Astronomy&Astrophysicsmanuscriptno.23242˙FINAL (cid:13)c ESO2015 January14,2015 Reconstructing the projected gravitational potential of Abell 1689 from X-ray measurements Ce´lineTchernin1,CharlesL.Majer2,3,SvenMeyer2,EleonoraSarli2,DominiqueEckert1,MatthiasBartelmann2 1AstronomicalObservatoryoftheUniversityofGeneva,ch.d’Ecogia16,1290Versoix,Switzerland, e-mail:[email protected], 2Universita¨tHeidelberg,Zentrumfu¨rAstronomie,Institutfu¨rTheoretischeAstrophysik,Philosophenweg12,69120Heidelberg, 3Germany,DivisionofMedicalPhysicsinRadiology,GermanCancerResearchCenter(DKFZ),69120Heidelberg,Germany. 5 Preprintonlineversion:January14,2015 1 0 ABSTRACT 2 n Context.Galaxyclusterscanbeusedascosmologicalprobes,buttothisend,theyneedtobethoroughlyunderstood.Combiningall a clusterobservablesinaconsistentwaywillhelpustounderstandtheirglobalpropertiesandtheirinternalstructure. J Aims.Weprovideproofoftheconceptthattheprojectedgravitationalpotentialofgalaxyclusterscandirectlybereconstructedfrom 3 X-rayobservations. Wealsoshow thatthisjointanalysiscanbeusedtolocallytestthevalidityoftheequilibriumassumptionsin 1 galaxyclusters. Methods.We used a newly developed reconstruction method, based on Richardson-Lucy deprojection, that allows reconstructing ] projectedgravitationalpotentialsofgalaxyclustersdirectlyfromX-rayobservations.Weappliedthisalgorithmtothewell-studied O cluster Abell 1689 and compared the gravitational potential reconstructed from X-ray observables to the potential obtained from gravitationallensingmeasurements.WealsocomparedtheX-raydeprojectedprofilesobtainedbytheRichardson-Lucydeprojection C algorithmwiththefindingsfromthemoreconventionalonion-peelingtechnique. h. Results.Assumingsphericalsymmetryandhydrostaticequilibrium,thepotentialsrecoveredfromgravitationallensingandfromX- p rayemissionagreeverywellbeyond500kpc.OwingtothefactthattheRichardson-Lucydeprojectionalgorithmallowsdeprojecting - each line of sight independently, this result may indicate that non-gravitational effects and/or asphericity are strong in the central o regionsoftheclusters. r Conclusions.We demonstrate the robustness of the potential reconstruction method based on the Richardson-Lucy deprojection t s algorithmandshowthatgravitationallensingandX-rayemissionleadtoconsistentgravitationalpotentials.Ourresultsillustratethe a powerofcombininggalaxy-clusterobservablesinasingle,non-parametric,jointreconstructionofconsistentclusterpotentialsthat [ canbeusedtolocallyconstrainthephysicalstateofthegas. 1 Keywords.galaxies:cluster:general-X-rays:galaxies:clusters-gravitationallensing:strong-gravitationallensing:weak v 0 8 1. Introduction vature of the projected gravitationalpotentialof these clusters. 0 3 Ourstudyisbasedontheideathatasimultaneouscombination 0 Thecolddarkmatter(CDM)modelfavoredbysubstantialtheo- ofasmanygalaxy-clusterobservablesaspossiblemayleadtoa . retical and observational evidence (e.g., Komatsuetal. 2011) consistentmodelfortheprojectedclusterpotentialbecauseun- 1 predicts the formation of small structures at early times and derequilibriumassumptions,alltheseobservablescanbecom- 0 theirlatermergingintolargersystems.IntheCDMframework, binedonthegroundsofthegravitationalpotential. 5 galaxyclustersareexpectedtobethelatestgravitationallybound 1 systemstoform. : Inadditiontoimprovingthereconstructionoftheprojected v Galaxy clustersaremainlycomposedof threecomponents: cluster potential beyond gravitational lensing, combining as i X galaxies,hotgas,anddarkmatter.Thedarkmatterisbydefini- manyclusterobservablesaspossiblewillalsoallowustocover tion impossible to observedirectly, but it is expected to follow a wider range of angular or radial scales. The joint analysis r a auniversaldensityprofileapproximatedbytheNavarro-Frenk- of weak and strong gravitational lensing allows us to map the White profile (NFW, Navarroetal. 