ebook img

Recovering the topology of the IGM at z~2 PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Recovering the topology of the IGM at z~2

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed3February2008 (MNLATEXstylefilev2.2) Recovering the topology of the IGM at z∼2 S. Caucci1, S. Colombi1, C. Pichon1,2, E. Rollinde1, P. Petitjean1, T. Sousbie1,2 1Institutd’AstrophysiquedeParis&UPMC,98bisboulevardArago,75014Paris,France 2CentredeRechercheAstrophysiquedeLyon,9avenueCharlesAndre,69561SaintGenisLaval,France 8 0 0 2 3February2008 n a J ABSTRACT 8 2 We investigate how well the 3D density field of neutral hydrogen in the Intergalactic Medium(IGM)canbereconstructedusingtheLyman-αabsorptionsobservedalonglinesof ] h sighttoquasarsseparatedbyarcmindistancesinprojectiononthesky.Weusecosmological p hydrodynamicalsimulations to compare the topologies of different fields: dark matter, gas - andneutralhydrogenopticaldepthandtoinvestigatehowwellthetopologyoftheIGMcan o berecoveredfromtheWienerinterpolationmethodimplementedbyPichonetal.(2001).The r t globalstatisticalandtopologicalpropertiesoftherecoveredfieldareanalyzedquantitatively s through the power-spectrum, the probability distribution function (PDF), the Euler charac- a [ teristics,itsassociatedcriticalpointcountsandthefillingfactorofunderdenseregions.The localgeometricalpropertiesofthefieldareanalysedusingthelocalskeletonbydefiningthe 1 conceptofinter-skeletondistance. v Asaconsequenceofthenearlylognormalnatureofthedensitydistributionatthescales 5 underconsideration,thetomographyisbestcarriedoutonthelogarithmofthedensityrather 3 3 thanthedensityitself.Atscaleslargerthan∼1.4hdLOSi,wherehdLOSiisthemeanseparation 4 betweenlinesofsight,the reconstructionaccuratelyrecoversthe topologicalfeaturesofthe . large scale density distribution of the gas, in particular the filamentary structures: the inter- 1 skeleton distance between the reconstructionand the exact solution is smaller than hdLOSi. 0 At scales larger than the intrinsic smoothing length of the inversion procedure, the power 8 0 spectrumoftherecoveredHI densityfieldmatcheswellthatoftheoriginaloneandthelow : ordermomentsofthePDFarewellrecoveredaswellastheshapeoftheEulercharacteristic. v TheintegralerrorsonthePDFandthecriticalpointcountsareindeedsmall,lessthan20%for i X ameanlineofsightseparationsmallerthan∼2.5arcmin.Thesmalldeviationsbetweenthe reconstructionandtheexactsolutionmainlyreflectdeparturesfromthelog-normalbehaviour r a thatareascribedtohighlynon-linearobjectsinoverdenseregions. Keywords: methods:statistical,hydrodynamicalsimulations–cosmology:large-scalestruc- turesofuniverse,intergalacticmedium–quasars:absorptionlines 1 INTRODUCTION Cenetal.1994,Petitjeanetal.1995,Miralda-Escude´ etal.1996, Theunsetal.1998,Viel,Haehnelt&Springel2004). Aswe willshow inthe firstpart of this work, the statistical Thestructureandcompositionoftheintergalacticmedium(IGM) andtopologicalpropertiesoftheIGMandofthedarkmatterdis- has long been studied using the Ly-α forest in QSO absorp- tributions are the same, so that recovering the three-dimensional tion spectra (Rauch 1998). The progress made in high resolution distributionandinferringthetopologicalpropertiesoftheIGMal- Echelle-spectrographshasledtoaconsistentpictureinwhichthe lowsustoconstrainthepropertiesofthedarkmatterdistributionas absorption features are related to the distribution of neutral hy- well. drogenthroughtheLymantransitionlinesofHI.Hydrogeninthe Although topological tools have been introduced only rela- IGMishighlyionized(Gunn&Peterson,1965). Itsphotoioniza- tively recently incosmological analysis, they have been used ex- tion equilibrium in the expanding IGM establishes a tight corre- tensivelytocharacterizethetopologyoflargescalesstructuresas lation between neutral and total hydrogen density and numerical revealed by the three-dimensional distribution of galaxies in the simulationshaveconfirmedtheexistenceofthiscorrelation.They local universe (see for exemple Gott et al. (1986), Vogeley et al. havealsoshownthatthegasdensitytracesthefluctuationsofthe (1994),Protogeros&Weinberg(1997),Tracetal.(2002),Parket DMdensityonscaleslargerthantheJeanslength(seeforexample al.(2005)andSousbieetal.(2006)forthetopological analysisof 2 SaraCaucci et al. galaxy surveys). The outcome of such an analysis is a quantita- improvements of the method as well as observational constrains tive description of the complex appearance of the distribution of fromfuturesurveys. thematter intheuniverse, with itsnetwork of clump, voids, fila- ments and sheet-like structures. The study of the topology using galaxysurveysisattractivebecauseoftheirlargevolumeandthe 2 THEEULERCHARACTERISTIC:ANALTERNATE huge number of objects they contain. However the clustering of CRITICALPOINTCOUNT highlynonlinearobjects(galaxies,clustersofgalaxiesorQSOs)is biasedcompared totheunderlying clusteringofdarkmatterfluc- Thispapermakesuseofvariousstatisticaltools,namelythePDF, tuationsthatwewishtoconstrain(seeKaiser1984).Thisbiasing the Euler characteristic, the skeleton and related estimators such