Astronomy&Astrophysics (cid:13)cESO2017 February2,2017 Redistribution of CO at the location of the CO ice line in evolving gas and dust disks SebastianMarkusStammler1,2 (cid:63),TilmanBirnstiel3,4,OljaPanic´5,6 (cid:63)(cid:63),CornelisPetrusDullemond1,andCarsten Dominik7 1 HeidelbergUniversity,CenterforAstronomy,InstituteofTheoreticalAstrophysics,Albert-Ueberle-Straße2,69120Heidelberg, Germany e-mail:[email protected] 2 InstitutodeAstrofísica,FacultaddeFísica,PontificiaUniversidadCatólicadeChile,Santiago,Chile 3 MaxPlanckInstituteforAstronomy,Königstuhl17,69117Heidelberg,Germany 7 4 Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 1 5 SchoolofPhysicsandAstronomy,TheUniversityofLeeds,E.C.StonerBuilding,LeedsLS29JT,UK 0 6 InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK 2 7 UniversityofAmsterdam,AstronomicalInstituteAntonPannekoek,Postbus94249,1090GEAmsterdam,TheNetherlands n a J ABSTRACT 1 Context.Icelinesaresuggestedtoplayasignificantroleingraingrowthandplanetesimalformationinprotoplanetarydisks.Evap- 3 orationfrontsdirectlyinfluencethegasandiceabundancesofvolatilespeciesinthediskandthereforethecoagulationphysicsand efficiencyandthechemicalcompositionoftheresultingplanetesimals. ] P Aims.Inthiswork,weinvestigatetheinfluenceoftheexistenceoftheCOicelineonparticlegrowthandonthedistributionofCOin E thedisk. Methods.WeincludethepossibilityoftrackingtheCOcontentand/orothervolatilesinparticlesandinthegasinourexistingdust . h coagulationanddiskevolutionmodelandpresentamethodforstudyingevaporationandcondensationofCOusingtheHertz-Knudsen p equation.Ourmodeldoesnotyetincludefragmentation,whichwillbepartoffurtherinvestigations. - Results.Wefindnoenhancedgraingrowthimmediatelyoutsidetheicelinewheretheparticlesizeislimitedbyradialdrift.Instead, o wefindadepletionofsolidmaterialinsidetheiceline,whichissolelyduetoevaporationoftheCO.Suchadepressioninsidethe r t icelinemaybeobservableandmayhelptoquantifytheprocessesdescribedinthiswork.Furthermore,wefindthattheviscosity s and diffusivity of the gas heavily influence the re-distribution of vaporized CO at the ice line and can lead to an increase in the a COabundancebyuptoafactorofafewintheregionjustinsidetheiceline.Dependingonthestrengthofthegaseoustransport [ mechanisms,thepositionoftheicelineinourmodelcanchangebyupto∼10AUandconsequently,thetemperatureatthatlocation 2 canrangefrom21to23K. v Keywords. Protoplanetarydisks–Accretion,accretiondisks–Diffusion–Methods:numerical 5 8 3 21. Introduction itedbyatleasttwoprocesses.Oneistheinwarddriftofparticles 0 on Keplerian orbits losing angular momentum to the pressure- .Icelinesarelocationsinprotoplanetarydisksatwhichatransi- supported gas orbiting the star with sub-Keplerian velocities 1 tion between the gaseous and the solid phase of an element or 0 (Weidenschilling 1977). The drift velocity is size-dependent. 7a molecular species occurs. Inwards of the ice line, the volatile Therefore,particlesaffectedbydriftquicklyfallontothecentral speciesiscondensedintheformofice.Outsidetheiceline,the 1 star.Anothermechanismthatpreventsgraingrowthisfragmen- :material exists in its solid form. Ice lines are of special inter- tation.Ifthecollisionvelocityishighenough,silicateparticles vest in planetary sciences since they are suggested to affect the tend to bounce or fragment rather than sticking together (Blum i Xformationandcompositionofplanetesimals(Öbergetal.2011). and Wurm 2008). If particles grow to certain sizes (centimeter Ali-Dib et al. (2014) argue from the chemical composition of r to decimeter), the streaming instability can take over and form aUranusandNeptunethattheymayhavebeenformedatthecar- planetesimalsbyclumpingandsubsequentgravitationalcollapse bonmonoxideiceline. (see,e.g.,Johansenetal.2007;YoudinandGoodman2005;Bai Planetesimals are formed from dust and ice surrounding andStone2010;Dra¸z˙kowskaandDullemond2014). young stars in protoplanetary disks. The dust particles collide andareheldtogetherbycontactforcesformingeverlargerbod- Howparticlescangrowtosizesforwhichthestreamingin- ies (see, e.g., Brauer et al. 2008; Birnstiel et al. 2010). How- stability is efficient is unknown. Besides the fact that icy mate- ever, experiments and simulations show that the growth is lim- rialshavehigherfragmentationvelocitiesthanpuresilicatepar- ticles (Wada et al. 2009; Gundlach and Blum 2015), and can therefore grow to larger sizes, several authors argue that ice (cid:63) MemberoftheInternationalMaxPlanckResearchSchoolforAs- lines play an important role in the growth process (e.g., Kretke tronomy and Cosmic Physics at the Heidelberg University. PUC-HD GraduateStudentExchangeFellow. etal.2008;Braueretal.2008).Also,Kataokaetal.(2013)pro- (cid:63)(cid:63) RoyalSocietyDorothyHodgkinFellow. posed that fluffy ice aggregates may overcome the drift barrier. Page1of16 A&Aproofs StevensonandLunine(1988)found,intheirmodel,asignificant iceline.Themodelisone-dimensionalandthedensitiesarever- solidmaterialenhancementattheicelineduetodiffusiveredis- tically integrated, assuming that gas and dust are constantly in tributionofvaporfromtheinnerdiskandsubsequentcondensa- thermal equilibrium, throughout the model. We model the sur- tiononparticlesoutsidetheiceline.Closelyrelated,RosandJo- face densities of approximately 150 different dust sizes Σ dust,i hansen(2013)proposedgraingrowthbyevaporationofinward- andoftwogasspecies,Σ andΣ .OurmodelofCOtransport H2 CO drifting particles and subsequent recondensation of backwards- isbuiltuponthegasanddustmodelofBirnstieletal.