1997). However, observa- dark-matter distribution within the entire cluster. Furthermore, tions of the intracluster medium (ICM) and of cluster galaxies because the emissivity depends on the square of the gas den- canconstrainthedark-matterdistributionitself.AstheICMfills sity, X-ray flux and temperature profiles are most reliable in thedeepgravitationalpotentials,its distributionisgovernedby and near the central region of the cluster (Ettori&Molendi thedepthandshapeofthedark-matterpotentialwell(see,e.g., 2011), while the thermalSZ effecthasa shallower dependence Ettorietal.2013,forareview),hencetheobservablesprovided on the local gas density because the thermal SZ signal is pro- bythethermalplasmacarryinformationonthegravitationalpo- portional to the gas pressure integrated over the line of sight tential. (PlanckCollaborationetal. 2013; Eckertetal. 2013). Hence, ThephysicalpropertiesoftheICMcanbedirectlystudiedin owing to the different dependencesof differentobservable sig- X-raysthroughthermalbremsstrahlungandlineemissionandat nals on angular scales, weak-lensing and thermal-SZ measure- millimetrer wavelengths through the Sunyaev-Zel’dovich (SZ) mentsextendto relativelylarge distancesfrom the cluster cen- effect.Ontheotherhand,measurementsofgravitationallensing ter, while strong-lensingand X-ray observationsare more sen- inclustersconstrainthegravitationaltidalfieldandthusthecur- sitive to regions near the cluster center. In combination, more 1 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements reliablereconstructionsofclusterpotentialscanbeexpectedon binedweak-lensingwithX-raydatafromtheChandrasatellite. allscales. ConsideringthecentralpartoftheclusterouttoR∼1000kpc/h, Anotheradvantageofthisjointanalysisis thatthe assump- theyfoundthatatradiilargerthanR∼200kpc/h,theX-rayand tionsmadeonthephysicalstateofthegascanbeverified.The lensingmassesareconsistent,whereastheyfoundadiscrepancy lensing potential can be recoveredwithout any equilibrium as- betweenthemassesatsmallerradii.Theseauthorsexplainedthis sumptions,while the gravitationalpotentialreconstructedfrom discrepancybya projectioneffect.Thisconclusionagreeswith X-ray and thermal-SZ observations is recovered assuming hy- theresultsofSerenoetal.(2013).Inthisstudy,theauthorscon- drostaticequilibrium.Therefore,theprojectedgravitationalpo- strainedtheshapeandorientationoftheclusterinajointanalysis tentialrecoveredfromgravitationallensingobservationscanbe oftheICMdistributioninthecluster.UsingX-rayandSZmea- comparedwiththegravitationalpotentialrecoveredfromthehot surements,theclusterappearstohaveatriaxialshapeelongated ICMobservations,andtheresultcanbeusedtodeterminewhich alongthelineofsight.Accordingtotheseauthors,thismayex- clusterssatisfytheassumptionsandwhichdonot.Thiswillhelp plainthemassdiscrepancy. ustodistinguishthedifferentprocessesoccurringinclusters. Finally,in a joint analysis of X-ray surface brightnesswith We here focus on reconstructing the projected potential strong- and weak-lensing measurements, Morandietal. (2011) of galaxy clusters using X-ray observations. However, other inferred the fraction of nonthermal pressure required for the observables may also be used, such as galaxy kinematics clustertobeinhydrostaticequilibrium,takingintoaccountthe (Sarlietal. 2013) or the thermal SZ effect (Majeretal. 