Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal SUBJECTAREAS: LinaYang1,NuoYang2&BaowenLi1,2,3 STRUCTURALPROPERTIES THERMOELECTRICS 1DepartmentofPhysicsandCentreforComputationalScienceandEngineering,NationalUniversityofSingapore,Singapore STRUCTUREOFSOLIDSAND 117542,RepublicofSingapore,2CenterforPhononicsandThermalEnergyScience,SchoolofPhysicalScienceandEngineering, LIQUIDS TongjiUniversity,200092Shanghai,People’sRepublicofChina,3NUSGraduateSchoolforIntegrativeSciencesandEngineering, MECHANICALENGINEERING NationalUniversityofSingapore,Singapore117456,RepublicofSingapore. Received Westudiedhowtheperiodlengthandthemassratioaffectthethermalconductivityofisotopicnanoscale 9October2012 three-dimensional(3D)phononiccrystalofSi.Simulationresultsbyequilibriummoleculardynamicsshow isotopicnanoscale3DphononiccrystalscansignificantlyreducethethermalconductivityofbulkSiathigh Accepted temperature(1000 K),whichleadstoalargerZTthanunity.Thethermalconductivitydecreasesasthe 6December2012 periodlengthandmassratioincreases.Thephonondispersioncurvesshowanobviousdecreaseofgroup velocitiesin3Dphononiccrystals.Thephonon’slocalizationandbandgapisalsoclearlyobservedinspectra Published ofnormalizedinverseparticipationratioinnanoscale3Dphononiccrystal. 31January2013 Thermoelectricmaterialsareimportantforgeneratingelectricityfromwasteheatandbeingusedassolid-state Correspondenceand Peltiercoolers.Theperformanceofthermoelectricmaterialsdependsonthefigureofmerit(ZT)1,ZT5 requestsformaterials S2sT/k,whereS,T,s,andkaretheSeebeckcoefficient,absolutetemperature,electricalconductivityand totalthermalconductivity,respectively.ZTcanbeincreasedbyincreasingSors,ordecreasingk.However,itis shouldbeaddressedto difficult to improve ZT in conventional materials. First, simple increase S forgeneral materials will leadto a N.Y.(imyangnuo@ simultaneousdecreaseins1,2.Also,anincreaseinsleadstoacomparableincreaseintheelectroniccontribution tongji.edu.cn)orB.L. tok1,2. ([email protected]) AnalternativewaytoincreaseZTistoreducethethermalconductivitywithoutaffectingelectronicproperty1,3. Moreover,ultra-lowthermalconductivityisalsorequiredtopreventtheback-flowofheatfromhotendtocool end.Therefore,reductionofthermalconductivityiscrucialinthermoelectricapplication. Phononiccrystalsareconstructedbyaperiodicarrayofscatteringinclusionsdistributedinahostmaterial.Due toitsperiodicchangeofthedensityand/orelasticconstants,phononiccrystalsexhibitphononicbandgaps4.This remarkablepropertyisverydifferentfromthoseoftheconventionalmaterialsandcanbeengineeredtoachieve new functionalities. Aspecialone-dimensional phononiccrystalis thesuperlattice, onedimensional periodic arrangementoftwodifferentmaterials.Itisdemonstratedthatsuperlatticecrystalsareeffectivetoachievevery lowthermalconductivity5–11.Superlatticeshavebeenextensivelystudiedtodesignthermoelectricmaterialswith high ZT. Preliminary works show that there is a minimum value of thermal conductivity in the direction perpendiculartotheplanesofsuperlatticewhentheperiodlengthisreducedtonanoscale12–14. Recently, it is demonstrated experimentally that the Si nanomesh film, a two-dimensional (2D) phononic crystal,exhibitedlowthermalconductivity15bymodificationofphononbandstructure.SinglecrystallineSiby phononiccrystalpatterningin2Dhasasmallervalueofthermalconductivity(,6 