(2010). diffusingvapor.CuzziandZahnle(2004)proposedasignificant The gas disk is viscously evolving according the α-disk vapor enhancement inside the ice line due to rapidly inward- modelofShakuraandSunyaev(1973)whilewestudythediffu- driftingparticles. sivebehaviorofCObychoosingdifferentvaluesfortheSchmidt The goal of our work is to include the transport of volatile numberSc,whichistheratioofviscosityoverdiffusivityofthe materialsintothegraingrowthanddiskmodelofBirnstieletal. gas. (2010)andtousethismodeltoinvestigatetheinfluenceofpos- We model dust growth by solving the Smoluchowski equa- sibleparticledensityenhancementsaticelinesondustcoagula- tion. The dust species themselves are subject to radial drift tionandonthedistributionofCOgas.Wethereforedeveloped and gas drag. In contrast to previous works, we use a two- amodeltotrackthevolatilecontentofparticlesandthegasin- dimensional scalar field for the particle distribution, where one cluding the processes of coagulation, radial drift, and viscous dimensionisthesilicatemassandtheseconddimensiontheCO accretion,aswellasCOevaporationandcondensationattheice icecontentoftheparticle.Wethereforemodelthemigrationof line. CObothviadriftingparticlesandviadiffusinggasandsimulate We focus, here, on CO ice near the CO ice line for several the evaporation of CO at the CO ice line by solving the Hertz- reasons.First,weassumethatthecollisionalphysicsofthepar- Knudsenequation. ticles is mostly determined by the presence of water ice. If we further assume that the water ice content is always well mixed 2.1. Evolutionofthegassurfacedensity within the particle, there will always be enough water ice at the particle’s surface such that the collisional physics does not Weconsidertwomoleculargasspeciesinourmodel,H ,which 2 changebycrossingtheCOicelineandevaporatingtheCO(but isthemaingasdensityconstituent,andCO,whichisgenerally seealsoOkuzumietal.2016).Wadaetal.(2009)estimatedthe the second most abundant molecular species in the interstellar fragmentation velocity of water ice particles to be ∼ 50 m/s. medium(ISM).Thesurfacedensityofthetwospecies,Σ and Suchhighcollisionvelocitiesarenotreachedinourmodel.We Σ ,andthereforethetotalgasdensity,Σ ,aredirectlyrHe2lated CO gas canthereforeneglectfragmentation,since,evenbytotalevapo- throughthecontinuityequation: ration of the CO, there is still enough water ice in the particles ∂ 1 ∂ (cid:16) (cid:17) suchthatwecanusethehigherfragmentationvelocityofwater Σ + RΣ u =0, (1) ∂t gas R∂R gas gas ice.Thegrowthoftheparticlesisthereforesolelylimitedbythe inwarddrift.ButseealsoGundlachandBlum(2015),whofound where u is the radial gas velocity given by Lynden-Bell and gas fragmentationvelocitiesforwatericeintheorderof10m/s.It Pringle(1974); mightalsobethecasethatthewatericeisnotwellmixedwithin 3 ∂ (cid:16) √ (cid:17) the particle or that the particle is covered by a layer of CO. In u =− √ Σ ν R , (2) that case, the fragmentation velocity is that of CO ice, which gas Σgas R∂R gas mightalsobelowerthanthefragmentationvelocityofwaterice. whereνistheviscosityofthegas.ShakuraandSunyaev(1973) We aim to investigate the influence of fragmentation in future parameterizedtheviscosityintheirα-diskmodeltoaccountfor works. anunknownsourceofviscositywith Another reason for looking at CO is that it has observable features(Qietal.2015).TheCOicelineattemperaturesofap- ν=αcsHP, (3) proximately 20 K is in the outer parts of protoplanetary disks where c is the sound speed, H = c /Ω the pressure scale compared to other volatile species such as water ice. Further- heightofs thedisk,andΩ theKePplerians freKquency.Theviscos- more, the CO abundance is generally large enough to be well ityparameterαistypicallKyoftheorderof10−2to10−4(e.g.,Jo- observed. hansenandKlahr2005).Equation(1)hasnosourcetermsonthe We investigate the radial distribution of dust particles and righthandside,becausewedonotconsideranyinfallofmatter molecularspeciesinthegasandicephasesaroundtheregionof fromthecommonenvelopeontothedisk.Evaporationandcon- the ice line in a time dependent manner by solving the Smolu- densation, which would also be a source or sink term for Σ , CO chowskiequationandthere-distributionoftheCOvapororigi- aretreatedseparately. natingfromtheevaporatingparticles. We assume that both gas species evolve separately without Insection2,wedescribeourmodelofadvection,diffusion, interactingwithoneanother.Wethenobtainaseparatecontinu- grain growth, and evaporation/condensation. In section 3, we ityequationforeachofthespecies j show the influence of the ice line on the grain growth and the influenceoftheadvectionanddiffusionofthegasontheCOva- ∂Σ =−3 ∂ (cid:34)√R ∂ (cid:16)Σ ν√R(cid:17)(cid:35). (4) pordistributionattheiceline.Insection4,wediscussourresults ∂t j R∂R ∂R j andtheassumptionsmadeinthemodel. Following the calculations of Pavlyuchenkov and Dullemond (2007),thisequationcanbefurthermanipulatedto 2. Model ∂ 3 ∂ (cid:34)√ ∂ (cid:32) Σ √ (cid:33)(cid:35) Σ =− R Σ j ν R ∂t j R∂R ∂R gasΣ We constructed a model for simulating the evolution of a vis- gas couslyevolvingprotoplanetarydiskincludingdustcoagulation, =−3 ∂ (cid:34)√R Σj ∂ (cid:16)Σ ν√R(cid:17)+RΣ ν ∂ (cid:32) Σj (cid:33)(cid:35), (5) particle drift, condensation, and evaporation of CO at the CO R∂R Σ ∂R j gas ∂R Σ gas gas Page2of16 SebastianMarkusStammler etal.:RedistributionofCOinevolvinggasanddustdisks whereΣ =(cid:80)Σ isthetotalgassurfacedensity.Bysubstituting 2.2. Radialevolutionofthedustsurfacedensity gas j j thegasvelocityofequation(2)inthisequation,weobtain Thespatialevolutionofthedustparticlesisstronglyinfluenced byinteractionswiththegas.Althoughitispossible,inrealdisks, ∂ 1 ∂ (cid:16) (cid:17) 3 ∂ (cid:34) ∂ (cid:32) Σ (cid:33)(cid:35) that particles become locally concentrated to gas-to-dust ratios Σ + RΣ u − RΣ ν j =0. (6) ∂t j R∂R j gas R∂R gas ∂R Σ ofunityorless,especiallyatthedisk’smidplane,andtherefore gas triggerstreaminginstabilities,weneglectthishere,andassume thataccumulationsofdusthappenonlyatsmallerradii(Youdin