2013). triaxialshapeofthecluster.Theauthorsfoundthat20%ofthe Our final goalis to set up one commonlikelihood functionfor totalpressureshouldbenonthermal,mostprobablycontributed thegravitationalpotential,joininginformationfromallavailable byturbulentgasmotiondrivenbyhierarchicalmergerevents. observables. As a proof of concept, in this study the projected potentialofthewell-studiedclusterAbell1689isreconstructed To summarize, a mass discrepancy has been observed in fromX-rayobservations. many studies, and different explanations have been suggested. To understand the origin of this discrepancy, we here propose the followingmethod:1) reconstructthe three-dimensionalgas The cluster Abell 1689 is located at redshift 0.183 in the distributionusingadeprojectionmethodthatoperatesindepen- Virgo constellation. As a well-known strong-lensing cluster, it dently on each line of sight: the Richardson-Lucydeprojection has been the subject of many studies. The multiwavelength algorithm (R-L, Lucy 1974, 1994); and 2) substitute the mass observations performed on this object extend from the mid- withalocalquantity,thatis,thegravitationalpotential. infrared,forinstance,usingISOCAM onboardthe ISOsatellite (Faddaetal.2000),totheX-rayband,forinstance,usingSuzaku Thisprocedure,appliedheretoajointanalysisofX-rayand (Kawaharadaetal. 2010), ROSAT (Allen 1998), Chandra1 lensingobservations,isexpectedtoallowustodirectlycompare (Xue&Wu 2002), and XMM-Newton (Andersson&Madejski the dark matter and gas distributions and to test the validity of 2004; Snowdenetal. 2008). In visible light, the optical signal theequilibriumassumptionsateachprojectedradius.Usingthe hasbeenobservedusingtheSubaru/Suprime-Camtelescopeand gravitationalpotentialshouldrenderthecomparisonwithgravi- theHubbleSpacetelescope(Broadhurstetal.2005).Thislistis tationallensingmeasurementmorestraightforwardbecausethe notcomprehensive. gravitational potential is directly observable from the lensing The main result of these observations is that Abell 1689 measurements. is a dynamically active cluster: kinematics and X-ray stud- To recover the cluster potential from X-ray measurements, ies indicate a merger aligned with the line of sight (see, we first deprojectthe X-raydata, then convertthe X-ray three- e.g., Andersson&Madejski 2004, and references therein). dimensionalprofileintothethree-dimensionalgravitationalpo- Combinations of different observations in joint analyses have tential using equilibrium assumptions, and project it again to been performed by many authors and have shown that the hy- compareitwiththetwo-dimensionalgravitationalpotentialob- drostatic mass is lower than the mass estimated from gravita- tained by gravitationallensing. Applyingthis methodwith dif- tional lensing measurements in the central regions (see, e.g., ferentgeometries(sphericalandtriaxial)isexpectedtoremove Pengetal.2009;Morandietal.2011;Miralda-Escude&Babul the degeneracy between the different possible explanations for 1995;Łokasetal.2006;Serenoetal.2013). the mass discrepancy. We test this algorithm here for the first Miralda-Escude&Babul (1995) combined strong-lensing timeonarealclusterassumingsphericalsymmetry.Thegener- and X-ray surface brightness measurements to test the physi- alizationtoaspheroidalshapeisongoing. cal state ofthe gasnearthe cluster center. The authorsshowed thattheobservedtemperatureinthecentralregionsislowerthan This paper is structured as follows: In Sect. 2 we list the that expectedfrom hydrostaticequilibrium. As a result, a non- assumptions of the method. In Sect. 3 we apply the R-L de- negligible nonthermal pressure component should be present projection algorithm on the cluster Abell 1689 and compare andactagainstgravity.Accordingtotheseauthors,thisnonther- thiswiththeonion-peelingdeprojectionmethod(O-P,see,e.g., mal pressure support could be associated with the merger pro- Fabianetal. 1981; Krissetal. 1983, for a detailed overviewof cess.Inacomplementaryanalysis,Łokasetal.