W/m-K)thanbulkSibecause ofthelowgroupvelocitiesandthecoherentphononiceffects16.Itispredictedthatatomic-scale3Dphononic crystalofGequantum-dotinSihasverylowthermalconductivityinallthreespatialdirections17.Thethermal conductivity is reduced by several orders of magnitude compared with bulk Si. This reduction of thermal conductivityisduetothereductioningroupvelocitiesandmultiplescatteringofparticle-likephonons. In this letter, we study the thermal conductivity of nanoscale 3D silicon phononic crystal. The 3D crystal consistsof28Siatomsand‘‘isotopes’’MSiatomswhichhavethesamepropertiesas28Siexceptthemass,whereMis theatomicmassoftheisotopeofSi.Themassratio,R,isdefinedasR5M/28.The3Disotopicphononiccrystal couldalsobenamedas3Dsuperlatticebecausedifferentmaterialarrangedperiodicallyinthreespatialdirections. Wefindthe3Disotopicphononiccrystalhastheabilitytoflattenphonondispersioncurvescomparedwith thatofbulkSianditcouldshowbandgapswhenproperlyarranged.Westudiedhowtheperiodlengthandthe massratioaffectthethermalconductivityofthe3Dphononiccrystal.Thephonondispersioncurvesandinverse participationratioarealsocomputedtounderstandthemechanismofthereductionofthermalconductivity. SCIENTIFICREPORTS |3:1143|DOI:10.1038/srep01143 1 www.nature.com/scientificreports Ontheotherhand,thescatteringsofisotopicdopingcouldsig- nificantly reduce the lattice thermal conductivity without much reduction of the electrical conductivity1,14. As a result, the thermal conductivityof3Disotopicphononiccrystalhasaquitelowvalue, whichcanleadtoalargerZTthanunity. Results Fig. 1showsthestructures oftheisotopicnanoscale 3Dphononic crystal,where28SiandMSiatomsareassembledperiodicallyinthree spatialdirections.Fig.1(a)–(d)showsthestructuresof3Dphononic crystals with different period lengths, corresponding to 1.09 nm, 2.17 nm,3.26 nmand6.52 nm,respectively.Thevolumeofsimu- lation cell is 12 3 12 3 12 unit3 (1 unit is 0.543 nm), which has 13,824 atoms. Thereisfinitesizeeffectincalculatingthermalconductivitywhen the simulation cell is not big enough18,19. As shown in Fig. 2, we calculatedthermalconductivityofisotopicnanoscale3Dphononic Figure2|Thermalconductivityversusthesidelengthofsimulationcell. crystalwithdifferentsizeofsimulationcellbyequilibriummolecular Themassratioofthe3Disotopicphononiccrystalis2andtheperiod dynamic (EMD) method at 1000 K. The period length is set as lengthis2units.Theerrorbarsarecalculatedfrom16simulationswith 2 unitsandthemassratioissetas2.Thecalculatedvalueofthermal differentinitialconditions.Allvaluesarecalculatedat1000Kwhichis conductivityconvergeswhenthesidelengthofcubicsimulationcell largerthantheDebyetemperature,T ,ofSi(,658K). is larger than 10 units. To overcome the finite size effect on the D calculatedthermalconductivity,weusethesidelengthofsimulation mayincreasetheamountofbandfoldinganddecreasetheaverage cellas12 unitsinthefollowingsimulations. velocityinthesuperlattice, resulting inadecreaseofthermalcon- For comparison with the thermal conductivity of pure 28Si at ductivity. The phonon mean free path of Si is around 60 nm at 1000 K,wealsocalculateitsvalueas5062 W/m-K(thedashdot 1000 K18,whichismuchlongerthantheperiodlengthinoursimu- lineinFig.3(a)).OurresultiscomparabletoSchellingetal.’sresults lation.ThetendencyofthermalconductivityinFig.3(a)isconsistent of MD simulation, 