Thisequationimpliesthateachgasspeciesisradiallyadvected withthegasvelocityu andhasadiffusiveterm,whichsmears andShu2002)oronsmallerscales(YoudinandGoodman2005). gas Inotherwords:thegashasaneffectonthedustparticles,butthe outconcentrations. ByintroducingtheSchmidtnumberSc = ν/D,whichisthe dustparticleshavenoback-reactiononthegasinourmodel. ratioofviscosityνtodiffusivityDofagas,onecandisentangle Todescribethecouplingoftheparticlestothegas,itisuse- advectionanddiffusion ful to characterize the particles not by size but by their dimen- sionlessStokesnumber St.TheStokesnumberisdefinedasthe ∂∂tΣj+ R1∂∂R(cid:16)RΣjugas(cid:17)− R1∂∂R(cid:34)RΣgasD∂∂R(cid:32)ΣΣj (cid:33)(cid:35)=0. (7) rtuatrino-oovfetrhteimsteopτpedin;gtimeτsoftheparticlestothelargesteddy’s gas τ ASchmidtnumberofSc = 1/3reproducesequation(6).Phys- St= s . (12) τ ed ically, the Schmidt number is the ratio of momentum transport topure-masstransport.BychangingScandkeepingαconstant, TheStokesnumbercanbeusedasameasuretodescribethecou- weinvestigatetheinfluenceofthediffusivity DontheCOdis- plingbetweenthegasandthedust.Sincethiscouplingdepends tributioninthedisk. notsolelyontheparticlesizebut,amongstotherparameters,also onthegasdensity,itisconvenienttousetheStokesnumberto describetheequationsofmotionoftheparticles. 2.1.1. Verticalandradialstructureofthegasdisk Thestoppingtimeτ inequation(12)istheratiobetweena s Weassumethatthegasisalwaysinthermalequilibriumandthat particle’s momentum and the rate of its momentum change by the temperature profile does not change over time. The vertical thedragforce.Ityieldsthetimescaleonwhichaparticleadapts structureofthegasdensityisthengivenby tothegasvelocity.Weidenschilling(1977)identifiedfourdiffer- entregimesofthedragforce.Theimportantregimeinourwork ρgas(z)=ρgas(z=0) exp−12Hz22, (8) istheEρpsateinregime,wherethestoppingtimeisgivenby P τ = s , (13) s ρ u¯ gas where z is the height above the midplane. Since Σ is the z- gas integralofρgas ,itfollowsdirectlyforthemidplanegasdensity with th√e bulk density of the solids ρs and the particle size a. that u¯ = c 8/πisthemeanthermalvelocityofthegasmolecules. s In protoplanetary disks, the Stokes I drag regime is important ρ (z=0)= √Σgas . (9) only in the inner part of the disk ((cid:46) 1 AU). We therefore only gas 2πH includetheEpsteinregimeinthiswork. P As a first order approximation for the eddy turnover time, Eventhoughthemodelisone-dimensional,westillneedthe one can use τed = 1/ΩK (Schräpler and Henning 2004), and verticalstructureofthedisktocalculatethedensitiesatthemid- obtaintheStokesnumber: planethatareneededforthecoagulationaswellasfortheevap- ρ aπ orationmethod. St= Σs 2. (14) In our fiducial model, we used the following power law as gas initialsurfacedensitydistribution: The advection of the dust surface densities of the different speciescannowbedescribedwithacontinuityequationasequa- Σ (R)=250 g ×(cid:18) R (cid:19)−1. (10) tion(7) gas cm2 1AU ∂ 1 ∂ (cid:32) (cid:34) ∂ Σ (cid:35)(cid:33) Σ + R Σ u −D Σ dust,i =0, 2.1.2. Temperaturestructureofthedisk ∂t dust,i R∂R dust,i dust,i dust,i gas∂R Σgas (15) For the midplane temperature of the disk, we assume a simple powerlaw; whereD = αc H /(1+St2)isthedustdiffusivityandu dust,i s P dust,i theradialvelocityofdustspeciesigivenby T(R)=150K × (cid:18) R (cid:19)−12 , (11) u 2u 1AU u = gas − P . (16) dust,i 1+St2 St +St−1 i i i thatremainsconstantintime.Theviscousheatingrate,whichis theenergythatiscreatedbytheviscousaccretingofthegas,is Thisvelocityconsistsoftwoterms.Thefirsttermdescribesthe proportional to the gas density Σ (Nakamoto and Nakagawa dustparticlesthataredraggedalongwiththeinwardsaccreting gas 1994) and therefore mainly important in the inner part of the gas;itismosteffectiveforsmallparticles(St(cid:28)1)thatarewell- disk.SinceweareinterestedintheregionoftheCOicelineat coupledtothegasandinsignificantforlargeparticles(St(cid:29)1). 40–50AUwherethedensitiesarelow,thiseffectisnegligible. Thesecondtermdescribesradialdriftduetoapressuregradient Page3of16 A&Aproofs inthegas.Thegasfeelsanadditionalforceduetoitsownpres- 2.4.1. Smoluchowskiequation sure gradient. If the pressure gradient is pointing inwards, then The growth of the dust particles with mass m by hit-and-stick thegasisonasub-Keplerianorbit.Theaccelerationofthedust collisionswithoutfragmentationcanbedescribedbytheSmolu- particles due to the pressure force, on the other hand, is negli- chowskiequation gible because of their high bulk density compared to the gas. Therefore, the particles try to orbit with a Keplerian velocity. Dheuaedwtointhdi,sloveseloacnitgyudlaiffremreonmceenwtuimth,tahnedgdarsi,ftthienythfeeedliareccotniosntaonft ∂ f (m)=1(cid:90)∞dm(cid:48)(cid:90)∞dm(cid:48)(cid:48)f (cid:0)m(cid:48)(cid:1) f (cid:0)m(cid:48)(cid:48)(cid:1)K(cid:0)m(cid:48);m(cid:48)(cid:48)(cid:1)× ∂t 2 the pressure gradient. The maximal drift velocity (for particles 0 0 withSt=1)isgivenbyWeidenschilling(1977)as ×δ(cid:0)m(cid:48)+m(cid:48)(cid:48)−m(cid:1) (cid:90)∞ − f (m) dm(cid:48)f (cid:0)m(cid:48)(cid:1)K(cid:0)m;m(cid:48)(cid:1), (19) ∂ P u =− ∂R gas . (17) 0 P 2ρ Ω where the collision kernel K(m;m(cid:48)) = σ (m;m(cid:48))∆u(m;m(cid:48)) gas K geo is the product of the geometrical cross section and the relative velocityofthecollidingparticles.Equation(19)isapartialdif- 2.3. Verticalstructureofthedustdisk ferentialequationforthetimeevolutionofamassdistributionof particles. The positive term on the right-hand side counts colli- Sincethedustparticlesdonotfeelanypressureamongstthem- sionsthatleadtoparticlesofmassm.Thenegativetermremoves selves,wecannotgiveasimplepressure-equilibriumexpression particles of mass m that collided with other particles to create fortheparticlescaleheightsasforthegasscaleheightH .The largerparticles. P particlescaleheightsaregivenbytheequilibriumofverticalset- Tokeeptrackofnotonlythemassoftheparticles,butalsoof tling by gravity and turbulent stirring and therefore depend on anotherpropertythatrepresentstheCOicecontentofthem,we the particle’s Stokes number. Therefore, every particle size has addanotherparameterQtoourdistribution.Thefollowingequa- itsownscaleheight.Wefollow,here,Braueretal.