(2006)measured this method), which is the standard deprojection method in X- thevelocitydistributionofthegalaxiesinthefieldandidentified rayastronomy.InSect.3.1,O-PandR-Ldeprojectionmethods severalmatterclumpsalignedwiththelineofsightthroughthe are directly compared for different cluster observables, and in cluster, which do not interact with the cluster dynamicallyand Sect. 3.2 the advantage of the R-L method with respect to the might affect the lensing mass estimates without modifying the O-P method is discussed. In Sect. 3.3, the reconstructed pro- X-ray mass estimate. This provides an alternative explanation jected gravitational potential obtained using the method devel- for the mass discrepancy observed between the two methods. opedinKonradetal.(2013)iscomparedtothelensingpotential In a different analysis of Abell 1689, Pengetal. (2009) com- oftheclusterasrecoveredbyJ.Merten(privatecommunication). Finally,theresultsarediscussedinSect.4,andweconcludein 1 seealsotheChandracatalogofCavagnoloetal.(2009). Sect.5. 2 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements 2. Assumptionsofthemethod in the 0.4−2 keV band. For the details of the analysis proce- dure,werefertoEckertetal.(2011). The general reconstruction formalism outlined in Konradetal. (2013)isbasedonthefollowingassumptions: In this section, we aim at comparingthe results of the R-L deprojectionmethodwiththoseobtainedwiththeO-Pmethod. – TheICMisinhydrostaticequilibrium, Forthispurpose,weextractedtheemissivity,thedensityprofile, and the temperature profile from the X-ray surface brightness ∇P=−ρ∇Φ, (1) usingbothmethods. where Φ denotes the Newtonian gravitational potential, whilePandρarethegaspressureanddensity. – Thegasfollowsthepolytropicrelation 3.1.TestingtheR-Ldeprojectionmethod P ρ γ = , (2) The R-L algorithm is an iterative method that tends to depro- P0 ρ0! jectthefeaturesoftheobservedprojectedfunctiononallscales. To avoid reproducing the instrumental fluctuations and other where the suffix 0 denotes fiducial values for the pressure sources of noise in the deprojected profile, Lucy (Lucy 1994) andforthegasdensityatanarbitraryradiusr andwhereγ 0 suggested to add a regularization term to a likelihood function isthepolytropicindex. whose scale andamplitudewere controlledbytwo parameters, – Thegasisideal, ρ the regularization parameter α and the smoothing scale L (see P= kBT , (3) Konradetal.2013,formoredetails).Inthefollowing,weadapt m¯ theseparameterstotheX-raydataobtainedbytraditionaltech- whereT isthegastemperature,k isBoltzmann’sconstant, B niques. andm¯ isthemeanmassofagasparticle. – ThebremsstrahlungemissionisassumedtodominatetheX- rayobservations.Thisassumptionisjustifiedaslongasthe 3.1.1. Three-dimensionalemissivity temperatureofthe plasma doesnotfall below∼ 2keVand theFeXXV-FeXXVIlinecomplexat6−7keVisavoided The mean value and the error bars of the recovered emissivity (Peterson&Fabian 2006). The bolometric bremsstrahlung wereobtainedusinga MonteCarlo (MC)methodbasedonthe emissivity, j ,canbewrittenas x R-L deprojection method as follows: The value of the surface j =CT1/2ρ2 , (4) brightness profile was randomized within each radial ring, ac- x cordingtoaGaussiandistributionwhosemeanwastheobserved whereCisanamplitudeformedbyallrelevantphysicalcon- valueandwhosewidthwasgivenbytheerrorbars.After10000 stants. We integrated the emissivity over the energy band simulations,thedeprojectedvalueanditserroraregivenbythe [0.4−2]keV(j[0.4;2])insteadofovertheentireelectromag- meanand1σdeviationoftheresultingdistribution. neticspectrum.Introducingfiniteboundariesfortheenergy InFig.1,weshowtheresultsoftheX-raysurface-brightness bandsmodifiesthe temperaturedependenceof the emissiv- deprojection using the O-P and R-L methods. To obtain these ity,butnotitsdependenceondensity.Sincethedensitypro- results,theparametersoftheR-Lmethodweresettoα = 0.01 fileissteeperthanthetemperatureprofile,andtheemissivity and L = 300kpc. These parameter values are lower than the dependsonthesquareofthedensity,theemissivityprofileis