ebook img

Recurrence formulae for Apostol-Bernoulli and Apostol-Euler polynomials PDF

16 Pages·2013·0.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recurrence formulae for Apostol-Bernoulli and Apostol-Euler polynomials

HeandWangAdvancesinDifferenceEquations2012,2012:209 http://www.advancesindifferenceequations.com/content/2012/1/209 RESEARCH OpenAccess Recurrence formulae for Apostol-Bernoulli and Apostol-Euler polynomials YuanHe*andChunpingWang *Correspondence: [email protected] Abstract FacultyofScience,Kunming Inthispaper,usinggeneratingfunctionsandcombinatorialtechniques,weextend UniversityofScienceand Technology,Kunming,Yunnan AgohandDilcher’squadraticrecurrenceformulaforBernoullinumbersin(Agohand 650500,People’sRepublicofChina DilcherinJ.NumberTheory124:105-122,2007)toApostol-Bernoulliand Apostol-Eulerpolynomialsandnumbers. MSC: 11B68;05A19 Keywords: Apostol-Bernoullipolynomialsandnumbers;Apostol-Eulerpolynomials andnumbers;recurrenceformula 1 Introduction TheclassicalBernoullipolynomialsB (x)andEulerpolynomialsE (x)haveplayedimpor- n n tantrolesinmanybranchesofmathematicssuchasnumbertheory,combinatorics,special functionsandanalysis,andtheyareusuallydefinedbymeansofthefollowinggenerating functions: text (cid:2)∞ tn (cid:3) (cid:4) ext (cid:2)∞ tn (cid:3) (cid:4) = B (x) |t|<π , = E (x) |t|<π . (.) et– n n! et+ n n! n= n= Inparticular,B =B ()andE =nE (/)arecalledtheclassicalBernoullinumbersand n n n n Eulernumbers,respectively.Numerousinterestingpropertiesforthesepolynomialsand numbershavebeenexplored;see,forexample,[–]. Recently,usingsomerelationshipsinvolvingBernoullinumbers,AgohandDilcher[] extendedEuler’swell-knownquadraticrecurrenceformulaontheclassicalBernoullinum- bers (cid:5) (cid:6) (cid:2)n n (B +B )n= BB =–nB –(n–)B (n≥) (.)   i n–i n– n i i= toobtainanexplicitexpressionfor(B +B )n witharbitrarynon-negativeintegersk,m, k m nandkandmnotbothzeroasfollows: (cid:5) (cid:6) (cid:2)n n (B +B )n= B B k m k+i m+n–i i i= k!m!(n+δ(k,m)(m+k+)) =– B m+n+k (m+k+)! ©2012HeandWang;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction inanymedium,providedtheoriginalworkisproperlycited. HeandWangAdvancesinDifferenceEquations2012,2012:209 Page2of16 http://www.advancesindifferenceequations.com/content/2012/1/209 (cid:7) (cid:5) (cid:6)(cid:5) (cid:6) (cid:2)m+k B k+ k+–i im + (–)i m+k+–i (–)k n– m+k+–i i k+ k+ i= (cid:5) (cid:6)(cid:5) (cid:6)(cid:8) m+ m+–i ik +(–)m n– B , (.) n+i– i m+ m+ whereδ(k,m)=whenk=orm=,andδ(k,m)=otherwise.Asfurtherapplications, Agoh and Dilcher [] derived some new types of recurrence formulae on the classical BernoullinumbersandshowedthatthevaluesofB dependonlyonB ,B ,...,B n n n+ n forapositiveintegernand,similarly,forB andB . n+ n+ Inthispaper,usinggeneratingfunctionsandcombinatorialtechniques,weextendthe abovementionedAgohandDilcherquadraticrecurrenceformulaforBernoullinumbers toApostol-BernoulliandApostol-Eulerpolynomialsandnumbers.Theseresultsalsolead to some known ones related to the formulae on products of the classical Bernoulli and EulerpolynomialsandnumbersstatedinNielsen’sclassicalbook[]. 