(2008)forthe tionsaregeneralforanarbitraryQthatcouldrepresentanything descriptionofthescaleheightofspeciesias from the volume of the particle as in Okuzumi et al. (2009) to theelectricalchargeoftheparticle.Inthefollowingsectionswe identify Qwiththeparticle’sicefraction.Thetwo-dimensional Smoluchowskiequationthenreadsasfollows hi = HP·min1, (cid:115)min(cid:16)St,1α(cid:17)·(cid:16)1+St2(cid:17), (18) ∂∂tf (m,Q)=12(cid:90)∞dm(cid:48)(cid:90)∞dm(cid:48)(cid:48)(cid:90)∞dQ(cid:48)(cid:90)∞dQ(cid:48)(cid:48)× i 2 i 0 0 0 0 × f (cid:0)m(cid:48),Q(cid:48)(cid:1) f (cid:0)m(cid:48)(cid:48),Q(cid:48)(cid:48)(cid:1)× ×K(cid:0)m(cid:48),Q(cid:48);m(cid:48)(cid:48),Q(cid:48)(cid:48)(cid:1)× which limits the dust scale height to be, at maximum, equal to ×δ(cid:0)m(cid:48)+m(cid:48)(cid:48)−m(cid:1) the gas scale height HP. From this equation, it can be seen that ×δ(cid:0)Qnew(cid:0)m(cid:48),Q(cid:48);m(cid:48)(cid:48),Q(cid:48)(cid:48)(cid:1)−Q(cid:1) largerparticles(St(cid:29)1)aresettledtothemidplane,whilesmall particles (St(cid:28)1) follow the gas scale height. A stronger tur- (cid:90)∞ (cid:90)∞ bulence(i.e.,largerturbulentviscosityparameterα),ingeneral, − f (m,Q) dm(cid:48) dQ(cid:48)f (cid:0)m(cid:48),Q(cid:48)(cid:1)× increasesthescaleheightuptoamaximumofH . P 0 0 We assume that the particles are distributed with Gaussian ×K(cid:0)m,Q;m(cid:48)Q(cid:48)(cid:1), (20) distributions just as the gas in equation (8), but with the dust where Qnew(m(cid:48),Q(cid:48);m(cid:48)(cid:48),Q(cid:48)(cid:48)) is the new Q-value of the particle particle’sspecificscaleheighthi instead,whichallowsustoan- thatwascreatedinthecollision.Inprinciple,thisequationcould alyticallyintegratetheSmoluchowskiequationvertically. besolvedasforequation(19),butaddinganotherparameterand thereforetwoadditionalintegralswouldbecomputationallyvery expensive. 2.4. Dustcoagulation We therefore follow the moment method introduced by Okuzumi et al. (2009) to re-write one two-dimensional Smolu- WeincludedustgrowthinourmodeltostudytheCOredistribu- chowskiequationintotwoone-dimensionalequations.Theidea tioninprotoplanetarydisks.ThedustcarriestheCOiceinwards isthatinsteadofevolvingthefullQ-distribution,weonlyevolve through the CO ice line. As seen in equation (16), the Stokes itsfirstmoment,itsmeanQ¯ foragivenmassm.Byintroducing number,andthereforetheparticlesize,isimportantforthedrift thedistributionfunctionofparticlesofmassm velocityofthedustparticles. (cid:90)∞ We therefore include hit-and-stick collisions of particles in n(m)= f (m,Q)dQ, (21) ourmodel.WeneglectfragmentationbecausetheCOicelineis 0 well outside of the water ice line, meaning that, everywhere in andthemeanQ-valueofparticleswithmassm ourmodel,theparticleshaveasignificantamountofwaterice, which is also mixed within the particle in such a way that the (cid:90)∞ 1 particlecollisionpropertiesarealwaysdeterminedbythewater Q¯(m)= Qf (m,Q)dQ, (22) n(m) ice.Asexplainedabove,wethereforeneglectfragmentation. 0 Page4of16 SebastianMarkusStammler etal.:RedistributionofCOinevolvinggasanddustdisks andbyassumingthattheparticledistributionisverysharpinQ isthendeterminedby f (m,Q)=n(m)δ(cid:16)Q¯(m)−Q(cid:17), (23) Qnew(cid:0)m,Q;m(cid:48),Q(cid:48)(cid:1)= mmitcoet++mmitcoet(cid:48)(cid:48) Q m+ Q(cid:48) m(cid:48) = 1−Q 1−Q(cid:48) whereδistheDiracdeltafunction,equation(20)canberewrit- 1 m+ 1 m(cid:48) tenandsimplified.Weendupwithonepartialdifferentialequa- 1−Q 1−Q(cid:48) tionforn(m) (1−Q(cid:48))Qm+(1−Q)Q(cid:48)m(cid:48) = . (26) (1−Q(cid:48))m+(1−Q)m(cid:48) (cid:90)∞ ∂n(m)=1 dm(cid:48)n(cid:0)m(cid:48)(cid:1)n(cid:0)m−m(cid:48)(cid:1)× 2.4.3. Relativevelocities ∂t 2 0 Thecoagulationisdrivenbytherelativevelocitiesoftheparti- ×K(cid:16)m(cid:48),Q¯(cid:0)m(cid:48)(cid:1);m−m(cid:48),Q¯(cid:0)m−m(cid:48)(cid:1)(cid:17) clesthatdeterminethecollisionratesandthepossiblecollision outcome.Weconsider,here,fivedifferentsourcesofrelativeve- −n(m)(cid:90)∞dm(cid:48)n(cid:0)m(cid:48)(cid:1)K(cid:16)m,Q¯(m);m(cid:48),Q¯(cid:0)m(cid:48)(cid:1)(cid:17), (24) rloadciitailesp:arBtircolwendirainftm∆uoti,ovner∆tiucBaMl,seatztliimngut∆haul pa,rtaincldetdurribfutle∆nucφe, R sett 0 ∆uturb. The total relative velocity is then given by the root mean andoneequationfornQ¯(m)≡n(m)Q¯(m) squareofallsourcesofrelativevelocity (cid:113) ∆u= ∆u2 +∆u2 +∆u2 +∆u2 +∆u2 . (27) BM R φ sett turb (cid:90)∞ ∂ (cid:16)nQ¯(m)(cid:17)=1 dm(cid:48)n(cid:0)m(cid:48)(cid:1)n(cid:0)m−m(cid:48)(cid:1)× We assume that all particles of a certain size collide with this ∂t 2 distinctmeanvelocity.Ithasbeenshownthattheuseofaveloc- 0 ity distribution can have a significant influence on dust growth ×K(cid:16)m(cid:48),Q¯(cid:0)m(cid:48)(cid:1);m−m(cid:48),Q¯(cid:0)m−m(cid:48)(cid:1)(cid:17)× by breaking through growth barriers as the bouncing barrier or ×Qnew(cid:16)m(cid:48),Q¯(cid:0)m(cid:48)(cid:1);m−m(cid:48),Q¯(cid:0)m−m(cid:48)(cid:1)(cid:17) t2h0e13fr)a.gSminecnetawtieonarbeanrroiterde(aWliinngdmwaitrhkbeotuanlc.i2n0g1a2n;dG/oarrafuradgmeteanl-. (cid:90)∞ tationinthismodel,wedonotconsideranyvelocitydistribution. −nQ¯(m) dm(cid:48)n(cid:0)m(cid:48)(cid:1)K(cid:16)m,Q¯(m);m(cid:48),Q¯(cid:0)m(cid:48)(cid:1)(cid:17). For a detailed description of the various sources of relative velocity,werefertoBirnstieletal.(2010). 0 (25) 2.5. Evaporationandcondensation Foradetailedderivationoftheequations,werefertoOkuzumi When particles drift inwards they move from colder regions in etal.