expectations(seeKonradetal.2013,formoredetails)andimply dominatedbythedensityprofileanduncertaintiesinthetem- thattheregulationtermintroducedintheR-Lmethodisnotvery peraturedependencecanbeconsiderednegligiblefornow. effectiveinthecaseofAbell1689. – Except for the natural constants and the averaged parame- ters,allquantitiesintroducedhereareassumedtodependon More detailed investigations with simulated clusters have thecluster-centricradius.Thisdependenceisnotwrittenex- shown that the results of the reconstruction depend very little plicitlytosimplifythenotation.Theeffectiveadiabaticindex on the values chosen for the regularizationparameters.Testing is assumedto be constantacross the cluster. While this has wide ranges for both α and L, typically covering an order of been shown not to be true in general, it can be a good ap- magnitude,changestherecoveredpotentialsroutinelybymuch proximationaslongasthecoreoftheclusterisavoided(see, lessthanthestatisticaluncertainties. e.g,.Tozzi&Norman2001;Capeloetal.2012;Eckertetal. We emphasize that the regularization term is controlled by 2013,andthediscussionsection). the difference of the potential reconstructions between subse- – Theclusterisassumedtobesphericallysymmetric. quentiterationssteps,whichvanishesprogressivelyastheitera- tionproceeds.Theregularizationisthusgraduallyswitchedoff 3. DeprojectionoftheclusterAbell1689 towardtheendoftheiteration.Wefixedthenumberofiterations to10,whichcorrespondstothenumberofiterationsatwhichthe To construct the surface-brightness profile of the cluster, algorithmconverges,becausenosignificantchangesintheemis- we used an archival 13.4 ks observation of Abell 1689 sivityprofilewereobservedwhenmoreiterationswereused. with ROSAT/PSPC. This choice was motivated by the low background of this instrument, which allowed us to ex- This is endorsed by our result, which shows that the emis- tract high-quality surface-brightness profiles out to large radii sivity profiles obtained with the two methods agree very well (Vikhlininetal. 1999; Eckertetal. 2011). We reduced the data withintheerrorbars.However,theoutermostpointsofthepro- using the ESAS software (Snowdenetal. 1994). The non-X- filearedifferentinthetwotechniques,whichcanbeattributedto raybackgroundwasmodeledandsubtractedfromtheobserved edge effects (see, e.g., McLaughlin1999). The large error bars image, and a vignetting correction was applied. The surface- intheoutermostpointsarecausedbytheweaknessofthesignal brightnessprofile was then extracted from the correctedimage atlargeradii. 3 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements 1e-07 0.1 O-P Method O-P Method 1e-08 R-L method R-L method 3] 1e-09 0.01 -c 1 kp 1e-10 -3m] -sivity [cts s 11ee--1121 density [ce 0.001 s n mi 0.0001 e 1e-13 1e-14 1e-05 1e-15 102 103 102 103 R[kpc] R[kpc] Fig.1. Emissivity obtained by applying the R-L (this analysis) Fig.2. Electron-density reconstructed profile obtained from andtheO-Pmethods(Eckertetal.2012)totheROSATsurface- the R-L deprojection method (this analysis) compared to the brightness profile. The reconstructed emissivity using the R-L electron-density profile recovered from the O-P deprojection method has been normalized to the O-P data points within a method (Eckertetal. 2012). For both deprojection methods, spherical shell delimited by the radii in the range [183; 2700] Eq. [5] has been used. The reconstructed density using the R- kpc. L method has been normalizedto the O-P data points within a spherical shell delimited by the radii in the range [183; 2515] kpc. 3.1.2. Three-dimensionaldensityprofile The temperature of the cluster Abell 1689 lies between 2keV 3.2.AdvantagesoftheR-LmethodcomparedtotheO-P and 10keV (Kawaharadaetal. 