resultsfromacomplicatedanddelicatecompetitionbetweenava- as the first cumulants of the PDF (connected moments), critical rietyofprocesseswhichareoftentoocomplicatedtobetractable pointcountsandthefillingfactor, tocharacterizethetopology of analytically. Besides, the maximum redshift in surveys is low (in the large scale density distribution. These tools will also be used theanalysisoftheSDSSdatamadebyParketal.2005,themax- totesttheefficiencyofreconstructingthedensityfieldfromagrid imumredshiftisz = 0.1654),sothatthiskindofanalysiscanbe of QSO sight-lines and in particular the ability to reproduce the doneonlyinthelocalUniverse,wherethefluctuationshavealready connectivityofthelargescalestructures. enteredthehighlynon-linearregime. FollowingColombi,Pogosyan&Souradeep(2000,hereafter Given the strong correlation existing between dark matter CPS),thissectionintroducestheEulercharacteristic,χ˜+,asanal- distribution and the low-density intergalactic medium, one could ternatecriticalpointcountinanoverdenseexcursionwithdensity probe the underlying distributionof matter via thesignature pro- contrastslargerthanathresholdδTH.Itisshownhowthebehavior duced by diffuse hydrogen in quasar spectra, namely absorption ofχ˜+ isrelatedtoconnectivityinthefield.Thenumericalimple- features observed in the Ly-α forest. Indeed, absorption spectra mentationusedtomeasureitisdescribedandtestedonGaussian provideapicturecomplementarytothosedrawnbygalaxysurveys randomrealizations. to infer the large scale distribution of the matter in the Universe, sincetheabsorptionfeaturesproducedbytheIGMinLy-αforest 2.1 DefinitionoftheEulercharacteristic canbedetectedalsoatlargeredshiftandsincetheIGMprobesthe lowdensityrange,whereasthegalaxydistributiondoesnot.Even- Letδ(x)beascalarfunctiondefinedina3DvolumeV.Givena tually, higher density contrasts can be recovered from the analy- thresholdvalueδTH,considertheexcursionsetE+formedbythe sisoftheLy-αforestifhigherordertransitionsareincludedinthe pointsxwithδ(x) δTH,asexpressedbythefollowingequation: analysis;forexample,theLy-βtransitionsshouldallowustoprobe ≥ densitycontrastsuptoδ 15. E+ xδ(x)>δTH . (1) ≈ ≡{ | } The flux along a single line-of-sight towards a quasar only Theanalysisofthegeometricalpropertiesofpointsthatbelongto providesonedimensionalinformation,whichcanbeusedtocon- theexcursionsetE+asafunctionofδTHgivesinformationabout strainthefluctuationamplitude andthematterdensity(Nusser & theglobaltopologyofthescalarfieldδ(x)andallowsforthechar- Haehnelt1999,Rollindeetal.2001,Zaroubietal.2006).Thetrans- acterizationoflargescalestructures. verseinformation,foundinpairsofquasars,hasbeenusedtostudy Asimplequalitativelinkcanbeestablishedbetweenthedis- the extension of the absorbing regions (e.g. Petitjeanet al. 1998; tributionofcriticalpoints(definedby δ=0),aontheonehand, ∇ Crotts & Fang 1998; Young, Impey & Foltz 2001; Aracil et al. andconnectivityontheother,whicharerelatedtolocalandglobal 2002) and thegeometryof theUniverse atz 2(Hui,Stebbins propertiesoftheexcursionsetrespectively.Ifoneconsidersover- ∼ &Burles1999;McDonald&Miralda-Escude´1999;Rollindeetal. denseregions,connectivityhappensalongridges(filaments)pass- 2003,Coppolanietal.2006). ingthroughsaddlepointsandconnectinglocalmaxima.Thesame Givenasetoflinesofsight(LOSs)towardagroupofQSOs reasoningcanbeappliedtounder-denseregionswhereminimaare with small angular separation, inversion methods can be used to connected through tunnels (pancakes) via another kind of saddle recover the three-dimensional distribution of low density gas, as point.ThisideaisinfactsupportedonrigorousgroundsbyMorse demonstratedinPichonetal.(2001).Theyshowedthatthevisual theory(seeMilnor1963).TheMorsetheoremestablishesthelink characterizationofthedensityfield(withitsnetworkoffilaments, betweenthedistributionofcriticalpointsandtheglobalconnectiv- clumps, voids and pancakes) is correctly reproduced if the mean ityoftheexcursionset,viatheEulercharacteristic.Thisquantity separationbetweentheLOSsislessthan dLOS 5Mpc. representstheintegraloftheGaussiancurvatureoveraniso-density h i≤ surfacethatmarkstheboundaryoftheexcursionset(seeforexem- Inthispaperwetestquantitativelywhethersuchaninversion ple Gott, Melott & Dickinson, 1986). It is usually defined as the can recover the global properties of connectivity of the density followingcount(seeforexampleMecke,Buchert&Wagner,1994, field, using topological tools such as the Euler characteristic and fordetails): theprobabilitydistributionfunction. Thepaperisorganizedasfollows.InSection2,theEulerchar- χ˜+ =connectedcomponents tunnels+cavities. (2) − acteristicisdefinedasanalternatecriticalpointscountandimple- According toMorse theorem, itcanalsobeexpressed asalinear mentedforaGaussianfield.Thedifferencebetweenthetopolog- combinationofthenumberofcriticalpointsofdifferenttypesthat ical properties of the dark matter, of the gas and of the observed optical depth is then discussed using outputs of a hydrodynami- arefoundintheexcursionsetasafunctionofδTH. Tobemorespecific,letusconsider thecriticalpointsofthe