(2009).Bothone-dimensionalequationscanbesimultane- the disk to warmer regions. At some point – at the ice line – ously solved, which is significantly more efficient than solving thetemperatureishighenoughfortheiceintheparticlestobe one two-dimensional equation. The coagulation equations (24) evaporated.Thevaporthatiscreatedbyevaporationcanthenbe and(25)andthedustadvectionequation(7)aresimultaneously diffusedbackwardsthroughtheicelineandcanre-condenseon solved with the method described in the appendix of Birnstiel the colder particles there. We therefore consider both evapora- etal.(2010) tionandcondensationalongwithdiffusionandviscousevolution ofthegasinourmodel. Weassumethattheparticlesalwaysadaptinstantaneouslyto 2.4.2. TheQ-parameter the new temperature. This might not be the case for very large particleswithhighheatcapacities.ButasseenlaterinSection3, Wehavenowthefreedomofchoiceonwhatexactlythephysical wedonothavesuchlargeparticles.Thetemperaturechangeour meaningofourQ-parametershouldbe.Onewaytoincludeices particles experience is solely caused by their drift from colder inourcoagulationcodeistotakem=mtot asthetotalmassand regionstowarmerregionsinthedisk.Withtypicaldriftspeeds, Q= mmice astheicefractionofaparticle.However,thisapproach theparticlesexperienceachangeintemperatureoflessthan1K hasthedisadvantagethatasaresultofevaporationandconden- in1000yrs.Theassumptionofinstantaneousadaptiontotheam- sation, both parameters m and Q change. In this case, evapora- bienttemperatureisthereforewelljustified. tion/condensationwouldbeadvectionofthefunctionQ(m,t)in Evaporation/condensation can be described by the Hertz- them-coordinatewithanadditionalsourceterm. Knudsen equation which gives the number of CO molecules N We therefore chose m = msil as the silicate mass and Q = perunitsurfaceareathatleavetheparticle, mice as the ice fraction of a particle. Here, evaporation and (cid:32) (cid:33) msil+mice d Peq condensationonlychangeQandnotm. N =v −n , (28) By using this approach, the ice mass of a particle is mice = dt therm kBT vap Q msil , whereas the total mass is mtot = 1 msil. Therefore, where n is the number density of vapor molecules, Peq 1−Q 1−Q vap wecannotmodelparticlesfullyconsistingofice(Q=1).Qnew, t√he saturation pressure of the volatile species and vtherm = whichisthenewQ-valueofaparticleresultingfromacollision 8k T/(πm )isthemeanthermalvelocityofgasmoleculesof B CO followedbystickingbetweenaparticlewithmassmandanother massm .Iftheambientpressureofthevolatilespeciesequals CO particlewithmassm(cid:48) (andicefractionsQandQ(cid:48),respectively), thesaturationpressurethenthereisnonetevaporation. Page5of16 A&Aproofs Peq hastobedeterminedexperimentally.Weusethevalues 2.5.1. Condensationmode fromLegeretal.(1985)as IfS > 0,thenweareinthecondensationregimeandcondensa- (cid:34) (cid:35) dyn 1030K tionwilltakeplaceonallparticles.Inthatcase,wecandirectly Peq (T)=1 ×exp − +27.37 . (29) CO cm2 T integrate equations (36) and(33) until the end of the time step. Ifweassumethattheparticleradiusa isconstantanddoesnot Evaporation/condensation is, in general, dependent on the i changeoverthetimestep,thenbothequationshaveanalyticso- surface curvature of the particle, where convex surfaces have lutions.Thisassumptionisjustifiedifweuseacanonicalabun- slightly higher evaporation rates than concave surfaces (Sirono danceofCOof10−4.Byusingadusttogasratioof10−2 ,this 2011).Wedonotconsiderthosesurfacecurvatureeffectsinour leads to an initial mass ratio of CO (gas and ice phase) to dust model.Thismeansifequation(28)isnegative,wehaveconden- of∼ 14%,andthereforeamaximalchangeinradiusof∼ 5%. sationonallparticlesindependentoftheirsize.Ifequation(28) Theanalyticsolutionofequation(33)isthen ispositive,allparticlesevaporateaslongastheystillcarrysome ice. E (cid:16) (cid:17) The Hertz-Knudsen equation needs to be solved for every Σvap(t)=Σvap(t0)e−C(t−t0)+ C 1−e−C(t−t0) . (38) particlesizeateveryradialandverticalpositionofthedisksep- arately and simultaneously. But since we are not dealing with Usingequation(38)inequation(36)leadsto theverticalstructureofthediskinourmodel,weneedtotrans- ∂ ferthisexpressionintoanexpressionforsurfacedensities.Ifwe Σ =−E +CΣ lookatthemidplaneofthedisk,theHertz-Knudsenequationfor ∂t ice,i i i vap themidplanevapormassdensityreadsas (cid:18) E (cid:16) (cid:17)(cid:19) d (cid:88) (cid:32)m Peq (cid:33) =−Ei+Ci Σvap(t0)e−C(t−t0)+ C 1−e−C(t−t0) dtρvap = πa2i ndust,ivtherm CkOT −ρvap , (30) =(cid:16)CiΣvap(t0)−Ei(cid:17)e−C(t−t0), (39) i B where a is the particle radius and n the midplane number whereinthelaststep,equation(37)wasused.Thisequationhas i dust,i densityofdustparticlesspeciesi.Thissystemisinequilibrium theanalyticalsolution if CΣ (t )−E (cid:16) (cid:17) ρvap = mCkOTPeq ≡ρevqap, (31) Σice,i(t)=Σice,i(t0)+ i vapC0 i 1−e−C(t−t0) . (40) B where ρeq is defined as the equilibrium vapor mass density. If Equations(38)and(40)canbeusedtocalculatethesurfaceden- vap sitiesatanytimestepdirectly. weassumethatthevaporisalwaysinpressureequilibrium,we getfortheequilibriumvaporsurfacedensity √ √ m Peq 2.5.2. Evaporationmode Σeq = 2πH ρeq = 2πH CO . (32) vap P vap P kBT If at the start of the time step S < 0, we are in an evaporation Assuming this, we can transform equation (30) into an expres- regime. Also in this regime, the time evolution is governed by sionforthevaporsurfacedensity equations(38)and(40).However,weneedtotakeintoaccount thatbaregrainswillnotcontributetothefluxofmolecules,and d (cid:88) (cid:16) (cid:17) Σ = πa2n v Σeq −Σ thatduringthetimestep,grainsmaybecomebare.Therefore,we dt vap i dust,i therm vap vap splittheintegrationintoanumberofsub-steps.Duringeachsub- i (cid:88)(cid:16) (cid:17) step, the