2 Preliminariesandknownresults WefirstrecalltheApostol-BernoullipolynomialswhichwereintroducedbyApostol[] (seealsoSrivastava[]forasystematicstudy)inordertoevaluatethevalueoftheHurwitz- Lerchzetafunction.Forsimplicity,weherestartwiththeApostol-Bernoullipolynomials B(α)(x;λ)of(realorcomplex)orderαgivenbyLuoandSrivastava[] n (cid:5) (cid:6) t α (cid:2)∞ tn (cid:3) (cid:4) ext= B(α)(x;λ) |t+logλ|<π;α:= . (.) λet– n n! n= Especiallythecase α= in(.)givestheApostol-Bernoullipolynomialswhicharede- notedbyB (x;λ)=B()(x;λ).Moreover,B (λ)=B (;λ)arecalledtheApostol-Bernoulli n n n n numbers.Further,Luo[]introducedtheApostol-EulerpolynomialsE(α)(x;λ)oforderα: n (cid:5) (cid:6)  α (cid:2)∞ tn (cid:3) (cid:4) ext= E(α)(x;λ) |t+logλ|<π;α:= . (.) λet+ n n! n= The Apostol-Euler polynomials E (x;λ) and Apostol-Euler numbers E (λ) are given by n n E (x;λ)=E()(x;λ) and E (λ)=nE (/;λ),respectively.Obviously, B (x;λ) and E (x;λ) n n n n n n reducetoB (x)andE (x)whenλ=.SeveralinterestingpropertiesforApostol-Bernoulli n n andApostol-Eulerpolynomialsandnumbershavebeenpresentedin[–].Nextwegive somebasicpropertiesforApostol-BernoulliandApostol-Eulerpolynomialsoforderαas statedin[,]. Proposition. DifferentialrelationsoftheApostol-BernoulliandApostol-Eulerpolyno- mialsoforderα:fornon-negativeintegerskandnwith≤k≤n, ∂k (cid:9) (cid:10) n!B(α)(x;λ) ∂k (cid:9) (cid:10) n!E(α)(x;λ) B(α)(x;λ) = n–k , E(α)(x;λ) = n–k . (.) ∂xk n (n–k)! ∂xk n (n–k)! Proposition. DifferenceequationsoftheApostol-BernoulliandApostol-Eulerpolyno- mialsoforderα:forapositiveintegern, (cid:3) (cid:4) λB(α)(x+;λ)–B(α)(x;λ)=nB(α–)(x;λ) B()(x;λ)=xn , (.) n n n– n HeandWangAdvancesinDifferenceEquations2012,2012:209 Page3of16 http://www.advancesindifferenceequations.com/content/2012/1/209 and (cid:3) (cid:4) λE(α)(x+;λ)+E(α)(x;λ)=E(α–)(x;λ) E()(x;λ)=xn . (.) n n n n Proposition. AdditiontheoremsoftheApostol-BernoulliandApostol-Eulerpolynomi- alsoforderα:forasuitableparameterβ andanon-negativeintegern, (cid:5) (cid:6) (cid:2)n (cid:3) (cid:4) n B(α+β)(x+y;λ)= B(α)(x;λ)B(β)(y;λ) B()(x;λ)=xn , (.) n i i n–i n i= and (cid:5) (cid:6) (cid:2)n (cid:3) (cid:4) n E(α+β)(x+y;λ)= E(α)(x;λ)E(β)(y;λ) E()(x;λ)=xn . (.) n i i n–i n i= Proposition. ComplementaryadditiontheoremsoftheApostol-BernoulliandApostol- Eulerpolynomialsoforderα:foranon-negativeintegern, (–)n (cid:3) (cid:4) (–)n (cid:3) (cid:4) B(α)(α–x;λ)= B(α) x;λ– , E(α)(α–x;λ)= E(α) x;λ– . (.) n