and simulated in the software Simdrive 3D, as a possible method to reduce vibrations of specific orders, originating from engine combustion cycles. Simple, Bifilar, Salomon, and General-Path type CPVAs have been considered. The work has been carried out from May to November2010atVolvoCars–EngineTransmissionsinGo¨teborg,Sweden,withAndersWedin as student. Supervisors have been Ph.D. Tomas Johannesson at Volvo Cars, and Senior Lecturer Go¨ranBra¨nnareattheDepartmentofProductandProductionDevelopment,ChalmersUniversity ofTechnologyinGo¨teborg,Sweden. Acknowledgements First I would like to thank my supervisor Tomas Johannesson, for initiating and giving me this very varied and rewarding thesis, and also for being very supportive and helpful with whatever issues duringthe work. I would alsolike to thank PeterNorin at Volvo, forstarting this thesisin collaborationwithTomas,andforlettingmeworkonhisgroupinEngineTransmissions. Thanks alsotomysupervisoratChalmers,Go¨ranBra¨nnare,whohasbeenveryhelpfulduringthiswork. Further, I would like to thank Tobias Hansson at Volvo for his help with Simdrive among other things, and hope that he will find this work useful in the future. Thanks also to Niclas Andersson at Volvo for his comprehensive guidance on the function of Dual Mass Flywheels, andhowtheycanbemodeled. SpecialthankstotheguysatContecsEngineeringfortheirinvaluablesupport,especiallyfor their help with programming issues. It would not have been possible to model the CPVA units withouttheirhelp. ThanksalsotoAndreasKa¨llforgettingmestartedwithCprogramming,and VictorSandgrenforbeingabrilliantstudentreviewerofthisthesis. AveryspecialthankstofamilyfriendElisabetLeppa¨nen,forherhelpwithfindingthiswork by spreading the word at Volvo Cars. Thanks also to Professor S. W. Shaw for sending me previousworkinthefield,whichprovedtobemosthelpful. Iwouldalsoliketothankthepeople atVolvothatshowedinterestinmyworkbylisteningtomypresentations. Finally,awarmthankstofamilyandfriendsfortheirsupport. Thankstomysisterfordrawing thenicecoverpictureforthisreport. Go¨teborg,February2011 AndersWedin ,ProductandProductionDevelopment,Master’sThesis2011 V List of Abbreviations and Notations Abbreviations CPVA(s): CentrifugalPendulumVibrationAbsorber(s) DMF: DualMassFlywheel FEAD: FrontEngineAccessoryDrives ODE(s): OrdinaryDifferentialEquation(s) Notations t: time[s] q : i:thgeneralizedcoordinate i q˙ : i:thgeneralizedvelocity i θ: CPVAunitrotorangle,firstgeneralizedcoordinate[rad] φ: CPVAunitpendulumangle,secondgeneralizedcoordinate[rad] T: kineticenergy[kg ·m2/s2] V: potentialenergy[kg ·m2/s2] L: Lagrangian,thedifferenceinkineticandpotentialenergy[kg ·m2/s2] Yn2: arrayinC/C++storinggeneralizedcoordinates,velocities,andaccelerations Ω: steadyrotaryspeedofCPVArotor ω : naturalangularfrequencyofCPVA[rad/s] n m: totalpendulummass[kg] m : massofeachpendulum[kg] p J: momentofinertiaforrotor[kg ·m2] I: totalmomentofinertiapendulumforpendulums[kg ·m2] I /I : momentofinertiaforeachpendulum[kg ·m2] p pend x: coordinateininertialsystemoftheCPVA[m] y: coordinateininertialsystemoftheCPVA[m] s: arclengthvariable,secondgeneralizedcoordinate v: velocityvectorforpendulumcenterofmass R: distancefromrotorcentretopendulumattachmentpointonrotor[m] r: distancefrompendulumattachmentpointonrotor,topendulumcenterofmass[m] k : radiusofgyrationforpendulum[m] λ VI ,ProductandProductionDevelopment,Master’sThesis2011
Description: