ebook img

Recreational Mathematics PDF

360 Pages·2010·0.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recreational Mathematics

Recreational Mathematics Paul Yiu DepartmentofMathematics FloridaAtlanticUniversity Summer2003 Chapters1–44 Version031209 ii Contents 1 Lattice polygons 101 1.1 Pick’sTheorem: areaoflatticepolygon . . . . . . . . . 102 1.2 Countingprimitivetriangles . . . . . . . . . . . . . . . 103 1.3 TheFareysequence . . . . . . . . . . . . . . . . . . . 104 2 Lattice points 109 2.1 Countinginteriorpointsofa latticetriangle . . . . . . . 110 2.2 Latticepointsonacircle . . . . . . . . . . . . . . . . . 111 3 Equilateral triangleinarectangle 117 3.1 Equilateraltriangleinscribedinarectangle . . . . . . . 118 3.2 Construction of equilateral triangle inscribed in a rect- angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4 Basicgeometricconstructions 123 4.1 Geometricmean . . . . . . . . . . . . . . . . . . . . . 124 4.2 Harmonicmean . . . . . . . . . . . . . . . . . . . . . 125 4.3 Equalsubdivisionsofasegment . . . . . . . . . . . . . 126 4.4 TheFordcircles . . . . . . . . . . . . . . . . . . . . . 127 5 Greatestcommondivisor 201 5.1 gcd(a,b) asanintegercombinationofaandb . . . . . 202 5.2 Nonnegativeintegercombinationsofaandb . . . . . . 203 5.3 CassiniformulaforFibonaccinumbers . . . . . . . . . 204 5.4 gcdofgeneralizedFibonacciandLucasnumbers . . . . 205 6 Pythagoreantriples 209 6.1 PrimitivePythagoreantriples . . . . . . . . . . . . . . 210 6.2 PrimitivePythagoreantriangleswithsquareperimeters 211 iv CONTENTS 6.3 LewisCarroll’sconjectureontriplesofequiarealPythagorean triangles . . . . . . . . . . . . . . . . . . . . . . . . . 212 6.4 Pointsatintegerdistancesfromthesidesofaprimitive Pythagoreantriangle . . . . . . . . . . . . . . . . . . . 213 6.5 DissectingarectangleintoPythagoreantriangles . . . . 214 7 The tangrams 225 7.1 TheChinesetangram . . . . . . . . . . . . . . . . . . 226 7.2 ABritishtangram . . . . . . . . . . . . . . . . . . . . 227 7.3 AnotherBritishtangram . . . . . . . . . . . . . . . . . 228 8 The classicaltrianglecenters 231 8.1 Thecentroid . . . . . . . . . . . . . . . . . . . . . . . 232 8.2 Thecircumcircleandthecircumcircle . . . . . . . . . 233 8.3 Theincenterandtheincircle . . . . . . . . . . . . . . 234 8.4 TheorthocenterandtheEulerline. . . . . . . . . . . . 235 8.5 Theexcentersandtheexcircles . . . . . . . . . . . . . 236 9 The area ofatriangle 301 9.1 Heron’sformulafortheareaofatriangle . . . . . . . . 302 9.2 Herontriangles. . . . . . . . . . . . . . . . . . . . . . 303 9.3 Herontriangleswithconsecutivesides . . . . . . . . . 304 10 The golden section 309 10.1 Thegoldensectionϕ . . . . . . . . . . . . . . . . . . 310 10.2 Dissectionofasquare . . . . . . . . . . . . . . . . . . 311 10.3 Dissectionofarectangle . . . . . . . . . . . . . . . . . 313 10.4 Thegoldenrighttriangle . . . . . . . . . . . . . . . . 314 10.5 Whatisthemostnon-isoscelestriangle? . . . . . . . . 316 11 Constructions withthe goldensection 321 11.1 Constructionofgoldenrectangle . . . . . . . . . . . . 322 11.2 Hofstetter’s compass-only construction of the golden section . . . . . . . . . . . . . . . . . . . . . . . . . . 323 11.3 Hofstetter’s 5-step division of a segment in the golden section . . . . . . . . . . . . . . . . . . . . . . . . . . 325 11.4 Constructionofregularpentagon . . . . . . . . . . . . 327 11.5 Ahlburg’sparsimoniousconstructionoftheregularpen- tagon . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 11.6 Constructionofaregular17-gon . . . . . . . . . . . . 329 CONTENTS v 12 Cheney’s card trick 335 12.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . 336 12.2 Examples. . . . . . . . . . . . . . . . . . . . . . . . . 337 13 Digitproblems 401 13.1 Whencanyoucancelillegitimatelyandyetgetthecor- rectanswer? . . . . . . . . . . . . . . . . . . . . . . . 402 13.2 AMultiplicationproblem . . . . . . . . . . . . . . . . 403 13.3 Adivisionproblem . . . . . . . . . . . . . . . . . . . 404 13.4 ThemostpopularMonthlyproblem . . . . . . . . . . . 