61 W/m-K18. However, MD results can not withSimkinandManhan9sresultswhenthephononmeanfreepath exactly coincide with the experimental value of 28Si at 1000 K20, islargerthanperiodlength12. around 30 W/m-K, because of the inaccuracies of semi-empirical Anotherwaytomodulatethephonontransportinthe3Dpho- potentials and the impurity of the sample in measurements. This noniccrystalistovarythemass.Themassofimpurityatomscould non-coincidencehaslittleeffectonthecomparingMDresultscal- perturbthephonondensityofstateandphonondispersioncurves, culatedusingsamepotentialparameters. whichcanaffectthegroupvelocities. We calculated the thermal conductivity of 3D phononic crystal Fig.3(b)showsthedependenceofthermalconductivityonthemass withdifferentperiodlength,wherethemassratioRis2.Asshownin ratio, where the period length is 12units. Our results indicate that Fig. 3(a), the thermal conductivity rapidly decreases as the period thermal conductivity rapidly decreases as the mass ratio increases length increases. The smallest value of thermal conductivity is from1to6.TheheaviestSiisotopeatomsproducedis43Si21.where 2.14 W/m-K, which is only 4.3% of pure 28Si calculated by EMD themassratioRcorrespondsto1.5.Thevalueofthermalconductivity method. Simkin and Mahan show12 that increasing period length is4.2W/m-K,thatis,8.4percentofpure28Si(50W/m-K). Figure1|Thestructuresoftheisotopicnanoscale3Dphononiccrystals- Figure3|(a)Thermalconductivityversustheperiodlengthofisotopic threedimensionalperiodicarrangementsof28SiandMSiatoms. From(a) nanoscale3DphononiccrystalofSi.Themassratiois2.Thedashdotline to(d),theperiodlengthsofthose3Dphononiccrystalsare2,4,6and correspondstothemoleculardynamicresultofthermalconductivityof 12units,respectively.Thelatticeconstantis0.543nm,thatis,1unit pure28Si.(b)Thermalconductivityversusthemassratioofisotopic represents0.543nm.Insimulations,theperiodicboundaryconditionis nanoscale3DphononiccrystalsofSi.Theperiodlengthis12units.All appliedinallthreedirections. valuesarecalculatedat1000K. SCIENTIFICREPORTS |3:1143|DOI:10.1038/srep01143 2 www.nature.com/scientificreports Artificial Si isotopic atoms are used here to explore the mass Fig.4(a)showsacousticbranchesandpartialopticalbranchesof influence on thermal transport and show the trend of large mass the dispersion curves of the 3D phononic crystal, where period effects. The smallest value of thermal conductivity is 0.54 W/m-K lengthsaredifferent,andthemassratioisthesame.TheBrillouin (whenRis6),whichisonly1.1%ofpure28Si.ArtificialMSiatomscan zonewith2 unitsinperiodlengthiseighttimesaslargeasthatwith belookedasotheratoms,suchas54Fe22.Whenthereareotherkind 4 unitsinperiodlength.Incalculatingthedispersioncurvesofstruc- atoms,thesystemismorecomplicated.Thatis,themassisnotthe turewith2 unitsinperiodlength,weusealargerunitcellwhosesize onlyfactorinvolved.Thebondstrengthandlatticerelaxationsmust isasthesameasthatofstructurewith4 unitsinperiodlength. playarole,whichisnotstudiedinthisletter. Astheopticalphononscontributelesstothethermalconductivity Ina28Si MSi quasi-1Dsupercellwith10MSiatoms(5%)ran- duetothelowergroupvelocities,wefocusedontheacousticpho- 182 10 domlydistributed,GibbonsandEstreicher22foundthethermalcon- nons.ItisclearlyshowninFig.4(a)closetoRpointthatthegroup ductivity decreased first and reached a minimum