calsimulation(Section3)andrelyingondifferentstatisticaltools. field.Forthesepoints,theHessianmatrix,whosecomponentsare In Section4, the abilityto reconstruct the global topology of the givenby: threedimensionaldistributionfromasimpleWienerinterpolation ofadiscretegroupoflinesofsightisconsidered.Finally,Section5 ∂2δ = , (3) summarizes theresultsof thispaper and discusses some possible Hi,j ∂xi∂xj The topologyof IGM athighredshift 3 0.04 1.0 Minima Pancakes 0.02 old 0.8 Filaments h s e Maxima 0.00 hr e t 0.6 h c +−0.02 e t v o b 0.4 a −0.04 n o cti −0.06 Fra 0.2 −0.08 0.0 −4 −2 0 2 4 −4 −2 0 2 4 d /s d /s Figure1.MeanEulercharacteristics, χ+ (seeEqs.4and6),foraGaus- Figure2.Evolutionofthenumberofcriticalpointsenteringthecomputa- sianrandomfield(GRF,pointswithsmallerrorbars)asafunctionofthe tionoftheEulercharacteristicfortheGRFconsideredinFig.1.Thefrac- densitythreshold,δ/σ,comparedtothetheoreticalprediction(Doroshke- tionofdifferenttypesofcriticalpointsabovethethresholdisplottedasa vich,1970,smoothcurve).Themeaniscarriedover5realizationsofaGRF functionofδ/σandeachdistributioniscomparedtotheanalyticalpredic- whosepowerspectrumisgivenbyapower-lawwithspectralindexn= 1 tion.Again,symbolswitherrorbarsrepresentthemeanover5realizations ona2563 grid,whileadditionalsmoothingisperformedwithaGauss−ian ofthesameGRF,while thesmoothcurves give theanalytical prediction windowofsize5pixels. (whichcanbeeasilyderivedfromBardeenetal.1986). 2.2 InterpretationoftheEulercharacteristics is calculated and its eigenvalues are estimated. According to the Forclarity,letusrecallheretheinterpretationoftheshapeofthe number of negativeeigenvalues, I,of the Hessianmatrix, thelo- Eulercharacteristicasafunctionofdensitythreshold(CPS).Letus calstructuresofthefieldcanbeclassifiedinthefollowingway:a firststudythesimplecaseofaGaussianrandomfield(GRF).The clump, a filament, a pancake and a void corresponding to I =3, analyticpredictionsforaGRFaregiven,forexample,inDoroshke- 2, 1 and 0 respectively. The Morse theorem states that the Euler vich(1970) (see also, Schmalzing& Buchert 1997). Inwhat fol- characteristiccanbeexpressedasacountofthenumberofcritical lows, a slightly different normalization from Eq. (4) is used: the pointsbelongingtoeachofthesefourclasses: volumeindependentquantity χ˜+ =NI=3−NI=2+NI=1−NI=0, (4) χ+ =χ˜+/Ntot, (6) whereNI=iisthenumberofcriticalpointswithinegativeeigen- whereNtot = iNI=iisthetotalcriticalpointcountinthevol- values.Withthisapproach,itissufficienttodeterminethenumber umeconsideredP,inthelimitδTH . →−∞ distribution of the four kinds of critical point. However this dif- InFigure1,thenumericalestimatesoftheEulercharacteristic ferentialmethodrequiresthefieldunderconsiderationtobesuffi- aregivenasafunctionofthedensitythresholdδTH =δ/σwhere cientlysmoothandnondegenerate.Tothisend,inthesubsequent δ = (ρ ρ¯)/ρ¯isthedensitycontrastandσ = rms(δ)fromfive − analysesofthispaper,thefieldwillbesmoothedwithaGaussian Gaussianrandomfield(GRF)realizations(pointswitherrorbars) window(usingstandardFFTtechnique), whosepowerspectrumisgivenbyapower-lawwithspectralindex n = 1, i.e. P(k) kn. The result is compared withthe ana- 1 r2 lyticp−rediction(solid∝line).Theshapeofthecurveasafunctionof W(r)= exp , (5) (2π)3/2L3s (cid:18)−2L2s(cid:19) thedensitythresholdcanbeunderstoodfromEquation(4)andFig- ure2whichdisplaysthecriticalpointcounts. Atverylowvalues of sufficiently large size L compared to the sampling grid pixel ofthethreshold(δ/σ< 4)theexcursionsetincludesalmostall s − size in order to minimize the impact of numerical artefacts com- pointsand,duetothe∼symmetrybetweenhighandlow-densityre- ing from the discretization of the field on a grid (see, e.g., CPS gions,thenumberofminima(pancakes)compensatesthenumber for athorough analysis of measurement issues). In what follows, of maxima (filaments)so that theEuler characteristicapproaches thesmoothingscaleusedtomeasuretheEulercharacteristicisal- zero. When the value of the threshold is increased, local minima wayslargerthan0.01 NpixgridpixelswhereNpix=256pixels firstdropoutofE+,creatingcavitiesandthusincreasingthevalue istheboxresolutiono×f thesimulations. Inprinciplethissmooth- ofχ+.Atδ/σ∼> 2,pancakesstarttodropouttooandcavities ingscaleislargeenoughtohaveanunbiasedmeasurementofthe connecttogether,th−usthevalueofχ+decreases,reachingitsmini- Eulercharacteristic.TheprescriptionofCPSisusedtodetectand mumatδ/σ 0.Intherange0∼<δ/σ∼<2filamentsalsodropout, ≈ classifycriticalpoints.Thismethodinvolveslocallyfittingasec- breaking up the ridges to create isolated clusters, thus increasing ondorderhypersurfaceonthesmootheddensityfield,whiletaking χ+ again.Finallyintheregionδ/σ∼>2onlyclumpsarefoundto intoaccounteachpointonthegridunderconsiderationandits26 lieintheexcursionset,buttheyareprogressivelylostasthethresh- neighbors. oldincreases,explainingthefinaldecreaseofthecurve. 