λα n n λα n Settingα=,β=andα=λ=,β=intheformulae(.)to(.),weimmediately getthecorrespondingformulaefortheApostol-BernoulliandApostol-Eulerpolynomials, andtheclassicalBernoulliandEulerpolynomials,respectively.Itisworthnotingthatthe casesα=λ=inProposition.arealsocalledthesymmetricdistributionsoftheclas- sicalBernoulliandEulerpolynomials.Theabovepropositionswillbeveryusefultoin- vestigatethequadraticrecurrenceformulaefortheApostol-BernoulliandApostol-Euler polynomialsinthenexttwosections. 3 RecurrenceformulaeforApostol-Bernoullipolynomials Inwhatfollows,weshallalwaysdenotebyδ theKroneckersymbolwhichisdefinedby ,λ δ =oraccordingtoλ(cid:5)=orλ=,andalsodenoteB (x;λ)=E (x;λ)=foranypos- ,λ –n –n itiveintegern.BeforestatingthequadraticrecurrenceformulafortheApostol-Bernoulli polynomials,webeginwithasummationformulaconcerningthequadraticrecurrenceof theApostol-Bernoullipolynomials. Theorem. Letk,m,nbenon-negativeintegers.Then (cid:5) (cid:6) (cid:2)n (cid:3) (cid:4) n B(x;μ)+B (y;λμ) k i m+n–i i i= n+k =–δ B (x+y;λμ) ,λ m+n+k m+ n+k +B (y;λ)B (x+y;μ)+ B (y;λ)B (x+y;μ) m n+k m+ n+k– m+ (cid:5) (cid:6) (cid:2)m m B (x;λ–) +(n+k) (–)m+iB (x+y;λμ) m+–i . (.) n+k+i– i m+–i i= HeandWangAdvancesinDifferenceEquations2012,2012:209 Page4of16 http://www.advancesindifferenceequations.com/content/2012/1/209 Proof Multiplyingbothsidesoftheidentity (cid:5) (cid:6)   λeu   = + (.) λeu–μev– λeu– μev– λμeu+v– byv(u+v)exv+y(u+v)yields vexv (u+v)ey(u+v) eyu ve(x+y)v e(–x)u (u+v)e(x+y)(u+v) =(u+v) –λv . (.) μev– λμeu+v– λeu–μev– λeu– λμeu+v– Makingk-timesderivativefortheaboveidentity(.)withrespecttov,withthehelpof theLeibnizrule,weobtain (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)k k ∂j vexv ∂k–j (u+v)ey(u+v) j ∂vj μev– ∂vk–j λμeu+v– j= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) ueyu ∂k ve(x+y)v eyu ∂k ve(x+y)v eyu ∂k– ve(x+y)v = +v +k λeu–∂vk μev– λeu–∂vk μev– λeu–∂vk– μev– (cid:5) (cid:6) (cid:5) (cid:6) e(–x)u ∂k (u+v)e(x+y)(u+v) e(–x)u ∂k– (u+v)e(x+y)(u+v) –λv –λk . (.) λeu–∂vk λμeu+v– λeu–∂vk– λμeu+v– Since B (x;λ)= when λ= and B (x;λ)= when λ(cid:5)= (see, e.g., []), so by setting   B (x;λ)=δ ,weget  ,λ exu δ (cid:2)∞ B (x;λ)um ,λ m+ – = . (.) λeu– u m+ m! m= Ontheotherhand,byTaylor’stheorem,wehave (cid:5) (cid:6) (cid:2)∞ (cid:2)∞ (cid:2)∞ (u+v)ex(u+v) ∂n uexu vn umvn = = B (x;λ) . (.) λeu+v– ∂un λeu– n! m+n m! n! n= m=n= Applying(.),(.)and(.)to(.),inviewoftheCauchyproductandthecomplemen- taryadditiontheoremoftheApostol-Bernoullipolynomials,wederive (cid:11) (cid:5) (cid:6) (cid:5) (cid:6) (cid:12) (cid:2)∞ (cid:2)∞ (cid:2)n n (cid:2)k k umvn B (x;μ)B (y;λμ) i+j m+n+k–i–j i j m! n! m=n= i= j= (cid:13) (cid:14) (cid:2)∞ (cid:2)∞ kB (y;λ)B (x+y;μ) umvn = B (y;λ)B (x+y;μ)+ m+ n+k– m n+k m+ m! n! m=n= (cid:2)∞ (cid:2)∞ B (y;λ)B (x+y;μ)umvn+ kδ (cid:2)∞ vn + m+ n+k + ,λ B (x+y;μ) n+k– m+ m! n! u n! m=n= n= (cid:2)∞ (cid:2)∞ (cid:2)∞ δ vn+ um–vn+ + ,λ B (x+y;μ) –δ B (x+y;λμ) n+k ,λ m+n+k u n! m! n! n= m=n= (cid:11) (cid:5) (cid:6) (cid:12) (cid:2)∞ (cid:2)∞ (cid:2)m m B (x;λ–) umvn+ + (–)m+iB (x+y;λμ) m+–i n+k+i i m+–i m! n! m=n= i= HeandWangAdvancesinDifferenceEquations2012,2012:209 Page5of16 http://www.advancesindifferenceequations.com/content/2012/1/209 (cid:11) (cid:5) (cid:6) (cid:12) (cid:2)∞ (cid:2)∞ (cid:2)m m B (x;λ–) umvn +k (–)m+iB (x+y;λμ) m+–i n+k+i– i m+–i m! n! m=n= i= (cid:2)∞ (cid:2)∞ um–vn –kδ B (x+y;λμ) . (.) ,λ m+n+k– m! n! m=n= Comparing the coefficients of umvn+/m!(n + )! and um/m! in (.), we conclude our proof. (cid:2) AsaspecialcaseofTheorem.,wehavethefollowing Corollary. Letmandnbepositiveintegers.Then (cid:5) (cid:6) (cid:2)m (cid:3) (cid:4)  m  (–)m–iB y–x;λ– B (y;λμ)– B (x;λ)B (y;μ) m–i n+i– m n– m i m i= (cid:5) (cid:6) (cid:2)n  n  =– B (y–x;μ)B (x;λμ)+ B (x;λ)B (y;μ). (.) n–i m+i– m– n n i n i= Proof Settingk=andsubstitutingyforxandxforyinTheorem.,weobtainthatfor non-negativeintegersmandn,wehave (cid:5) (cid:6) (cid:2)n n B (y;μ)B (x;λμ) n–i m+i i i= n =B (x;λ)B (x+y;μ)+ B (x;λ)B (x+y;μ) m n m+ n– m+ (cid:5) (cid:6) (cid:2)m+ (cid:3) (cid:4) n m+ + (–)m+iB y;λ– B (x+y;λμ). (.) m+–i n+i– m+ i i= Hence,replacingybyy–xintheabovegivesthedesiredresult. (cid:2) Remark. Settingλ=μ=,x=tandy=–tinCorollary.,byB (–x)=(–)nB (x) n n foranon-negativeintegern,weimmediatelygetthegeneralizationofWoodcock’sidentity ontheclassicalBernoullinumbers,see[,], (cid:5) (cid:6) (cid:2)m  m  (–)iB (t)B (t)– B (t)B (t) m–i n+i– m n– m i m i= (cid:5) (cid:6) (cid:2)n  n  = (–)iB (t)B (t)– B (t)B (t) (m,n≥). (.) n–i m+i– n m– n i n i= Applying the difference equation and symmetric distribution of the classical Bernoulli polynomials, one can get (–)nB (–x)=B (x)+nxn– for a positive integer n. Combin- n n ingwithCorollary.,wehaveanothersymmetricexpressionontheclassicalBernoulli numbersduetoAgoh,see[,], (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)m (cid:2)n  m  n B B + B B =–B (m,n≥). (.) m–i n+i– n–i m+i– m+n– m i n i i= i= HeandWangAdvancesinDifferenceEquations2012,2012:209 Page6of16 http://www.advancesindifferenceequations.com/content/2012/1/209 Using Theorem ., we shall give the following quadratic recurrence formula for Apostol-Bernoullipolynomials. Theorem. Letk,m,nbenon-negativeintegers.Then (cid:3) (cid:4) B (x;μ)+B (y;λμ) n k m k!m!