when the mass velocities decrease as the period length increase, which causes the ratio was ‘‘two’’, and then the thermal conductivity increased as reductionofthethermalconductivity(showninFig.3(a)).Fig.4(b) theincreaseofM.However,theystatedthattheycannotcomment showsacousticbranchesofthe3Dphononiccrystalwithdifferent aboutthereasonsforthisminimumanddonotknowifthefactor massratios,wheretheperiodlengthis2 units.Thedispersioncurves ‘‘two’’ remains valid for concentrations other than 5%. Different areaffectedbythemassofimpurityatomsandthegroupvelocities fromrandomly distributed, MSi in3Dphononic crystalis periodic decreaseasthemassofimpurityatomsincrease,whichcontributesto distributed in 28Si. The concentration of MSi (50%) is much bigger thedecreaseofthermalconductivity(showninFig.3(b)). than5%.Ourresultsshowthatthethermalconductivityof3Dpho- Tounderstandmoreabouttheunderlyingphysicalmechanismof nonic crystal decreases monotonously with increase of M. This is thermalconductivityreduction,wecarryoutavibrationeigen-mode coincidence of the monotonous decrease of group velocities analysis on 3D phononic crystals. The mode localization can be (Fig.4(b)). qualitatively characterized by the normalized inverse participation As shown above, changing the mass of impurity atoms and the ratio(NIPR)25.TheNIPRforphononmodekisdefinedthroughthe period lengths are two effective ways in modulating the thermal normalizedeigenvectoru k conductivity. To find the mechanism in the decrease of thermal !2 N 3 conductivityof3Dphononiccrystal,thephonondispersioncurves P(cid:2)1~N:X Xu2 ð1Þ k ia,k arecalculatedthroughclassicallatticedynamics.Wecalculatedthe i~1 a~1 dispersion curves by general utility lattice program (GULP)23, and Stillinger-Weberpotential24whichisthesameatominteractionasin ourMDsimulation. Figure4|(a)Acousticandpartialopticalbranchesalongthe[1,1,1] direction.Dispersioncurvesinred(black)correspondtothenanoscale3D phononiccrystalwith2(4)unitcellsinperiodlength.Themassratiosare 2.ItisclearlyshownclosetoRpointthatthegroupvelocitiesdecreaseas Figure5|Thenormalizedinverseparticipationratio(NIPR)spectra. theperiodlengthincreases,whichcausesthereductionofthethermal NIPRiscalculatedbasedonEq.(1).ThelargerofthevalueofNIPRthe conductivity.(b)Acousticbranchesalongthe[1,1,1]direction.Themass morelocalizedofaphononmode.(a)NIPRspectraof3Dphononic ratioof3Dphononiccrystalschangesfrom1to2.5.Differentcoloris crystalswithdifferentperiodlength.Theleftandrightpanelsare referredtodifferentmassratio.Theperiodlengthsof3Dphononiccrystals correspondingto3Dphononiccrystalswith2unitand4unitperiod arekeptsame,2units.Thedispersioncurvesareaffectedbythemassof length,respectively.Themassratiosarethesameas2.(b)NIPRspectraof impurityatomsandthegroupvelocitiesdecreaseasthemassofimpurity 3Dphononiccrystalswithdifferentmassratio,R.Theperiodlengthsare atomsincrease,whichcontributestothedecreaseofthermalconductivity. thesameas2units.Theupperleftpanel(R51)correspondstopureSi. SCIENTIFICREPORTS |3:1143|DOI:10.1038/srep01143 3 www.nature.com/scientificreports where N is the total number of atoms. When there are less atoms Insimulations,theperiodicboundaryconditionisappliedinallthreedirections. participating in the motion, the phonon mode has a larger NIPR Toderivetheforceterm,weuseStillinger-Weber(SW)potentialforSi24,which