4 SaraCaucci et al. ThissimpleanalysisshowshowthefeaturesseenintheEuler Bouchet&Schaeffer1994)andtheEulernumber(see,e.g.,CPS). characteristic are closely related to the network of filaments and Forthereconstruction,thetypicalseparation dLOS betweenlines h i pancakesthatconnectclumpsandvoids. ofsightdefinesanaturalsmoothingscaleLs dLOS .Notethat, ≃h i unfortunately, the upper bound of Ls 4 Mpc corresponds to ∼ a lower bound on dLOS in current state of the art observations h i (Rollindeetal.2003),butonecanexpecttolowerthislimitinfu- 3 FROMDARKMATTERTOOPTICALDEPTH turesurveys(Theuns&Srianand2006).Hencethefollowinganal- TheLyman-αabsorptionlinesobservedinQSOsspectraandpro- ysesareperformedintherange2Mpc Ls 4Mpc. duced by the HI structures intercepted by the line-of-sight can ≤ ≤ be used to study the topology of the Universe at high redshift (z∼>1 2). However, theinformation derived fromobservations 3.2 PDFandEulercharacteristicofphysicaldensityfields − of QSOsspectra is more directly related to the HI optical depth, ItthisSectionwecomparethelarge-scaledistributionandthetopo- whereas here the aim is to constrain the underlying dark matter logicalpropertiesofthedifferentdensityfields(darkmatter,total densityfieldforwhichtheorymakesdirectpredictions.Hence,one amountofgasandneutralgas)bylookingattheirprobabilitydis- hastorelyonsimulationsinordertocalibratetherelationbetween tribution function (PDF) and their Euler characteristic (χ+). Our thedensityfieldoftheneutralhydrogenandthatofthedarkmatter. knowledge of the physics of the intergalactic medium is used to Inthissectionwefirstpresentthehydrodynamicalsimulations usedinthepresentworkandwethenanalysetheshapeofthePDF performtheanalysisandtolinkthedistributionsofHIandH.In- andtheEulercharacteristicofthethreedensityfields(darkmatter, deed,theobservationsgiveaccesstotheHIopticaldepththrough absorptionspectra.Wealsoconsiderthermalbroadeningandred- gas and HI) and of the optical depth field, explaining how these shiftdistortioneffects. curvesarerelated. 3.1 Numericalsimulations 3.2.1 FromdarkmattertoHI:IGMequationofstate Weanalyseacosmologicalhydrodynamicalsimulationthatevolves ItiswellknownthatonscaleslargerthantheJeanslengththedis- both dark matter particles and a gaseous component to study the tributionofthegasfollowsthedistributionofdarkmatter,sothat globaltopologyoftheintergalacticmediumatredshiftz =2.The their statistical and topological properties are expected to be the dynamicalevolutionandthephysicalpropertiesofthegasandthe sameat thesescales. Thisischecked by comparing thePDFand of the HI component are calculated taking into account the heat- the Euler characteristic of the two density fields smoothed using ingandcoolingprocessesandtheeffectoftheionizingUVback- differentvaluesofLs,asshowninFigs.3and4.Notetheagree- groundinastandardway.ThecorrespondingParticle-Mesh(PM) mentofthePDFsandoftheEulercharacteristicsofthetwofields codeusedtoperformthesimulationisdescribedindetailinCop- forallvaluesofthesmoothingscaleconsidered,aresultwhichcan polanietal.(2006). be expected since the scaling regime probed is largely above the Inthisrun,thestandardΛCDMmodelisassumedwithaset Jeanslengthofthegas. ofcosmological parametersgivenby: Ωm = 0.3andΩΛ = 0.7, Thecomparisonofthedistributionoftheneutralgas(HI)with whiletheassumedbaryondensityisΩ =0.04.TheHubblecon- thatofthetotalamountofgasandthedarkmattercallsforaslightly b stantisH0 = 70kms−1Mpc−1 andtheamplitudeofthefluctu- more elaborate approach, given the non-linearity involved in the ationsofthematterdensityfieldinasphereofradius8h−1 Mpc expressionthatrelatesthedistributionofthegastothedistribution isσ8 =1.Whiletheothercosmologicalparametersareroughlyin of HI.In fact, numerical simulationssupport theidea that atight agreementwithrecentobservationalconstraints,thevalueofσ8is correlationexistsbetweenneutralandtotalhydrogendensity(Cen somewhat largecompared tothevaluesuggested byWMAP(see etal.1994, Miralda-Escude´ et al.1996, Theunset al.1998, Viel, Spergeletal.,2007).However,thisshouldnothaveanyincidence Haehnelt&Springel2004).Thiscorrelationisexpectedtofollow ontheresultsderivedinthispaper. apower-lawoftheform withTphereiosdimicublaotuionndairnyvoclovneddit5io1n2s3odfarckommoavttienrgpsairzteiclLesin=ab4o0x ρgas ≈A·(ρHi)α. (7) box Mpc. The gaseous component was also followed on a 5123 grid Wethusintroducehereanewdensityfieldρ˜Hidefinedastheright- whichwasusedtocomputegravitationalforces.Althoughthissim- hand-sideofEquation(7),sothatρ˜Hi A (ρHi)α.Inwhatfollows ≡ · ulationmarginallyresolvestheJeanslengthofthegas,Coppolani thisnewdensityfieldwillbeusedinordertoapproximatetheden- et al. (2006) checked with higher resolution runs that numerical sityofthegas.However,Equation(7)isnotfulfilledinthewhole convergencewasachievedatsmallscales. rangeofρHivalues. Although5123gridpointswereavailable,thisresolutionwas Toillustratethis,Fig.5(a)displaysthegasdensitydistribution degraded to a 2563 resolution (using standard donner cell pro- (top),withitsnetworkoffilamentsoutlinedintheleftpanelwith cedure), in order to make the calculations more tractable. Obvi- acontourcorrespondingtoδ=1,andthetemperaturedistribution ouslythisadditionalsmoothingmakestheeffectsofsubclustering inunitsof 104 K (bottom) for which wehavedrawn thecontour within the Jeans length irrelevant. Therefore the gaseous compo- corresponding to (T/104) = 2 intheleft panel. Notethat along nentshouldbenearlyindistinguishablefromthedarkmattercom- filamentsandattheirintersectionthegasishot.Thisindicatesthat ponent. shockwavespropagatealongfilaments,risingthetemperatureand Themainlimitintheseanalysesremainstheboxsize,which ionizing thegas. Thisisconfirmed by Fig. 5(b) which shows the isstillsmallandonlyallowsforafairstatisticalmeasureatscales ratioR = ρ˜HI/ρgas measureddirectlyinthe2563 grid(top),and LslargerthanLmax Lbox/10,i.e.4Mpc.Indeedfinitevolume afteraGaussiansmoothingwithawindowwhosesizeisLs =2.2 effects are known to∼become significant for Ls>Lmax for stan- Mpc(bottom).Inbothcases,thepanelsontheleftshowthecon- dardstatisticssuchastheprobabilityfunction(se∼e,e.g.,Colombi, toursrelativetoR = 0.7.Tocompletethepicture,letusconsider The topologyof IGM athighredshift 5 0.05 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 2. 3 Ls = 1.6 Mpc 1.5 2 1.0 1 0.5 F 0 0.0 D P 1.5 Ls = 2.2 Mpc Ls = 3.6 Mpc 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0.1 0.2 0.5 1.0 2. 0.1 0.2 0.5 1.0 2. 1+d Figure3.Probabilitydistributionfunctionofdensityfieldsatdifferentsmoothingscales(fromlefttoright,toptobottom,nosmoothing,Ls=1.6,2.2and3.6 Mpc).Thethicksolid,thickdashedandthinsolidcurvescorrespondtodarkmatter,gasandHI(rescaledaccordingtoEq.7),respectively.Thedottedcurveis abestfitofalognormaldistributiontothethinsolidcurve,showingthatallthesePDFsarereasonablyclosetolognormal,apropertythatwillbeusefulfor thereconstruction.Intheunsmoothedcase,thegasandHIPDFsmatchverywellfor1+δ∼<1butdepartfromeachotherathigherdensity.Theapparent verygoodmatchintheunsmoothedcasecomesfromthefactthattheun-shockedpartoftheintergalacticmediumtotallydominatesthepartofthePDFwhich isvisibleinthispanel.ThematchbetweenHIandgasPDFsdecreaseswithincreasingsmoothingscale,dueto“mixingeffects”,asexplainedinthemaintext. Notefinallythatthedarkmatterisnotdisplayedintheunsmoothedpanelbecausetheresultwouldbecontaminatedbythecloud-in-cellinterpolationusedto computethedensityonthegrid. Figure4.SameasinFig.3butforthemeasuredEulercharacteristicasafunctionofdensitythresholdatdifferentsmoothingscales.Again,thethicksolid, thickdashedandthinsolidcurvescorrespondrespectivelytodarkmatter,gasandHI(rescaledaccordingtoEq.7withthevalues(A,α)giveninTable1). Whilethecurvesforthedarkmatterandforthegassuperposeexactlyatallsmoothingscalesandallvaluesofthethreshold,theHI,evenafterthescalingis applied,behavesinadifferentwayinthehighdensityregion.Asexplainedinthetext,thisisaconsequenceofthepresenceofshocksandcondensedobjects, whoseeffectisachangeinconnectivityproperties. 6 SaraCaucci et al. 18.95 y nsit 12.63 e d s a G 6.32 0.00 9.47 e r u at 6.32 r e p m e 3.16 T 0.00 (a) Gasdensityandtemperature 0.95 d e h ot o 0.63 m s n U − 0.32 R 0.00 0.95 c p M 2 0.63 2. = s L 0.32 − R 0.00 (b)RatioR=ρ˜HI/ρgas Figure5.Top:Gasdensityandtemperature(inunitsof104K)spatialdistributionsinaonepixel( 15.6kpc)slice.Theintensityofthefieldsiscolor-coded withthescalegivenontheright.Thepanelsontheleftgivethecontourscorrespondingtoδ =≈1forthedensityandtoT/104 = 2forthetemperature. Bottom:ForthesamesliceasaboveweshowontherightthespatialdistributionoftheratioR=ρ˜HI/ρgasfortheunsmoothedfield(up)andforthefield smoothedwithaGaussianwindowofsize(FWHM)Ls=2.2Mpc(down).ThecolorscaleissuchthatdarkerregionscorrespondtolowvaluesofR.Onthe leftthecontourscorrespondtoR=0.7. Fig.6whichshowsthescatterbetweenρgas andρHi fordifferent inaqualitativeway,bytheslicesshowninFig.5(b).Morequantita- smoothingscales,asindicatedineachpanel.Asexpected,thetight- tively,forthefieldsRshowninFigure5(b)wehavecalculatedthe nessofthecorrelationisveryhighinunderdenseandmoderately fractionofthevolumeoccupiedbytheregionswithR < 0.7(i.e. dense regions, but shock heating on theone hand and theforma- thevolumeoftheregionsenclosedbythecontoursintheleftpan- tionofcondensedobjectsontheotherproduceasignificantscatter els).Forthesliceshown,thisfractionisf(R < 0.7) = 0.07and (whereR<1)alongdensestfilamentsandattheirintersection(in f(R<0.7)=0.19fortheun-smoothedandthesmoothedcasere- clusters).Forthepurposeofthereconstruction,somesmoothingis spectively,whilewhenthewholethreedimensionalboxesarecon- required. Unfortunately, smoothing also mixestheseregions with sidered, the fraction of volume occupied by shocked regions are theun-shockedpartoftheintergalacticmedium.Thisisconfirmed, f(R < 0.7) = 0.05andf(R < 0.7) = 0.11.Asaresultofsuch The topologyof IGM athighredshift 7 Figure6.ScatterplotsdisplayingtherelationbetweenthegasdensityandtheHIdensityatdifferentsmoothingscales.Thedashedblacklinesineachpanel representthebestfit,followingEq.(7),withtheparameters(A,α)giveninTable1.Notethatthedispersionincreaseswhenthesmoothingscalesincreases, duetothemixingeffectdiscussedinFigure5. smoothing length (i.e. going from leftto right inFig. 