ebook img

Reconstruction and Intelligent Control for Power Plant PDF

211 Pages·2022·9.097 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reconstruction and Intelligent Control for Power Plant

Chen Peng Chuanliang Cheng Ling Wang Reconstruction and Intelligent Control for Power Plant Reconstruction and Intelligent Control for Power Plant · · Chen Peng Chuanliang Cheng Ling Wang Reconstruction and Intelligent Control for Power Plant ChenPeng ChuanliangCheng SchoolofMechatronicEngineering SchoolofMechatronicEngineering andAutomation andAutomation ShanghaiUniversity ShanghaiUniversity Shanghai,China Shanghai,China LingWang SchoolofMechatronicEngineering andAutomation ShanghaiUniversity Shanghai,China ISBN 978-981-19-5573-0 ISBN 978-981-19-5574-7 (eBook) https://doi.org/10.1007/978-981-19-5574-7 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Coal-firedpowerplantisahugeandcomplexplantthatproduceselectricenergyand heatenergy.InChina,thecoal-firedpowerplantisnotonlythelargestproducerof secondary energy, but also the largest consumer of primary energy. In addition to coal, the coal-fired power plant consumes a certain amount of fuel oil and a large amountoffreshwater.Atthesametime,itproducespulverizedcoalashequivalent to about 20% of the total coal consumption and a large amount of sulfur dioxide, carbondioxide,nitrogenoxide,andindustrialwastewater.Sofar,theproblemsofhigh energyconsumptionandexcessivepollutionemissioninpowerproductionhavenot beenfundamentallysolved.Theresearchtaskofenergyconservationandemission reductionofcoal-firedpowerplantsisstillarduous. The study of energy conservation and emission reduction for coal-fired power plants can be classified into twofold: keeping the internal combustion field stable in industrial furnaces and optimal control of the boiler-turbine unit. In the first keeping the internal combustion field stable, by means of flame image detection, imagesegmentation,andflamemodeling,thecombustionstatusinthefurnacecan beunderstoodintuitivelyandaccurately.Thenthetemperaturefieldisreconstructed bytemperaturemeasurementmethods,soastojudgewhetherthecombustioncondi- tioninthefurnaceisstableintime.Inaddition,thereconstructedtemperaturefield isintroducedintotheoptimalcontrolsystemofthecoal-firedboilerasaninterme- diatevariabletooptimizethecombustioninthefurnace,sothatthecombustioncan reach the ideal working condition as soon as possible. However, due to the high complexityofworkingconditionsinthefurnace,therearestillsomeproblemswhen usingthecommontechnologies,suchas(1)thecommonlyusedalgorithmscannot getsatisfactorysegmentationresults.(2)Thecurrentsegmentationmodelhaspoor generalizationability.(3)Thetraditionaltemperaturemeasurementmethodsbased on flame model cannot obtain accurate fire radiant energy data. Therefore, how to effectively keep the state of the combustion field stable inside the furnace has stimulatedthefirstresearchlineofthismonograph. Inthesecondoptimalcontroloftheboiler-turbineunit,themodelingandcontrol methodsareanalyzed.Anaccuratemodelisthebasisofeffectivecontrolmethods. The accuracy of a model determines the quality of control, because the optimal v vi Preface controller of a system must include the mathematical model of the object. After obtaining the model, it is necessary to introduce subsequent methods to form an effectivecontrolstrategy.However,mostcoal-firedpowerplantsarecomplexmulti- variablesystemswithseriousnonlinearity,uncertainty,andmulti-variablecoupling. These characteristics will be more obvious when the system operates at a higher level of energy conversion capability. Therefore, it is almost impossible to build a mathematicalmodelfortheobjectusingtraditionalidentificationmethods.Besides, most commonly used control methods have the disadvantages of long adjustment time, large overshoot, inaccurate accuracy, and so on. Therefore how to design an accuratemodeltorepresenttheoperatinginformationoftheobject,anddesignan effectivecontrollerbasedontheobtainedmodelhavestimulatedthesecondresearch lineofthismonograph. Structure and readership. This book is structured into three parts. Part I is devoted to introduce an overview of recent developments of coal-fired plants, and provide a summary of image detection, information processing, modeling, and control strategy used in the derivation of the main results of this book (Chap. 1), they are