same set of grain sizes contributes to the evaporation = E −CΣ i i vap flux, and we completely ignore bare grains. For each step, we i define restricted versions ofC and E. These restricted versions = E−CΣvap ≡−S, (33) onlysumovernon-baregrains; with (cid:88) (cid:88) C = C and E = E. (41) rest i rest i C =πa2v n (34) i i therm dust,i i,notbare i,notbare E =CΣeq . (35) i i vap Wedefinebaregrainsasparticlesthathavelessthanonemono- Therefore, the change in the ice surface density of particle layeroficemoleculesontheirsurface. speciesiisgivenby Withthesedefinitions,weuseequation(40)tocheckifany ice component becomes depleted during the time step, that is, ∂ Σ =CΣ −E, (36) wecheckforthefirstrootinanyoftheequations; ∂t ice,i i vap i wanheicvhapisortahteiodniffteerrmenEcei.bTehtweedeenepaercomnedaennisnagtiboenhtienrdmthCisiΣfvoarpmaanld- Σice,i(t0)+ CiΣvapC(t0)−Ei (cid:16)1−e−C(t−t0)(cid:17)=0. (42) ism is that we treat the evaporation/condensation rates as if the particles were in the midplane, while we assume that gas and Ifthatfirstrootisbeforetheendofthetimestep,weevolvethe particles are always in thermal equilibrium and distributed ac- system to this time, remove the newly bare grain size from the cordingtotheirpressurescaleheightsH andh. participating set of grain sizes, and continue in the same way. P i ForC andE ,thefollowingrelationholds: Eventually, either all grains will be bare, or the first root in the i i set of equations (42) will be beyond the end of the time step. E E i = . (37) Thenweuseequation(40)withC replacedbyCrest tomovethe Ci C systemtotheendofthetimestep. Page6of16 SebastianMarkusStammler etal.:RedistributionofCOinevolvinggasanddustdisks Table1.Fiducialmodelparameters. 103 ] Σgas Parameter Symbol Value Unit 2m 102 ΣCO Viscosityparameter α 10−3 – [g/c 101 ΣeCqO Schmidtnumber Sc 1/3 – y t Stellarmass Mstar 1.0 M(cid:12) nsi 100 GGaass--ttoo--dCuOstrraattiioo ffgg22dCO 170000 –– acede 10−1 Silicatebulkdensity ρsil 1.6 g/cm3 urf 10−2 CObulkdensity ρ 1.6 g/cm3 S CO 10−3 20 25 30 35 40 45 50 55 60 Distancefromstar[AU] 2.5.3. Caveats We do not consider grain curvature effects on evaporation and Fig.1.Gassurfacedensitiesofthefiducialmodelafter1Myr.Shown condensation. Thismeans eitherall particles arein evaporation arethetotalgassurfacedensity(solidblackline)andthesurfacedensity modeorallparticlesareincondensationmode.Ingeneral,this ofgaseousCO(dashedgreenline).Thedottedbluelineistheequilib- effectismostlyeffectiveforverysmallparticles(< 0.1µm).As riumsurfacedensityofCOgivenbyequation(32).Thelocationwhere seeninsection3,wegetridofthesmallparticlesveryquickly theCOsurfacedensitydetachesfromtheequilibriumCOsurfaceden- due to coagulation and do not replenish them since we do not sityiscalledtheiceline. havefragmentation. Thesurfaceofarealdiskisdirectlyilluminatedbythestar andthereforehotterthanthemidplane.Thismeansthatinaddi- tion(Mathisetal.1977)withanuppercutoffat1µm.Weinte- tion to a radial ice line in the midplane, disks also have a two- gratetheequations(7),(15),(24),and(25)andusethemethod dimensional surface called atmospheric ice line towards their forevaporation/condensationasdescribedinsection(2.5)tocal- surface,wherethetemperaturesarehighenoughforicestoevap- culatethetimeevolutionofthegassurfacedensitiesΣ andΣ , orate. Since we are only looking at midplane quantities to de- andthedustsurfacedensitiesofthedifferentgrainsizHe2sΣ CO. dust,j cidebetweenevaporationorcondensation,weneglecttheatmo- sphericiceline.Thisleadstoanoverestimationoftheicecontent Figure 1 shows the gas surface densities after 1Myr of the oftheparticles.Butsincemostofthedustmassisbasicallybe- simulation. We have chosen this value, because it is the typical low the vertical ice line, especially the larger grains, the effect age of some of the best studied star-forming regions and thus is only expected to be important near the radial ice line where alsoofthediskstherein.Also,itisthetypicaltimescalefordisk theverticalicelinereachesthemidplane.However,thisisara- dispersion(e.g.,Haischetal.2001).Shownisthetotalgassur- dially narrow region, so it shouldn’t affect the global transport, face density Σgas = ΣH2 +ΣCO and the CO gas surface density butpossiblymodifiestheshapeofthesnowline. ΣCO.OverplottedistheequilibriumCOgassurfacedensityΣeCqO Ourparticleshavearelativelysimplestructureinthemodel. given by equation (32), which the system would have if there TheyaretreatedasparticleswithacoreandamantleofCO.If was no net evaporation/condensation and if there was enough twoparticleswithmantlescollideinourmodel,theyformanew COavailable.IfthereisnotenoughCOinthesystem,thenthe particlewithasinglecoreandamantleinsteadofaparticlewith COintheparticlesevaporatesuntilthegrainsarebare.Thera- two cores connected at their contact point, or even more com- dial distance, where ΣCO detaches from ΣeCqO , is then our defi- plexfragmentedstructures.Thismayleadtoanartificialgrowth nition of the CO ice line because it is the point where there is ofsilicateparticles.Ifweconsiderthecasewhereoutsidetheice justenoughCOinourmodeltoprovidethevaporpressurenec- line,manyparticleswithCOmantlescollide;inourmodelthey essarytocounterbalancetheevaporation.Inourfiducialmodel, formalargeparticlewithalargesinglecoreandalargeCOman- thishappensat∼ 47AU.Outsidetheiceline,theCOisfrozen tle.BycrossingtheicelineandevaporatingtheCO,wearethen outontothegrainsuntilΣCO = ΣeCqO.Insidetheiceline,allCO left with this large core instead of many small cores. Aumatell is in the gas phase. Although it is not a power law, the equilib- and Wurm (2011) showed, experimentally, that by evaporating riumdensityatthepositionoftheicelinecanbeapproximated fractaliceparticles,onewouldexpecttobeleftwithmanysmall byΣeq ∝ R−p with p ≈ 