4) worsens Ls A α thematch, asexpected, but thisisinpart lost inthenoisedue to finitevolumeeffects.Notethatχ+measuredinHIis,intheδ>0 Unsmoothed 1.275 0.63 regime,morepeakedthanforthetotalgas.Thisagreeswithintu- 1.6Mpc 0.915 0.56879 ition,sincegalaxies forminfilaments:inthesehighly condensed 2.2Mpc 0.85 0.55209 objects,gasconcentratesandcoolsdown.HencetheHIdensitybe- 3.6Mpc 0.795 0.5389 comessignificantagaininsidetheseclumps,butisdepletedintheir surroundingsduetoshockheatingascanbeseenfromFig.5.The Table1.ValuesoftheparametersAandαenteringinthescalingrelation resultingdistributionofHIinfilamentsisthereforeexpectedtobe betweengasandHI(seeEq.7)asafunctionofthesmoothingscaleLs. more clumpy than thetotal gasi.e. less efficientlyconnected, re- sultinginalargerincreaseofχ+ forδ > 0.Theestimatesmade insidefilamentsare however certainly not freeof numerical arte- mixing, the tightness of the correlation is weakened, but remains facts since they are limited by the simulation’s spatial resolution good as shown in Fig. 6. However, the best fit values of the pa- (followingaccuratelytheformationofcondensedobjectsrequires rametersAandαchangesslightlywhenthefieldissmoothed(see muchhigherspatialresolutionthanoursimulation).Thereforeal- Table1).WefitthesevalueswiththelowdensitytailofthePDF thoughonecandefinitelytrusttheδ<0measurements,theresults (seeFigure3).Asexpected,thehigherdensitytailmatchworsens derivedforδ > 0arelikelytoyield∼therightqualitativebehavior, withsmoothing. butarecertainlyquantitativelybiased. Given that the scaling relation (7) is monotonous, should it apply exactly, the topology of the neutral gas should be exactly the same as of the total gas/matter distribution. However, given thedispersionofthisrelation,oneexpectstheEulercharacteristic InthenextSections,theδ > 0disagreementwillbeignored of the ρ˜Hi fieldtodepart fromthat of ρgas for largedensity con- anditwillbeassumedthatthescalingrelation(7)isalwaysvalid, trasts. This is confirmed by Fig. 4: a nearly perfect agreement is keeping inmindthelimitationof suchanassumption. Hence,re- foundbetweenthegasandHIforδ<0,whiledifferencesbecome constructions will be performed on the optical depth without at- significant at larger values of the d∼ensity contrast. Increasing the temptingtodirectlyrecoverthegasdistribution. 8 SaraCaucci et al. Figure7.TheeffectofredshiftdistortionontheHIdensity.Thesameslice(whosewidthis6pixels,correspondingto0.94Mpc)oftheHIdensitycontrastis shownwithoutdistortion(leftpanels)andwithdistortion(rightpanels,usingtheinfinitelydistantobserverapproximationwithadistortionalongthexaxis) inthecasewherethefieldsarenotsmoothed(toppanels)andwhenthefieldsaresmoothedatLs=1.6Mpc(bottompanels). Figure8.EffectofredshiftdistortionontheEulercharacteristicofHIatdifferentsmoothingscales:Ls =1.6Mpc,2.2Mpcand3.6Mpc.Thesolidblack lineisforHIwithoutanydistortions,thedashedyellowlinehasbeenobtainedbyincludingonlytheeffectofpeculiarvelocities,whilefortheredthinline bothredshiftdistortionandthermalbroadeningaretakenintoaccount. 3.2.2 FromHItoopticaldepth:redshiftspacedistortionsand wheredistortionsinducedbythepeculiarmotionsoperate.More- thermalbroadening over,theprofilesofabsorptionlinesarebroadenedatsmallscales by the effect of the temperature. Sincethe thermal broadening is Inthe above discussion we argued that the mainfeatures of dark importantonlyatscalesofthesameorderorsmallerthantheJeans mattertopology,astracedthroughtheEulercharacteristicandthe length,thissecondeffectshouldbenegligeableinthescalingrange probability density function, can be recovered through the topol- consideredinthispaper,sinceitwillbesweptoutbythesmooth- ogyoftheHIforsmalldensitycontrasts,δ<0.However,alonga line-of-sight,theopticaldepthisinfactobse∼rvedinredshiftspace, The topologyof IGM athighredshift 9 ing.Onthecontrary,redshiftdistortionshouldapriorinotbene- (LOS)towardstheQSO.However,ifasetofLOSstowardsagroup glected. ofquasarsisavailable,theinformationalongeachLOScanbein- Intheory,itispossibletopartiallycorrectforredshiftdistor- terpolatedtoconstructa3-dimensionalopticaldepthfield. tioneffects(seeforinstancePVRCP).However,thecorresponding InthisSectionwefirstbrieflyoutlinetheinversiontechnique treatmentofthepeculiarvelocitiesinvolvesasimultaneousdecon- implementedtorecovertheopticaldepthanddescribeshowtoset volutionoftheHIdensityfieldwiththevelocityfieldontopofthe theparameters that enter the inversion procedure. Wethen check inversiondiscussedinnextsection.Thisrequiresnotonlyaprior how the reconstruction performs by measuring various statistical forthedensityfieldbutalsoforitscorrelationwiththepeculiarve- quantities,inparticularthePDFofthedensityfieldanditsEuler locityfieldandmakestheinversionquiteconvolvedandthiswould characteristic. As argued in the previous Section, the focus is on gobeyondthescopeofthispaper.Inwhatfollows,itisshownthat the optical depth: no attempt is made to recover the gas or dark infactredshiftdistortionshaveasmalleffectonthetopologyofthe matterdistributiondirectly.Thermalbroadening,redshiftdistortion overalldensitydistributionfortheprobedscales;theyshallthusbe andeffectsofsaturationorinstrumentalnoiseareneglected.Given neglected in the reconstruction part of this work. Moreover, one these assumptions, studying the optical depth distribution is then of theinteresting outcomes of thereconstruction istopredict the equivalenttostudyingtheHIdensitydistribution,ρHi. positionsoffilamentsinthethreedimensionalmatterdistribution. Cross-correlation of such a distribution with for instance the ob- serveddistributionof galaxiesathigh redshiftcan infact bealso performedinredshiftspace. 