the premises of the following two parts. Part II is devoted to analyze the characteristics of internal combustion in industrial furnace, and apply relevant methodstodetectandprocessflameimagesforestablishinganewtemperaturefield model.PartIIIisdevelopedtodesignanaccuratemathematicalmodeltoexpressthe runninginformationoftheboiler-turbineunit.Inaddition,onthisbasis,researchthe controlstrategytoadapttothedesignedmodelforachievingthesatisfactorycontrol performance. PartII:Forlarge-scalecoal-firedpowerplants,maintainingthestabilityoffurnace internalcombustionisveryimportantforthesafety,reliability,andeconomyofpower plants. Pulverized coal combustion is a very complex chemical process, and the stabilityofcombustionflamedirectlydeterminesthecombustionefficiencyofboiler. Therefore,inChap.2,anewgrayconversionmethodandanadaptivehybridedge detectionalgorithmareproposedtothegettheedgeofflameregioninfurnaceflame image. Based on the obtained edge information of flame image, Chap. 3 proposes a furnace flame recognition method based on improved particle swarm optimiza- tion(IPSO)algorithm.Themethodfirstlyusesred-green-blue(RGB)colorspaceto designtheextractionmodelofflameimage,thenusestheproposedIPSOalgorithm andOstualgorithmtosolvetheoptimalsegmentationthresholdinvolvedinthemodel. Comparedwiththepreviousresearchresults,therecognitionrateoftheextraction model designed in this book is greatly improved. A temperature field reconstruc- tionmethodbasedontheimprovedtwo-colortemperaturemeasurementmethodis proposedinChap.4.Thismethodsolvestheproblemthattraditionalfurnacetemper- ature field reconstruction algorithms cannot obtain accurate radiation energy data, whichmakesthemeasurementandcalculationofthismethodmoresimplified,and the accuracy is improved. To effectively predict the furnace temperature, Chap. 5 putsforwardanovelfurnacetemperaturepredictionmethodusingoptimizedkernel extreme learning machine, which outperforms state-of-the-art furnace temperature predictionapproaches,providinghighpredictionaccuracyandlowfalseprediction error. Preface vii PartIII:Inlargecoal-firedpowerplants,theboiler-turbineunitconvertsthechem- ical energy into electric energy. For achieving the plant-wide operating, accurate modeling and effective coordinated control are necessary based on the distributed control system with powerful computer, big data acquisition system, and big data communication function. Therefore, in Chap. 6, a fuzzy particle swarm optimiza- tion algorithm with the structure of the fuzzy K-means network is proposed and applied as themodelidentification method, aiming atexploring thecharacteristics ofoperationregionofpowerplants.Bytheproposedmethod,theplant-wideoper- ating information is accurately represented through a dynamical linear model. To improve the boiler combustion efficiency, a fuzzy K-means cluster-based general- izedpredictive control method (FKNGPC) isintroduced inChap. 7,achieving the satisfactoryperformanceinthecaseofloadtrackingandgridloadfrequencydistur- bances.Then,aimingatsolvingtheproblemofslowadjustmentspeedofGPC,PID, orothermethods,Chap.8proposesanovelcontrolstrategywhichconsidersinternal modelcontrol(IMC),intelligentmodeling,andGPCtogether.Chapter9proposes animprovedintelligentdata-drivencontrolmethodtodesigntheoptimalcontroller forthepulverizingsystem,whichisbasedonintelligentvirtualreferencefeedback tuningandanewadaptivehumanlearningoptimizationalgorithm.Comparedwith traditionalmodel-basedmethods,itismucheasiertoimplementandcanavoidthe influenceoferrorofmodeling. Shanghai,China ChenPeng June2022 ChuanliangCheng LingWang Acknowledgements We would like to acknowledge the collaborations with Professor Tengfei Zhang on the work of image detection, information processing; Professors Minrui Fei and Deliang Zeng on the work of process modeling and control reported in the monograph; and PhD candidates Wei Wang, Tao Wang, Hanyu Mi, Yusen Gang, and Dr. Pinggai Zhang for their great help in this monograph. The supports from theNationalNaturalScienceFoundation ofChinaunderGrant61833011, andthe International Corporation Project of Shanghai Science and Technology Commis- sion under Grant 21190780300. Finally, the close cooperation with Springer as publisherandparticularlywithDr.JasmineDouasresponsibleeditorisgratefully acknowledged. ix Contents PartI IntroductionandPreliminariesforPowerPlant 1 Introduction ................................................... 