20.Sincethisisverysteep,theregion CO particlesinsteadofonelargeparticle.Infavorofsimplicity,we aroundtheiceline,wheretheCOispartiallycondensed,isvery neglectthiseffect. smallandthereforetheicelineiswelldefined. Furthermore,theevaporationofCOicecanbedecreasedif Figure 2 shows the total dust surface density Σ and the dust someoftheCOiceistrappedinsideaporousandspatiallycom- surface densities Σ of grains larger than one millimeter, a>1mm plex structure of the dust particle. Or it can be increased if the Σ ofgrainsizesbetween1mmand1µm,andΣ of dustparticleisveryfluffybecauseitssurfaceareaisthenmuch 1µm<a<mm a<1µm sub-micrometer-sized grains after 1Myr. The total dust surface larger than in the case of a spherical particle of the same size. density outside of 70 AU is dominated by sub-millimeter-sized Theseeffectsarealsoignoredinthiswork. grains. The amount of millimeter-sized grains becomes impor- tant inside of 70 AU. The reason for that is that the maximum size of the particles is limited by radial drift. As particles grow 3. Results to larger sizes, their Stokes number increases. In the Epstein regime of drag, which is relevant in this work, particles of the 3.1. Thefiducialmodel samesizehavealargerStokesnumberinregionsofsmallergas The input quantities of our fiducial model are given in table 1. density. This means that particles of a given size drift faster in The grain sizes are initially distributed with the MRN distribu- the outer region of the disk. When the particles grow and their Page7of16 A&Aproofs 100 2m] 10−1 ΣΣdau>s1tmm 1.0 15µµmm g/c 10−2 Σ1µm<a<1mm n 0.8 10µm nsity[ 1100−−43 0.015 Σa<1µm ractio 0.6 51000µµmm e f 0.4 ed 10−5 Ice ac 10−6 0.2 rf 0.005 Su 10−7 40 60 0.0 10−8 20 40 60 80 100 120 40 50 60 70 80 90 100 Distancefromstar[AU] Distancefromstar[AU] Fig. 2. Dust surface densities of different dust sizes at the CO ice Fig. 3. The CO ice fraction Q of particles with different silicate core lineafter1Myr.Shownarethetotalsurfacedensity(solidgrayline), sizesdependingontheirradialpositioninthediskafter1Myr. millimeter-sized (dotted blue line), sub-millimeter-sized (dashed red line),andsub-micrometer-sized(dash-dottedgreenline)particles.The verticaldashedlinemarksthelocationoftheCOiceline. tions: (cid:90)∞ Stokesnumbersapproachunity,theyareheavilyaffectedbyra- σdust,tot(a;R)= n(a;R,z)·m·adz dialdriftanddriftrapidlytowardsthecentralstar. −∞ We do not see any enhanced particle growth at the ice line. (cid:90)∞ Thereasonforthatistheso-calleddriftbarrier.Ifparticlesdrift σ (a;R)= nQ(a;R,z)·m·adz. (43) dust,CO through the ice line and evaporate their CO, this CO vapor can diffuse backwards through the ice line and can re-condense on −∞ theparticlesthere.Theseparticlesthengrowinsize.Therefore, The solid line denotes the particles with a Stokes number of their Stokes number increases and with that their drift velocity, unity.Thedashedlineisananalyticalestimateofthemaximum makingthemdriftevenfasterthroughtheiceline. drift-limited particle size as given by Birnstiel et al. (2011). At In fact, the feature we see in Σ in figure 2 at the ice line first,theparticlegrowthismosteffectiveintheinnerregionsof dust should rather be seen as a depletion inside the ice line instead thediskbecauseofthelargercollissionratesoftheparticles.The ofanenhancementoutside,becauseitissolelycausedbyevap- particlegrowthislaterhinderedbyradialdrift.Inthesnapshots orationoftheCOiceontheinwardsdriftingparticles.Thisde- at 500,000yrs and 1Myr, a region from the ice line at 47AU pletionapproximatelycorrespondstotheinputratiosof f and outwardscanbeseenwheretherearenosmallparticles(dotted g2d f . line).Becauseofthere-condensationofCO,theseparticlesgrow g2CO Figure2alsoshowsacompletelackofsub-micrometersized insize.Thedistributionfunctionsσarethereforecompressedto- grains in a region of approximately 10 AU outside the ice line. wardslargersizesleadingtothedarkerspotatintermediatepar- Thoseparticlesdonotexisthere,becausethebackwardsdiffus- ticlesizesintheµmrange.Thetotalnumberdensityofparticles ing CO vapor preferentially re-condenses on the smallest par- hasnodiscontinuityattheiceline. ticles since they contribute the most to the total surface area. Toinvestigatethetypicalparticlesizea¯mthatcarriesmostof Therefore, these particles grow in size. The particles with the the CO ice mass and the typical particle size a¯F that transports smallest silicate cores have ice fractions of Q > 0.999. There- mostoftheCOice,wedefinethefollowingquantities: fore,theirmassisenhancedbyafactorofatleast1,000andtheir (cid:82) raadi<us1bµymatfhaecrteofroorefhatavleeaastre1s0u.lPtianrgtircaledsiuwsiothfaasili>ca1teµmco.reof a¯m(R)= (cid:82)a·σdust,COdlna (44) sil real σ dlna dust,CO Figure3showstheseicefractionsQ(R)asafunctionofdis- (cid:82) tsailnicceatefrcoomrethsiezesstaorfatfhteerpa1rMticylerso.fSitnhceeswimeudloatinoonttfaokrediinffteoreanc-t a¯F(R)= (cid:82)au·uga·sσ·σdust,COdldnlana. (45) gas dust,CO countanycurvatureeffectsforourevaporation/condensational- gorithm, this means the evaporation/condensation rate per unit a¯ is the average particle size weighted by the CO dust distri- m surfaceareaisthesameforallparticlesizes.Inthecaseofcon- bution and a¯ is the average particle size weighted by the CO F densation, the absolute change in radius would be the same for iceflux.Bothquantitiesareplottedinfigure5.Itcanbeseenby all particles independent of their size. But the relative gain in comparing figure 5 with figure 4 that a¯ is always close to the m particle mass is therefore larger for smaller particles and there- maximum particle size. Furthermore, a¯ is always close to the m fore their Q-value increases faster. Figure 3 shows this effect. particle size a¯ that is responsible for the ice flux on the parti- F The