4.1 Theinversionmethod:Wienerinterpolation Figure7displaystheHIdistributioninrealandredshiftspace withandwithoutsmoothing:themaineffectofredshiftdistortion Thetechnique used tointerpolate the optical depth fieldbetween on HI is an enhancement of large scale density contrasts orthog- linesofsightisdescribedanddiscussedindetailsinPVRCP. onally to the line of sight due to large scale motions (this is the LetDbea1-dimensionalarrayrepresentingthedataset(i.e. so-calledKaisereffect,e.g.Kaiser1987):the“voids”(underdense thevaluesofγLOS = ln(ρHi)alongtheLOSs,whichweassume regions)aremorepronounced,andthefilamentsorthogonaltothe tobeparalleltoeachother);wecallMthe3-dimensionalarrayof LOSaremorecontrasted.Thereisaswellasmallscale“fingerof theparametersthatneedtobeestimated(herethevaluesofγ3D = god”effect,duetointernalmotionsinsidelargedarkmatterhaloes, ln(ρHi) inthe 3-dimensional volume) by fittingthe data. Wiener butitisnotverypronouncedatsuchahighredshift,andisinampli- interpolationreads(seeEq.20ofPVRCP),assumingthenoiseis tudeofthesameorderofthermalbroadening.Notehowever,that uniformanduncorrelated, nontrivialshellcrossingscanstilloccur,e.g.twofilamentscross- ingeachotherthankstopeculiarvelocities,butthiseffectremains M=CMD (CDD+N)−1 D, (8) · · small, and is clearly damped out by smoothing; after smoothing onlytheKaisereffectremains. where N = n2I is the diagonal noise contribution, CMD is the These qualitative arguments are illustrated by Figure 8. The mixedparameters-datacovariancematrixandCDDisthedataco- measuredEulercharacteristicsbeforeandafterredshiftdistortion variancematrix: differ only slightly. When the redshift distortion istaken intoac- count,forδ<0,ashifttowardstheleftisinduced(dashedcurve) CMD =Cγ3DγLOS, CDD =CγLOSγLOS. (9) ascompared∼tothenon-distortedcase(solidone);whiletheoppo- Here an ad-hoc prior is used and a Gaussian shape for the co- siteoccursfor δ>0(althoughinthelattercase, theeffect seems variances is assumed. In this cases the matrices C and tobenearlyinsig∼nificant).Thisshiftremainsquitesmallasargued C aregivenby γ3DγLOS before.Noteaswellthatthermalbroadening(thincurve)istotally γLOSγLOS negligFeinaabllley., one last point should be mentioned. When one con- C(x1,x2,x1⊥,x2⊥)=σ2×exp − (x1−L2x2)2 × (cid:16) x (cid:17) siders real absorption spectra, instrumental noise has to be taken x x 2 1⊥ 2⊥ intoaccountintheanalysis.Thisnoise,combinedwithsaturation exp | − | , (10) − L2 ofthefluxoftheLy-αabsorptionlinesarisinginhighdensityre- (cid:16) T (cid:17) gions(withδ>10) cancomplicate theinterpretation ofthemea- where(xi,xi⊥)representsthecoordinatesofthepointsalongand surements.In∼thiscase,someoftheinformationabouttheintensity perpendiculartotheLOSsrespectively,L andL arecorrelation x T of the density field cannot be recovered, unless, say, Lyman-β is lengthsalongandperpendicular totheLOSs,whileσ2 quantifies alsoavailable.Inthiswork,however,themaininterestlaysinre- thetypicalapriorifluctuationsinavolumeofsizeL L2.The producingthelow-densitypartoftheHIdistribution,forwhichthe meaningandchoiceoftheseparameterswillbediscuxs×sedTfurther relation(7)holdsandforwhichthetopologyoftheunderlyingdark in 4.2. matterdistributionistheoreticallyconstrained.Inthisregime,the § Notethattheshapeofthecovariancematrixcanbecalculated Ly-αlinesarenotsaturated, thusacompletetreatment ofsatura- withamoresophisticatedapproach.Thiswouldinvolvetheuseof tioneffectsinhighdensityregionsisnotrequiredfortheaimofthe theoretical priors relying on our knowledge of large scale struc- presentwork. ture dynamics. If, for instance, the reconstruction was performed onthepuredarkmatterdensitycontrast,onecouldbetemptedto derivethesecorrelationmatricesfromthenon-linear power spec- trumobtained,forexample,byPeacock&Dodds(1996),givena 4 TOPOLOGICALANDSTATISTICALPROPERTIESOF cosmologicalmodel.Here,asimplerinterpolationschemeisused. THERECOVEREDFIELDS Thisschemehastheadvantageofdependingonlyonthreetuning The absorption spectrum towards a quasar gives access to one- parameters:theassumedtypicaloverallsignal-to-noiseratio,σ/n, dimensionalinformationi.e.theopticaldepthalongthelineofsight andtwotypicallengthsintheinterpolation,L andL . x T 10 SaraCaucci et al. 4.2 Choiceoftheparametersintheinterpolation EachreconstructionisperformedonanumberNLOSofLOSsex- NLOS S(eapracrmatiino)n (MLpTc) σ tracted at random from the simulation box. Since the distant ob- server approximation is implemented, all the LOSs are parallel. 400 1.33 2 1.12 ForagivenvalueofNLOS,themeaninter-LOSdistance, dLOS , 320 1.49 2.24 1.17 reads: h i 225 1.77 2.67 1.23 200 1.88 2.83 1.25 hdLOSi≡pL2box/NLOS. (11) 114250 22.4.22 33..6352 11..3219 Thisparameterobviouslydefinesanaturalscaleinthereconstruc- 100 2.65 4 1.34 tion:onecannot,intuitively,expecttoreconstructdetailsofthedis- tributionatscales <hdLOSi,atleastinthedirectionorthogonalto Table 2.Parameters used inthe reconstructions performed inthis paper. theLOSs. ∼ Thelongitudinal correlation lengthasbeenfixedtothevalueLx = 0.4 ThemeaningoftheparametersL andL inEq.