includesbothtwo-bodyandthree-bodypotentialterms.TheSWpotentialhasbeen value.Forexample,NIPRisNwhenthereisonlyoneatomvibrates usedwidelytostudythethermalpropertiesofSibulkmaterial14,26,29foritsaccuratefit in the localized mode. When all atoms participate in the motion, forexperimentalresultsonthethermalexpansioncoefficients.Theheatcurrentis NIPRiscalculatedoutas1.Thatis,thelargerofthevalueofNIPR definedas18 themorelocalizedofaphononmode. twoFigd.i5ff(ear)enshtowpesritohde NleInPgRthssp,ecwtrhaeroef 3thDepmhoanssonricaticorysRtaliwsit2h. ~JlðtÞ~Xi ~vieiz12ijXi=j~rij(cid:2)~Fij:~vi(cid:3)zXijk~rij(cid:2)~FjðijkÞ:~vj(cid:3) ð2Þ Obviously, the NIPR for 3D phononic crystal with 4 units in per- ? ? iodlengthhaslargervaluesthanthatwith2 unitsinperiodlength. whereFijandFijkdenotethetwo-bodyandthree-bodyforce,respectively.Thermal conductivityiscalculatedfromtheGreen-Kuboformula30 Twhitaht4isu,nthitesrienapreerimodorleenmgtohd,ewshliochcaalilzseodleiands3Dtoaphroednuocntiiconcroyfstiatsl k~ 1 ð?v~J(t):~J(0)wdt ð3Þ 3k T2V thermal conductivity. Fig. 5(b) shows the NIPR spectra of 3D B 0 phononic crystal with different mass ratio R, where the period wherekisthermalconductivity,kBistheBoltzmannconstant,Visthesystem length is 2 units. The values of NIPR for R 5 1.5, R 5 2 and R volume,Tisthetemperature,andtheangularbracketdenotesanensembleaverage. Generally,thetemperatureinMDsimulation,T ,iscalculatedfromthekinetic 5 2.5 are close to each other and larger than pure Si (R 5 1), MD energyofatomsaccordingtotheBoltzmanndistribution: whichshowthattheisotopicatomscouldcausemorelocalizations. I(n.1F2igT.H5z()bo),f sbpaencdtragfaoprsRa5pp2eaarndinRt5he2.h5i,gahndfrtehqeuebnacnyd gpaaprst hEi~XN 12mvi2~32NkBTMD ð4Þ i~1 for R 52.5 are wider than those for R 52. That is, the phonons wherehEiisthetotalkineticenergy,v isthevelocity,mistheatomicmass,Nisthe with frequency in the range of band gaps cannot exist in the 3D i phononic crystal. When R is smaller than 1.5 (corresponding to nvaulmidbaetrhoifgphatretmiclpeesriantuthrees(yTs?temT,,anTdkisBtihsethDeeBboyletztmemanpnercaotunrset)a.nt.Thisequationis D D 43Si), band gaps are not observed in 3D isotopic phononic crystal. Numerically,velocityVerletalgorithmisemployedtointegrateequationsof So,bandgapsareminoreffectswhenthemassdifferenceisnotbig motion,andeachMDstepissetas1.0fs.Firstly,canonicalensembleMDwith enough. langevinheatreservoirrunsfor220stepstoequilibratethewholesystemat1000K. Then,microcanonicalensemble(NVE)MDrunsforanother225steps(33.5ns). Besidesdecreasinggroupvelocityandphononmodeslocalization, Meanwhile,heatcurrentisrecordedateachstep.Attheend,thethermalconductivity interfacedisorderisanotherfactorinreducingthethermalconduc- iscalculatedbyEq.(3).Inthecalculationofthermalconductivity,theintegrationis tivity for superlattices11 and phononic crystal16. In our simulation, fromzerotoacut-offtimewhichisdeterminedby‘‘firstavalanche’’method31.The 28SiandMSiatomshasaperfectinterfacewhichdonotincludethe finalresultisaveragedoversixteenrealizationswithdifferentinitialconditionsto disordereffect.Therewillbeafurtherdeductioninthermalconduc- satisfyergodicity. tivityafterconsideringtheinterfacedisorder.So,thedisordereffect willbestudiedinthefuturework. 1. Chen,G.,Dresselhaus,M.S.,Dresselhaus,G.,Fleurial,J.P.