smaller the particle is, the larger its CO ice fraction Q at clesinthedisk. the ice line at 47AU. Also, it can be seen that the CO vapor is redistributedtolargedistancesoutwardsoftheiceline.Evenat 3.2. TransportofCOinthedustphase R > 70AU, there is a noticeable increase of Q for the small particles. Figure6showstheexcessintotaldustsurfacedensitycompared Figure 4 shows different snapshots of the size evolution in toamodelwithoutCO,thedust-to-gasratioandtheice-to-dust our fiducial model. Plotted are the following distribution func- ratio for different values of the initial gas-to-CO ratio f at g2CO Page8of16 SebastianMarkusStammler etal.:RedistributionofCOinevolvinggasanddustdisks Totaldust COice 101 100 10000yrs 100 10000yrs 100 10−1 10−1 clesize[cm] 1100−−21 2σ[g/cm] 11110000−−−−5432 2σ[g/cm] 11110000−−−−5432 rti 10−3 10−6 10−6 a P 10−4 10−5 101 0.1Myrs 0.1Myrs 100 m] [c 10−1 e z si 10−2 e cl rti 10−3 a P 10−4 10−5 101 0.5Myrs 0.5Myrs 100 m] [c 10−1 e z si 10−2 e cl rti 10−3 a P 10−4 10−5 101 1Myr 1Myr 100 m] [c 10−1 e z si 10−2 e cl rti 10−3 a P 10−4 10−5 20 40 60 80 100 120 20 40 60 80 100 120 Distancefromstar[AU] Distancefromstar[AU] Fig. 4. Different snapshots of our fiducial model. Shown are the different distribution functions as defined by equations (43) at 10,000yrs, 100,000yrs,500,000yrs,andat1Myr.ThesolidlinedenotestheparticlesizeswithStokesnumberunity,Thedashedlineisananalyticales- timationofthedriftbarrier.Thedottedlineencompassesaregionoutsideoftheicelinethatisfreeofsmallparticles. differenttimesinthesimulation.Weusedvaluesfor f of70, outside the ice line is f /f . The initial value of the gas- g2CO g2d g2CO 700 (fiducial model), and 7000, which correspond to CO abun- to-dustratiois1/f +1/f .Theice-to-dustratiocompares g2d g2CO dancesof10−3,10−4,and10−5.Forguidance,thehorizontallines thesurfacedensityofCOicetothetotaldustsurfacedensity.Its markthevaluesforthequantitiesonewouldexpectoutsidethe initialvalueis f /(f + f ). g2d g2d g2CO icelinesimplyfromtheinitialconditions.Theexcessisdefined asΣ/Σ −1,whereΣ isthetotaldustsurfacedensityinthemod- It can be seen that the closer the CO ice line is to the star, elsoifth0edifferentCOi abundancesandΣ isthetotaldustsurface thehighertheCOabundanceis.Further,themoreCOthereisin 0 thesystem, the moresaturated theevaporation/condensationis, densityinthemodelwithoutCO.Theinitialvalueoftheexcess causingtheicelinetobepushedinwards.Thisvariestheposition Page9of16 A&Aproofs Excess Dust-to-gasratio Ice-to-dustratio 102 10−1 101 initial initial initial fg2CO=70 1− 110001 Σgas 10−2 /Σdust 100 ffgg22CCOO==7700000 Σ/Σ0 10−1 Σ/dust 10−3 ust,CO 10−1 10−2 Σd 10−2 10−3 10−4 10−3 102 10−1 101 10000yrs 10000yrs 10000yrs 1− 110001 Σgas 10−2 /Σdust 100 Σ/Σ0 10−1 Σ/dust 10−3 ust,CO 10−1 10−2 Σd 10−2 10−3 10−4 10−3 102 10−1 101 0.5Myrs 0.5Myrs 0.5Myrs 1− 110001 Σgas 10−2 /Σdust 100 Σ/Σ0 10−1 Σ/dust 10−3 ust,CO 10−1 10−2 Σd 10−2 10−3 10−4 10−3 102 10−1 101 1Myr 1Myr 1Myr 1− 110001 Σgas 10−2 /Σdust 100 Σ/Σ0 10−1 Σ/dust 10−3 ust,CO 10−1 10−2 Σd 10−2 10−3 10−4 10−3 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 Distancefromstar[AU] Distancefromstar[AU] Distancefromstar[AU] Fig.6.TheexcessoftotaldustsurfacedensitycomparedtoamodelwithoutCO,thedust-to-gasratioandtheice-to-dustratioatdifferenttimes forinitialgas-to-COratiosof70(dottedredline),700(fiducialmodel,solidgreenline)and7000(dashedblueline).Thehorizontalgraylinesare therespectivequantitiesonewouldexpectfromtheinitialconditionsoutsidetheiceline. oftheCOicelineinthesemodelsfromapproximately40AUto and re-condensing CO vapor increases the ice surface density 50AU,initially. outsidetheiceline. Thiseffectcanalsobeseenintheice-to-dustratio.At1Myr, Theleftpanelsshowtheexcesscomparedtoamodelwith- the ice-to-dust ratio is enhanced above the initial value even at outCO.Notably,theexcessinsidetheicelineisnonzeroinall radiilargerthan70AUdependingonthemodel. cases,meaningthetotalsurfacedensityisstillhigherthaninthe comparisonmodelwithoutCO.BecauseofthelargerCO-coated particlesinthemodelswithCO,andthereforethemoreeffective 3.3. TransportofCOinthegasphase drift,thedustsurfacedensityisenhancedinsidetheiceline.This isespeciallyvisibleinthehighabundancemodel.Insomemod- COisradiallytransportedinthediskviathreemechanisms:vis- els,theexcessattheicelinecanbeafewtimeslargerthanone cous accretion and diffusion in the gas phase and frozen-out wouldexpectfromtheinitialvalues.Thisisduetoaccumulation as ice on drifting particles. As, outside of the ice line, most of andre-distributionofCOattheiceline. theCOisfrozen-outonparticles,thedominantradialtransport Ingeneral,thedust-to-gasratiodecreaseswithtime.Thedust mechanismthereisparticledrift.Insidetheiceline,ontheother surfacedensitydecreaseswhilethegasdensityremainsapprox- hand,alloftheCOexistsinthegasphaseandisradiallytrans- imately constant over time, as discussed later. The dust-to-gas portedbyviscousaccretionanddiffusion. ratio decreases from inside out because the particle growth is This means that transport of CO through the ice line from most efficient in the inner parts of the disk, meaning the par- the outside into the inner part of the disk happens on drifting ticles start to drift earlier than outside. The dust-to-gas ratio is dustparticles,whiletransportfromtheinsidetotheoutsidetakes increased at the location of the ice line. This is due to two ef- place in the gas phase. The efficiency of viscous accretion is fects:first,astheparticlesdriftthroughtheiceline,theyshrink highly dependent on the viscosity parameter α while the drift becauseofevaporation,makingdriftlessefficientandtherefore velocityofparticlesdependsontheirsizeandisonlyindirectly leading to a “traffic jam”, and second, the backwards-diffusing relatedtoαthroughthedustgrowth. Page10of16