(n+δ(k,m)(m+k+)) =–δ B (x+y;λμ) ,λ m+n+k (m+k+)! (cid:7) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8) (cid:2)m+k m m B (x;λ–) + (–)m+i n –k B (x+y;λμ) m+k+–i n+i– i i– m+k+–i i= (cid:7) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8) (cid:2)m+k k k B (y;λ) + (–)k+i n –m B (x+y;μ) m+k+–i , (.) n+i– i i– m+k+–i i= where δ(k,m)=– when k =m=, δ(k,m)= when k =, m≥ or m=, k ≥, and δ(k,m)=otherwise. Proof Settingk=andsubstitutingm+kforminTheorem.,wehave (cid:3) (cid:4) B (x;μ)+B (y;λμ) n  m+k nB (x+y;λμ) =–δ m+n+k +B (y;λ)B (x+y;μ) ,λ m+k n m+k+ (cid:5) (cid:6) nB (y;λ)B (x+y;μ) (cid:2)m+k m+k + m+k+ n– +n (–)m+k+i m+k+ i i= B (x;λ–) ×B (x+y;λμ) m+k+–i , (.) n+i– m+k+–i whichisjustthecaseδ(k,m)=–orinTheorem..Next,considerthecaseδ(k,m)=. WeshalluseinductiononkinTheorem.toproveTheorem..Clearly,thecasek= inTheorem.gives (cid:3) (cid:4) (cid:3) (cid:4) B (x;μ)+B (y;λμ) n+ B (x;μ)+B (y;λμ) n  m  m+ n+ =–δ B (x+y;λμ) ,λ m+n+ m+ n+ +B (y;λ)B (x+y;μ)+ B (y;λ)B (x+y;μ) m n+ m+ n m+ (cid:5) (cid:6) (cid:2)m m B (x;λ–) +(n+) (–)m+iB (x+y;λμ) m+–i . (.) n+i i m+–i i= Notingthatforanynon-negativeintegerk, (cid:5) (cid:6) (cid:2)m m B (x;λ–) (–)m+iB (x+y;λμ) m+–i n+k+i– i m+–i i= (cid:5) (cid:6) (cid:2)m+k m B (x;λ–) = (–)m+k+iB (x+y;λμ) m+k+–i . (.) n+i– i–k m+k+–i i= HeandWangAdvancesinDifferenceEquations2012,2012:209 Page7of16 http://www.advancesindifferenceequations.com/content/2012/1/209 Hence,substituting(.)and(.)to(.),wegetthecasek=ofTheorem..Now assumethatTheorem.holdsforallpositiveintegersbeinglessthank.From(.)and (.),weobtain (cid:3) (cid:4) B (x;μ)+B (y;λμ) n k m (n+k)B (x+y;λμ) =–δ m+n+k ,λ m+ (n+k)B (y;λ)B (x+y;μ) +B (y;λ)B (x+y;μ)+ m+ n+k– m n+k m+ (cid:5) (cid:6) (cid:2)m+k m B (x;λ–) +(n+k) (–)m+k+iB (x+y;λμ) m+k+–i n+i– i–k m+k+–i i= (cid:5) (cid:6) (cid:3) (cid:4) (cid:2)k– (cid:3) (cid:4) k – B (x;μ)+B (y;λμ) n– B(x;μ)+B (y;λμ) n. (.)  m+k j m+k–j j j= Since(.)holdsforallpositiveintegersbeinglessthank,wehave (cid:5) (cid:6) (cid:2)k– (cid:3) (cid:4) k B(x;μ)+B (y;λμ) n j m+k–j j j= (cid:3) (cid:4) (cid:5) (cid:6) (m+n+k+)B (x+y;λμ)(cid:2)k– k (cid:2)m+k (cid:2)k– k =–δ m+n+k (cid:3) j (cid:4) + (–)m+i ,λ m+k+ m+k j j= j i= j= (cid:7) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8) m+k–j m+k–j B (x;λ–) ×(–)k–j n –j B (x+y;λμ) m+k+–i n+i– i i– m+k+–i (cid:5) (cid:6) (cid:7) (cid:5)(cid:6) (cid:5) (cid:6)(cid:8) (cid:2)m+k (cid:2)k– k j j + (–)k+i (–)k–j n –(m+k–j) j i i– i= j= B (y;λ) ×B (x+y;μ) m+k+–i . (.) n+i– m+k+–i Foranynon-negativeintegersi,k,m, (cid:3) (cid:4) (cid:2)k k m+k+ (cid:3) j (cid:4) = , m+k m+ j= j (.) (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:2)k k m+j m (–)j =(–)k . j i i–k j= Itfollowsfrom(.)that (cid:3) (cid:4) (cid:2)k– k k k!m! (cid:3) j (cid:4) = – , (.) m+k m+ (m+k)! j= j (cid:5) (cid:6)(cid:5) (cid:6) (cid:7)(cid:5) (cid:6) (cid:5) (cid:6)(cid:8) (cid:5) (cid:6) (cid:2)k– k m+k–j m m+k m (–)k–j =(–)k – – , (.) j i i–k i i