&Caillat,T. Recentdevelopmentsinthermoelectricmaterials.Int.Mater.Rev.48,45–66 (2003). Discussion 2. Hicks,L.D.&Dresselhaus,M.S.Thermoelectricfigureofmeritofaone- UsingtheGreen-Kubomethod,wehavecalculatedthermalconduct- dimensionalconductor.Phys.Rev.B47,16631–16634(1993). ivitiesofisotopicnanoscale3Dphononiccrystals,where28SiandMSi 3. Majumdar,A.ThermoelectricityinSemiconductorNanostructures.Science303, atoms are assembled periodically in the three directions. Results 777–778(2004). show that the thermal conductivity decreases as the increasing of 4. Gorishnyy,T.,Maldovan,M.,Ullal,C.&Thomas,E.Soundideas.Phys.World18, 24–29(2005). periodlengthfrom1 nmto6 nm.Thethermalconductivityofstruc- 5. Yang,R.&Chen,G.Thermalconductivitymodelingofperiodictwo-dimensional turewith6 nmperiodlengthand2inmassratiois2.14 W/m-Kat nanocomposites.Phys.Rev.B69,195316(2004). 1000 K,whichisonly4.3%ofpure28SiandcanleadtoalargerZT 6. Kim,W.etal.ThermalConductivityReductionandThermoelectricFigureof thanunity. MeritIncreasebyEmbeddingNanoparticlesinCrystallineSemiconductors.Phys. Moreover, the thermal conductivity rapidly decreases as the Rev.Lett.96,045901(2006). 7. Hochbaum,A.I.etal.Enhancedthermoelectricperformanceofroughsilicon mass ratio increases. The phonon localizations and bandgaps at nanowires.Nature451,163(2008). high frequency in the 3D phononic crystal are shown clearly in 8. Boukai,A.I.etal.Siliconnanowiresasefficientthermoelectricmaterials.Nature the spectra of the normalized inverse participation ratio. The 451,168–171(2008). appearance of band gaps blocks a range of frequency of phonon 9. Yang,N.,Ni,X.,Jiang,J.-W.&Li,B.Howdoesfoldingmodulatethermal modes and flattens phonon dispersion curves. The phonon dis- conductivityofgraphene?Appl.Phys.Lett.100,093107–093104(2012). 10.Hyldgaard,P.&Mahan,G.D.Phononsuperlatticetransport.Phys.Rev.B56, persion curves show the phonon group velocities decrease in 3D 10754(1997). phononic crystal. In a word, the decrease of thermal conductivity 11.Chen,G.&Neagu,M.Thermalconductivityandheattransferinsuperlattices. in3Dphononiccrystalisattributedtoboththedecreaseofgroup Appl.Phys.Lett.71,2761–2763(1997). velocities and the localization. 12.Simkin,M.V.&Mahan,G.D.MinimumThermalConductivityofSuperlattices. Thermal conductivity is mainly contributed from acoustic pho- Phys.Rev.Lett.84,927(2000). 13.Venkatasubramanian,R.Latticethermalconductivityreductionandphonon nons.Ifthebandgapsofthe3Dphononiccrystalscanexistatlow localizationlikebehaviorinsuperlatticestructures.Phys.Rev.B61,3091–3097 frequencies,therewillbegreaterreductionofthethermalconduc- (2000). tivity. However, manipulating band gaps to low frequencies in 14.Yang,N.,Zhang,G.&Li,B.Ultralowthermaconductivityofisotope-doped nanoscale3Dphononiccrystalisachallengingworkwhichisworthy siliconnanowires.NanoLett.8,276–280(2008). ofeffortinthefuture.Thereareadvancesinobtainingthenanoscale 15.Yu,J.K.,Mitrovic,S.,Tham,D.,Varghese,J.&Heath,J.R.Reductionofthermal conductivityinphononicnanomeshstructures.Nat.Nanotechnol.5,718–721 2Dphononiccrystal.However,thelimitationinfabricatingnanos- (2010). cale3Dphononiccrystalisstillchallengingnowadays. 16.Hopkins,P.E.etal.ReductionintheThermalConductivityofSingleCrystalline SiliconbyPhononicCrystalPatterning.NanoLett.11,107–112(2011). Methods 17.Gillet,J.N.,Chalopin,Y.