407 13.5 Theproblemof4n’s . . . . . . . . . . . . . . . . . . 408 14 Numbers withmanyrepeating digits 415 14.1 Aquickmultiplication . . . . . . . . . . . . . . . . . . 416 14.2 Therepunits . . . . . . . . . . . . . . . . . . . . . . . 417 14.3 Squaresofrepdigits . . . . . . . . . . . . . . . . . . . 418 14.4 Sortednumberswithsortedsquares . . . . . . . . . . . 419 15 Digitalsumanddigitalroot 423 15.1 Digitalsumsequences . . . . . . . . . . . . . . . . . . 424 15.2 Digitalroot . . . . . . . . . . . . . . . . . . . . . . . . 425 15.3 Thedigitalrootsofthepowersof2 . . . . . . . . . . . 426 15.4 Digitalrootsequences . . . . . . . . . . . . . . . . . . 427 16 3-4-5trianglesinthe square 431 17 Combinatorialgames 501 17.1 Subtractiongames . . . . . . . . . . . . . . . . . . . . 502 17.1.1 TheSprague-Grundysequence . . . . . . . . . . 503 17.1.2 Subtractionofsquarenumbers . . . . . . . . . . 504 17.1.3 Subtractionofsquarenumbers . . . . . . . . . . 505 17.2 Thenimsumofnaturalnumbers . . . . . . . . . . . . 509 17.3 ThegameNim . . . . . . . . . . . . . . . . . . . . . . 510 17.4 Northcott’svariationofNim . . . . . . . . . . . . . . . 511 17.5 Wythoff’sgame . . . . . . . . . . . . . . . . . . . . . 512 18 Repunits 517 18.1 k-right-transposableintegers . . . . . . . . . . . . . . 518 18.2 k-left-transposableintegers . . . . . . . . . . . . . . . 519 18.3 SamYates’repunitriddles . . . . . . . . . . . . . . . . 520 vi CONTENTS 18.4 Recurring decimals . . . . . . . . . . . . . . . . . . . 522 18.5 Theperiodlengthofa prime . . . . . . . . . . . . . . 523 19 More digitaltrivia 531 20 The shoemaker’s knife 535 20.1 Archimedes’twincircles . . . . . . . . . . . . . . . . 536 20.2 Incircleoftheshoemaker’sknife . . . . . . . . . . . . 537 20.2.1 Archimedes’construction . . . . . . . . . . . . 537 20.2.2 Bankoff’sconstructions . . . . . . . . . . . . . 538 20.2.3 Woo’sthreeconstructions . . . . . . . . . . . . 539 20.3 MoreArchimedeancircles . . . . . . . . . . . . . . . . 540 21 Infinitude ofprimenumbers 601 21.1 Proofs by construction of sequence of relatively prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . 602 21.2 Somossequences . . . . . . . . . . . . . . . . . . . . 603 21.3 Fu¨rstenberg’stopologicalproofmadeeasy . . . . . . . 604 22 Strings ofprimenumbers 611 22.1 Theprimenumberspiral . . . . . . . . . . . . . . . . . 612 22.2 Theprimenumberspiralbeginningwith17 . . . . . . . 613 22.3 Theprimenumberspiralbeginningwith41 . . . . . . . 614 23 Strings ofcomposites 621 23.1 Stringsofconsecutivecompositenumbers . . . . . . . 622 23.2 Stringsofconsecutivecompositevaluesof n2 +1 . . . 623 23.3 Consecutivecompositevaluesofx2 +x+41 . . . . . 624 24 Perfect numbers 627 24.1 Perfect numbers . . . . . . . . . . . . . . . . . . . . . 628 24.2 Charles Twiggonthefirst10perfect numbers . . . . . 629 24.3 Abundantanddeficientnumbers . . . . . . . . . . . . 630 24.3.1 Appendix: Twoenumerationsoftherationalnum- bersin(0,1) . . . . . . . . . . . . . . . . . . . . 633 25 Routh andCevatheorems 701 25.1 Rouththeorem: anexample . . . . . . . . . . . . . . . 702 25.2 Rouththeorem . . . . . . . . . . . . . . . . . . . . . . 703 25.3 CevaTheorem . . . . . . . . . . . . . . . . . . . . . . 704 CONTENTS vii 26 The excircles 711 26.1 Feuerbach theorem. . . . . . . . . . . . . . . . . . . . 712 26.2 Arelationamongtheradii . . . . . . . . . . . . . . . . 713 26.3 Thecircumcircleoftheexcentraltriangle . . . . . . . . 714 26.4 Theradicalcircleoftheexcircles . . . . . . . . . . . . 715 26.5 Apolloniuscircle: thecircularhulloftheexcircles . . . 716 27 Figuratenumbers 719 27.1 Triangularnumbers . . . . . . . . . . . . . . . . . . . 719 27.2 Specialtriangularnumbers . . . . . . . . . . . . . . . 719 27.3 Pentagonalnumbers . . . . . . . . . . . . . . . . . . . 721 27.4 ThepolygonalnumbersP . . . . . . . . . . . . . . . 722 n,k 27.4.1 Appendix: SolutionofPell’sequation . . . . . . 723 28 Polygonaltriples 725 28.1 DoublerulingofS . . . . . . . . . . . . . . . . . . . . 726 28.2 Primitive Pythagorean triple associated with a k-gonal triple . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 28.3 Triplesoftriangularnumbers . . . . . . . . . . . . . . 727 28.4 k-gonaltriplesdeterminedbyaPythagoreantriple . . . 728 28.5 Correspondencebetween(2h+1)-gonaland4h-gonal triples . . . . . . . . . . . . . . . . . . . . . . . . . . 730 29 Sumsofconsecutive squares 801 29.1 Sumofsquaresofnaturalnumbers . . . . . . . . . . . 802 29.2 Sumsofconsecutivesquares: oddnumbercase . . . . . 803 29.3 Sumsofconsecutivesquares: evennumbercase . . . . 805 30 Sumsofpowers ofnaturalnumbers 807 31 Ahighschoolmathematicscontest 809 32 Mathematicalentertainments 817 32.1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 32.2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 33 Maximaand minimawithout calculus 903 34 ABritishtestofteachers’ mathematicalbackground 911 viii CONTENTS 35 Amathematicalcontest 915 36 Some geometryproblemsfrom recent journals 919 37 The Josephusproblem and itsgeneralization 1001 37.1 TheJosephusproblem . . . . . . . . . . . . . . . . . . 1001 37.2 GeneralizedJosephusproblemJ(n,k) . . . . . . . . . 1003 38 Permutations 1005 38.1 Theuniversalsequenceofpermutations . . . . . . . . . 1005 38.2 Thepositionofapermutationintheuniversalsequence 1007 39 Cycledecompositions 1009 39.1 Thedisjointcycledecompositionofapermutation . . . 1009 39.2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 39.3 Dudeney’sCanterburypuzzle3 . . . . . . . . . . . . . 1013 39.4 Thegameofropesandrungs . . . . . . . . . . . . . . 1015 40 Graph labelling 1017 40.1 Edge-magictriangle . . . . . . . . . . . . . . . . . . . 1017 40.2 Face-magictetrahedron . . . . . . . . . . . . . . . . . 1018 40.3 Magiccube . . . . . . . . . . . . . . . . . . . . . . . . 1019 40.4 Edge-magicheptagon . . . . . . . . . . . . . . . . . . 1020 40.5 Edge-magicpentagram . . . . . . . . . . . . . . . . . 1021 40.6 Aperfect magiccircle . . . . . . . . . . . . . . . . . . 1022 41 Card tricksfrompermutations 1101 42 Tetrahedra 1107 42.1 Theisoscelestetrahedron . . . . . . . . . . . . . . . . 1107 42.2 Thevolumeofanisoscelestetrahedron . . . . . . . . . 1108 42.3 Volumeofatetrahedron . . . . . . . . . . . . . . . . . 1109 42.4 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110 43 LewisCarroll’sunused geometrypillowproblem 1113 44 JapaneseTemple Geometry 1115 Chapter 1 Lattice polygons 1 Pick’sTheorem: areaoflatticepolygon 2 Countingprimitivetriangles 3 TheFareysequences Appendix: Regularsolids Exercise Project: Acrossnumberpuzzle (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0)(cid:0) (cid:0) 102 Latticepolygons 1.1 Pick’s Theorem: area of lattice polygon A lattice point is a point with integer coordinates. A lattice polygon is one whose vertices are lattice points (and whose sides are straight line segments). Foralatticepolygon,let I = thenumberofinteriorpoints,and B =thenumberofboundarypoints. Theorem 1.1(Pick). TheareaofalatticepolygonisI + B −1. 2 If the polygon is a triangle, there is a simple formula to find its area intermsofthecoordinatesofitsvertices. Iftheverticesareatthepoints (x ,y ),(x ,y ),(x ,y ),thenthearea is1 1 1 2 2 3 3 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)x y 1(cid:2) 1 (cid:2) 1 1 (cid:2) (cid:2)x y 1(cid:2). 2 2 2 (cid:2) (cid:2) x y 1 3 3 In particular, if one of the vertices is at the origin (0,0), and the other twohavecoordinates(x ,y ),(x ,y ),thentheareais 1|x y −x y |. 1 1 2 2 2 1 2 2 1 Given a lattice polygon, we can partition it into primitive lattice tri- angles, i.e., each triangle contains no lattice point apart from its three vertices. Twowonderfulthingshappenthatmakeiteasytofindthearea ofthepolygonasgivenbyPick’stheorem. (1) There are exactly 2I + B − 2 such primitive lattice triangles no matterhowthelatticepointsarejoined. ThisisanapplicationofEuler’s polyhedralformula. (2) The area of a primitive lattice triangle is always 1. This follows 2 froma studyoftheFareysequences. 1Thisformulaisvalidforarbitraryvertices. Itispositiveiftheverticesaretraversedcounterclockwise, otherwisenegative.Ifitiszero,thenthepointsarecollinear.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.