j= HeandWangAdvancesinDifferenceEquations2012,2012:209 Page8of16 http://www.advancesindifferenceequations.com/content/2012/1/209 (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)k– k m+k–j m m (–)k–jj =(–)k–k –k , (.) j i– i–k i– j= (cid:5) (cid:6)(cid:5)(cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)k– k j   k (–)k–j = –(–)k – , (.) j i i–k i i j= (cid:5) (cid:6)(cid:5) (cid:6) (cid:2)k– k j (–)k–j(m+k–j) j i– j= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) k    =–m –(–)k(m+k) +m –k . (.) i– i– i–k– i–k Bysubstitutingtheaboveidentities(.)-(.)to(.),weget (cid:5) (cid:6) (cid:2)k– (cid:3) (cid:4) k B(x;μ)+B (y;λμ) n j m+k–j j j= (cid:5) (cid:6) (m+n+k+)B (x+y;λμ) k k!m! =–δ m+n+k – ,λ m+k+ m+ (m+k)! (cid:7) (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8) (cid:2)m+k m m m+k m – (–)m+i n –k +(–)kn –(–)k(n+k) i i– i i–k i= B (x;λ–) ×B (x+y;λμ) m+k+–i n+i– m+k+–i (cid:7) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8) (cid:2)m+k k k B (y;λ) – (–)k+i n –m B (x+y;μ) m+k+–i n+i– i i– m+k+–i i= n+k nB (y;λ) + B (y;λ)B (x+y;μ)– m+k+ B (x+y;μ) m+ n+k– n– m+ m+k+ –B (y;λ)B (x+y;μ)+B (y;λ)B (x+y;μ). (.) m+k n m n+k Thus,putting(.)and(.)to(.)concludestheinductionstep.Thiscompletesthe proofofTheorem.. (cid:2) Obviously,thecasesλ=μ=andx=y=inTheorem.leadtotheAgoh-Dilcher quadraticrecurrenceformula(.).WenowuseTheorem.togivethefollowingformula onproductsoftheApostol-Bernoullipolynomials. Corollary. Letmandnbepositiveintegers.Then (cid:5) (cid:6) (cid:2)m m (cid:3) (cid:4)B (y;λμ) B (x;λ)B (y;μ)=n (–)m–iB y–x;λ– n+i m n m–i i n+i i= (cid:5) (cid:6) (cid:2)n n B (x;λμ) +m B (y–x;μ) m+i n–i i m+i i= m!n! –(–)mδ B (y–x;μ). (.) ,λμ m+n (m+n)! HeandWangAdvancesinDifferenceEquations2012,2012:209 Page9of16 http://www.advancesindifferenceequations.com/content/2012/1/209 Proof Takingn=andthensubstitutingmfork,nform,λforμandμforλinTheo- rem.,weobtainthatforpositiveintegersmandn, (cid:5) (cid:6) (cid:2)m m B (y;μ) B (x;λ)B (y;λμ)=n (–)iB (x+y;λ) n+i m n m–i i n+i i= (cid:5) (cid:6) (cid:2)n n B (x;μ–) +m (–)iB (x+y;λμ) m+i n–i i m+i i= δ m!n! – ,μ B (x+y;λμ). (.) m+n (m+n)! Substituting –y fory and μ– for λμ in(.)andusingthecomplementaryaddition theoremforApostol-Bernoullipolynomials,wegetourresult. (cid:2) Remark. Thecasesλ=μ=andx=yinCorollary.togetherwiththefactB =–/  andB =forapositiveintegern(see,e.g.,[])willyieldthatforpositiveintegersm n+ andn,see[,], [(cid:2)m+n](cid:7) (cid:5) (cid:6) (cid:5) (cid:6)(cid:8)  m n B (x) m!n! B (x)B (x)= n +m B m+n–i +(–)m+ B , (.) m n i m+n i i m+n–i (m+n)! i= where[x]isthemaximumintegerlessthanorequaltotherealnumberx. 