&Volz,S.Atomic-ScaleThree-DimensionalPhononic CrystalsWithaVeryLowThermalConductivitytoDesignCrystalline TheGreen-Kubomethod,equilibriummoleculardynamics(MD),isemployedto ThermoelectricDevices.J.HeatTransf.-Trans.ASME131,043206(2009). calculatethethermalconductivitiesof3Dphononiccrystalat1000K.MDsimulation isapopularmethodincalculatingthermalconductivityathightemperature18,26,27.In 18.Schelling,P.K.,Phillpot,S.R.&Keblinski,P.Comparisonofatomic-level thisletter,wefocusonthethermalconductivityof3Dphononiccrystalat1000K, simulationmethodsforcomputingthermalconductivity.Phys.Rev.B65,144306 whichislargerthantheDebyetemperature,T ,ofSi(,658K)28. (2002). D SCIENTIFICREPORTS |3:1143|DOI:10.1038/srep01143 4 www.nature.com/scientificreports 19.Che,J.,Cagin,T.,Deng,W.&GoddardIii,W.A.Thermalconductivityof 31.Chen,J.,Zhang,G.&Li,B.Howtoimprovetheaccuracyofequilibriummolecular diamondandrelatedmaterialsfrommoleculardynamicssimulations.J.Chem. dynamicsforcomputationofthermalconductivity?Phys.Lett.A374,2392–2396 Phys.113,6888–6900(2000). (2010). 20.Glassbrenner,C.J.&Slack,G.A.ThermalConductivityofSiliconand Germaniumfrom3uKtotheMeltingPoint.Phys.Rev.134,A1058–A1069 (1964). 21.Notani,M.etal.Newneutron-richisotopes,34Ne,37Naand43Si,producedby Acknowledgements fragmentationofa64AMeV48Cabeam.Phys.Lett.B542,49–54(2002). ThisworkwassupportedinpartbythegrantfromtheAsianOfficeofAerospaceR&Dof 22.Gibbons,T.M.&Estreicher,S.K.ImpactofImpuritiesontheThermal theUSAirForce(AOARD-114018)(LYandBL),thestartupfundfromTongjiUniversity ConductivityofSemiconductorNanostructures:First-PrinciplesTheory.Phys. (NYandBL)andtheNationalNaturalScienceFoundationofChina(GrantNo.11204216) Rev.Lett.102,255502(2009). (NY).NYandLYaregratefultoJin-WuJiang(Bauhaus-UniversityWeimar),JieChen 23.Gale,J.D.GULP:Acomputerprogramforthesymmetry-adaptedsimulationof (NUS),ShaLiu(NUS),andLifaZhang(NUS)forusefuldiscussions. solids.J.Chem.Soc.,FaradayTrans.93,629–637(1997). 24.Stillinger,F.H.&Weber,T.A.Computersimulationoflocalorderincondensed Authorcontributions phasesofsilicon.Phys.Rev.B31,5262(1985). 25.Jiang,J.-W.&Wang,J.-S.Conditionsfortheexistenceofphononlocalizededge- L.Y.andN.Y.carriedoutthenumericalsimulationsanddataanalysis.B.L.andN.Y. modes.Phys.Rev.B81,174117(2010). supervisedtheprojects.Allauthorsdiscussedtheresultsandcontributedtowritingthe 26.Yang,N.,Zhang,G.&Li,B.ViolationofFourier’slawandanomalousheat manuscript. diffusioninsiliconnanowires.NanoToday5,85–90(2010). 27.Esfarjani,K.,Chen,G.&Stokes,H.T.Heattransportinsiliconfromfirst- Additionalinformation principlescalculations.Phys.Rev.B84,085204(2011). Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. 28.Holland,M.G.AnalysisofLatticeThermalConductivity.Phys.Rev.132, 2461–2471(1963). License:ThisworkislicensedunderaCreativeCommons 29.Volz,S.G.&Chen,G.Moleculardynamicssimulationofthermalconductivityof Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis siliconnanowires.Appl.Phys.Lett.75,2056–2058(1999). license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ 30.Kubo,R.,Toda,M.&Hashitsume,N.Vol.31SpringerSeriesinSolid-StateSciences Howtocitethisarticle:Yang,L.,Yang,N.&Li,B.ReductionofThermalConductivityby 146–202(SpringerBerlinHeidelberg,1991). Nanoscale3DPhononicCrystal.Sci.Rep.3,1143;DOI:10.1038/srep01143(2013). SCIENTIFICREPORTS |3:1143|DOI:10.1038/srep01143 5