3 1.1 TheResearchBackground ................................... 3 1.2 ResearchStatusofFlameDetectionSystem .................... 4 1.3 ResearchStatusofFlameImageProcessing .................... 6 1.4 ResearchStatusofTemperatureFieldReconstruction ............ 8 1.5 Research Status of Optimal Control for the Coal-Fired Boiler-TurbinePowerPlant .................................. 11 1.6 MainContentsofthisMonograph ............................. 14 References ..................................................... 16 PartII DetectionofFurnaceFlameImageandReconstruction ofTemperatureField 2 AdaptiveMixedEdgeDetectionofFurnaceFlameImage .......... 23 2.1 MethodsforConvertingColorImagetoGrayImage ............. 24 2.1.1 CommonImageConversionAlgorithms ................. 24 2.1.2 NewGrayConversionMethod ......................... 25 2.2 ImagePreprocessingandEdgeComputing ..................... 28 2.2.1 Preprocessing ....................................... 28 2.2.2 EdgeComputing ..................................... 29 2.3 AdaptiveEdgeSelectionAlgorithm ........................... 30 2.4 SimulationandResultsAnalysis .............................. 30 2.4.1 GrayImageConversionExperiment .................... 30 2.4.2 EdgeDetectionExperiment ........................... 34 2.5 Conclusion ................................................ 37 References ..................................................... 37 3 IntelligentSegmentationofFurnaceFlameImage ................. 39 3.1 SpatialDistributionCharacteristicsofFlameImage ............. 40 3.2 ExtractionModelofFlameImage ............................. 42 xi xii Contents 3.3 OptimalSegmentationThreshold ............................. 45 3.3.1 FlameImageSegmentationThresholdExpression ........ 45 3.3.2 OptimalSegmentationThresholdExpression ............. 46 3.3.3 ParticleSwarmOptimizationAlgorithm ................. 47 3.3.4 ImprovedPSOAlgorithm ............................. 48 3.4 SimulationandResultsAnalysis .............................. 53 3.4.1 VerificationofImprovedPSO .......................... 54 3.4.2 VerificationofFlameIdentification ..................... 57 3.5 Conclusion ................................................ 61 References ..................................................... 62 4 ReconstructionofTemperatureFieldBasedonLimitedFlame ImageInformation ............................................. 65 4.1 CombustionCharacteristicsofBoilerSystem ................... 66 4.2 FlameTemperatureMeasurementAlgorithmBasedonDigital ImageProcessing ........................................... 67 4.2.1 Two-ColorMethodforTemperatureMeasurement ........ 68 4.2.2 Single-ColorMethodforTemperatureMeasurement ...... 69 4.2.3 Full-ColorMethodforTemperatureMeasurement ........ 71 4.2.4 Two-Color Temperature Measurement Based onDigitalImageProcessing ........................... 72 4.3 TemperatureFieldReconstructionBasedonLeastSquare Method ................................................... 75 4.4 Temperature Field Reconstruction Based on Intelligent Algorithm ................................................. 78 4.5 SimulationandResultsAnalysis .............................. 81 4.5.1 CandleFlameReconstruction .......................... 84 4.5.2 FurnaceFlameReconstruction ......................... 87 4.6 Conclusion ................................................ 89 References ..................................................... 90 5 FurnaceTemperaturePredictionBasedonOptimizedKernel ExtremeLearningMachine ..................................... 91 5.1 Prediction Model by Using Optimized Kernel Extreme LearningMachine .......................................... 92 5.1.1 OptimizedKernelExtremeLearningMachine ............ 92 5.1.2 ObjectiveFunctionoftheOptimizedKernelExtreme LearningMachinePredictionModel .................... 94 5.2 HumanLearningOptimization ............................... 95 5.2.1 Binary-Coded Human Learning Optimization Algorithm ........................................... 95 5.2.2 ContinuousHumanLearningOptimizationAlgorithm ..... 97 5.2.3 Hybrid-Coded Human Learning Optimization AlgorithmwithReasoningLearning .................... 102 5.3 ImplementationofOKELMBasedonHcHLORLAlgorithm ..... 105 5.4 SimulationandResultsAnalysis .............................. 107

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.