(10)isthen T x Mpcforallthereconstructions. quitestraightforward.ThecorrelationlengthsL=L andL=L T x stabilize the inversion by ensuring the smoothness of the recon- struction.Inordertoavoidtheformationoffictitiousstructures,the tweenadjacentpatches.Thesizeofthebufferregionischosento transversecorrelationlengthmustbeoftheorderofthemeansepa- benover 2LT (ingridpixelunits),whichimpliesatypicalresid- ≃ rationbetweentheLOSs,LT dLOS (wehavechosentotakeit ualcontaminationofedgeeffectsduetothepartitioningoflessthan ∼h i exactlyequalto dLOS ),whilethechoiceofthelongitudinalcor- 2percent. h i relationlengthdependsontheproblemconsidered.Sinceredshift distortionisnotaconcerninthepresentwork,thisparametercan 4.3 Biasinthereconstruction bechosen tobeof theorder oftheJeanslengthinordertoavoid informationlossforsmallscalesalongtheLOSs,hereLx = 0.4 Firstnotethattheinversionisnotdirectlyperformedonthedensity, Mpc. butonitslogarithm,i.e.thenormalizeddensityfieldiswrittenas Fromapracticalpointofview,thevarianceparameterσofthe ρHi = 1+δHi exp(γHi)andthefieldγHi isinterpolated by correlationmatrixfixestherelativecontributionofsignaltonoise usingthemethod≡describedabove.Thishastwoadvantages:(i)it in Eq. (8), σ/n. In our reconstruction, only ideal LOSs are con- ensures the positivity of the reconstructed density; (ii) since the sidered. Thus, strictlyspeaking, there isno instrumental noise or densityturnsouttoberoughlylog-normal1 (seeforexampleBi& saturationeffects.However,theinversionofthematrixCDD+N Davidsen,1997;Choudhury,Padmanabhan&Srianand,2001;Viel isnumericallyunstablewhenNissettozero,giventhefinitesam- etal.,2002a;Zaroubietal.;2006,Desjacquesetal.,2007;andsee plingandthedegeneracyofthematrix,Eq(10),closetoitsdiag- Coles&Jones,1991,forthestatisticalpropertiesofthelog-normal onal, (x1,x1⊥) (x2,x2⊥). In practice one has to “tune” the distribution),performingthereconstructiononthelogarithmofthe ≃ signal-to-noiseratio,σ/n,toobtainthebestcompromisebetween field is expected to reproduce more realistic results as shown on numericalstabilityand“exactness”ofthefinalreconstruction.This Fig.3. choiceisad-hoc:(σ/n)2istheestimatedvarianceσ2(LT,Lx)of However, as a result of the reconstruction, the recovered theunderlyingfieldinaboxofsizeLT ×LT ×Lx.Thisisequiv- field, γHi,rec, will be smooth over anisotropic volumes of size alenttoassumingthat,asthenoisegoestozero,theinverseofthe L L L ,whichmeansthatatbest,onecanidentifystruc- x T T non-reduced second order correlation(intheappropriate units) is ∼turesa×tthis×levelofsmoothnessonalogarithmicspace.Although used, I+CDD, instead of the reduced one, C−DD1, to perform a theoreticalpredictions(namelygravitationalclustering,primordial stablereconstruction. nonGaussianities,etc.)doexistforthedensityfielditself,thatis Inthisworkweestimatedirectlyσ2(LT,Lx)fromthesimu- forρHi = exp(γHi)anditssmoothed counterparts, theycannot lation.Itishoweverimportanttonotethatσ2(LT,Lx)caninprin- beapplied directlyinour casebecause smoothing and taking the ciplebederivedfromtheLOSsalonebymeasuringthe1-Dpower- exponential are operations which do not commute, except in the spectrum of ρHi. Fromthis1-D power-spectrum, one can indeed weakly nonlinear regime, δHi 1. In particular, recovering the infera3-Dpower-spectrumwithstandarddeconvolutionmethods resultsforδHionalinearspace≪,bytakingtheexponentialofγHi andthenanestimateofσ2(LT,Lx)bytheappropriateintegralon andsubsequentlysmoothingit,aneffectivebias,essentiallydueto the3-Dpower-spectrum. rarepeaksintheγHi,rec field,isintroduced. Theeffectof sucha Themeasuredvaluesofσ(LT,Lx)arelistedinTable2.They nonlinearbiasisdifficulttocontrolandcaninsomecasesbeim- areoftheorderunity:theassumedsignal-to-noiseratioisaboutone portantasshownbelowandstudiedinmoredetailsinAppendixA. intheregimeconsideredhere.Hence,inpractice,thead-hocpro- cedureusedtoperformtheinversiondoesnotchangesignificantly byincludingthecontributionoftheactualinstrumentalnoise.How- 4.4 Testingthereconstruction:statisticalandtopological ever,inthiscasethepresenceofthesaturatedregionsintheLyman- analysis αspectraremainsaproblem. Wenowtestthequalityofthereconstructionusingthesamestatis- Finally, note that due to the large size of the matrices, re- ticaltoolsasinSection3,namelythePDFofthefieldandtheEuler constructionscanonlybeperformedbypartioningthesimulation characteristic.Otherstatisticsareconsidered,suchasthevariance box in blocks of smaller size, that contain N3 grid points with sub and the skewness of the PDF, the power-spectrum of the density N = 32. Thereconstruction isperformedoneachblockindi- sub vidually. In order to avoid edge effects, neighboring patches are overlapped by adding a buffer region in which LOSs still con- 1 Notethatifafieldsuchasρgasislognormal,the(inverseofthe)trans- tribute.In thisway, thea priori correlation ensure continuity be- formation(7)leavesthenewfield,e.g.ρHi,lognormalaswell.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.