4 RecurrenceformulaeformixedApostol-BernoulliandApostol-Euler polynomials Inthissection,weshallusetheabovemethodstogivesomequadraticrecurrenceformu- laeformixedApostol-BernoulliandApostol-Eulerpolynomials.AsintheproofofTheo- rem.,weneedthefollowingsummationformulaconcerningthequadraticrecurrence ofmixedApostol-BernoulliandApostol-Eulerpolynomials. Theorem. Letk,m,nbenon-negativeintegers.Then (cid:5) (cid:6) (cid:2)n (cid:3) (cid:4) n E(x;μ)+B (y;λμ) k i m+n–i i i= (cid:5) (cid:6) (cid:2)m (cid:3) (cid:4) m = (–)m+iE x;λ– B (x+y;λμ) m–i n+k+i i i= (cid:9) (cid:10)  – mE (y;λ)E (x+y;μ)+(n+k)E (y;λ)E (x+y;μ) . (.) m– n+k m n+k–  Proof Multiplyingbothsidesoftheidentity (cid:5) (cid:6)   λeu   = – (.) λeu+μev+ λeu+ μev+ λμeu+v– by(u+v)exv+y(u+v),wehave exv (u+v)ey(u+v) e(–x)u(u+v)e(x+y)(u+v) u+v eyu e(x+y)v =λ – . (.) μev+ λμeu+v– λeu+ λμeu+v–  λeu+μev+ HeandWangAdvancesinDifferenceEquations2012,2012:209 Page10of16 http://www.advancesindifferenceequations.com/content/2012/1/209 Makingk-timesderivativefortheaboveidentity(.)withrespecttov,withthehelpof theLeibnizrule,weget (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:2)k k ∂j exv ∂k–j (u+v)ey(u+v) j ∂vj μev+ ∂vk–j λμeu+v– j= (cid:5) (cid:6) e(–x)u ∂k (u+v)e(x+y)(u+v) =λ λeu+∂vk λμeu+v– (cid:5) (cid:6) (cid:5) (cid:6) u+v eyu ∂k e(x+y)v k eyu ∂k– e(x+y)v – – . (.)  λeu+∂vk μev+ λeu+∂vk– μev+ Applying(.)and(.)to(.),inviewoftheCauchyproductandthecomplementary additiontheoremfortheApostol-Eulerpolynomials,weobtain (cid:11) (cid:5) (cid:6) (cid:5) (cid:6) (cid:12) (cid:2)∞ (cid:2)∞ (cid:2)n n (cid:2)k k um vn E (x;μ)B (y;λμ) · i+j m+n+k–i–j i j m! n! m=n= i= j= (cid:11) (cid:5) (cid:6) (cid:12) (cid:2)∞ (cid:2)∞ (cid:2)m m (cid:3) (cid:4) umvn = (–)m+iE x;λ– B (x+y;λμ) m–i n+k+i i m! n! m=n= i= (cid:2)∞ (cid:2)∞ E (y;λ)E (x+y;μ)um+vn (cid:2)∞ (cid:2)∞ E (y;λ)E (x+y;μ)umvn+ m n+k m n+k – –  m! n!  m! n! m=n= m=n= (cid:2)∞ (cid:2)∞ k umvn – E (y;λ)E (x+y;μ) . (.) m n+k–  m! n! m=n= Thus,bycomparingthecoefficientsofum+vn+/(m+)!(n+)!andum+/(m+)!in(.), wecompletetheproofofTheorem.. (cid:2) WenowgiveaspecialcaseofTheorem..Wehavethefollowing Corollary. Letmandnbepositiveintegers.Then (cid:5) (cid:6) (cid:2)m (cid:3) (cid:4) m m (–)m–iE y–x;λ– B (y;λμ)– E (x;λ)E (y;μ) m–i n+i m– n i  i= (cid:5) (cid:6) (cid:2)n n n = E (y–x;μ)B (x;λμ)– E (y;μ)E (x;λ). (.) n–i m+i n– m i  i= Proof Settingk=andsubstitutingyforxandxforyinTheorem.,weobtainthatfor positiveintegersmandn, (cid:5) (cid:6) (cid:2)n n E (y;μ)B (x;λμ) n–i m+i i i= (cid:5) (cid:6) (cid:2)m (cid:3) (cid:4) m = (–)m–iE y;λ– B (x+y;λμ) m–i n+i i i= (cid:9) (cid:10)  – mE (x;λ)E (x+y;μ)+nE (x+y;μ)E (x;λ) . (.) m– n n– m  Thus,replacingybyy–xintheabovegivesthedesiredresult. (cid:2)

Description:
Keywords. Apostol-Bernoulli polynomials and numbersApostol-Euler polynomials and numbersrecurrence formula
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.