2010). This means that the soft method energyband[0.4;2]keVisbelowthebremsstrahlungcutoffen- In observations, the only information available is integrated ergy, and the emissivity only weakly depends on the tempera- alongthelineofsight.Intheframeworkofthisstudy,wedefine ture.Inthisparticularcase,thedensityprofilecanbeexpressed aslocaladeprojectionmethodthatallowsindependentlydepro- asafunctionoftheemissivity, j ,as [0.4;2] jectingthisprojectedinformationforeachlineofsight,meaning thatitisnotnecessarytoknowthevalueofthedeprojectedquan- ρ(r)∝ j[0.4;2](r). (5) tityinonelineofsighttoderivethedeprojectedvalueinanother p andthatregionsofdifferentprojectedradiusarenotmixeddur- InFig.2wecomparethedensityprofileobtainedusingEq.[5] ingthedeprojectionprocedure. for the two deprojection methods: the O-P method (in blue, InSect.3.1,wesawthattheR-LandO-Pdeprojectionmeth- Eckertetal. 2012) and the R-L method (in red, this analysis). ods lead to consistent results. We now explain why we aim at Again,thedensityprofileiswellreproducedusingtheR-Lpro- usingtheR-LmethodinsteadoftheO-Pprocedure. cedure. Atthispointoftheanalysis,itisnecessarytobrieflyreview the concept of the O-P method. We refer to Krissetal. (1983) formoredetails.TheO-Pmethodisageometricaldeprojection 3.1.3. Temperatureprofile techniqueinitiallyintroducedusingtheassumptionofspherical Usingthepolytropicrelation(Eq.[2])andthefactthatwecon- symmetry(Krissetal.1983),butitcanbegeneralizedtoclusters sidered only the soft energy band [0.4;2] keV, the temperature withaxialsymmetry(see,e.g.,Buote&Humphrey2012a).This profilecanbeexpressedas method assumes that the cluster has an onion-like shell struc- ture,withauniformemissivityineachoftheconcentricspheri- calshells.Thethree-dimensionalprofileoftheemissivityisthen T(r)∝ρ(r)γ−1 ∝ j (r)(γ−1)/2 . (6) [0.4;2] recovered from the surface brightness map in an iterative way fromringtoring,progressingfromtheoutskirtstothecenterof Figure 3 shows the temperature profile reconstructed with a thecluster. polytropic index of γ = 1.19±0.04 and the temperature pro- Tocarryoutthisiterativeprocedure,theO-Pmethodrequires files obtained using different techniques. The polytropic index the errors to propagate from ring to ring as the observed pro- γ=1.19±0.04resultsfromfittingtheobservedpressureprofile jectedprofileisgenerated.Whenaquantityisoverestimatedina (PlanckCollaborationetal.2013)withthereconstructeddensity radialbin,thesamequantityneedstobeunderestimatedinanad- profile(obtainedinSect.3.1.2),usingEq.[2]. jacentbin,causingthemethodtoproducefluctuationsinthede- For completeness, we also fitted Eq. [6] to the joint XMM- projectedprofile(see,e.g.,Ameglioetal.2007).Thus,theerrors Newton and Suzaku data and obtained γ = 1.17±0.03 for the associatedwitheachbinarecorrelated.Thestatisticaluncertain- polytropicindexwith1σerror,whichisconsistentwithourear- tiesassociatedwiththereconstructedthree-dimensionalprofiles lierresult. are usuallyestimated using MonteCarlo simulations(see, e.g., Thedecreaseinthetemperatureprofilesupportsthevalidity Buote2000),whichbythesamemeanssmoothesthesystematic ofthepolytropicassumption(Eq.[2]). errorsduetothefluctuationsinadjacentbins. 4 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements bodycanbetakenintoaccountbyasuitable(de)projectionker- 18 nel in the R-L method. As the mixing between regions of dif- 16 R-L method for γ=1.19 +/- 0.04 ferent projected radius is a consequence of the symmetries as- R-L method for γ=1.19 14 sumptionandnotofthedeprojectionprocedure,testingdifferent SZ effect + O-P Method clustersymmetriesshouldhelpusunderstandtheeffectofthese eV] 12 Suzaku mixingsontheresultingprofiles. e [k 10 XMM This feature of local deprojection is most relevant for our atur study since the information provided by gravitational lensing er 8 measurements that we use here is also local. In the SaWLens p m e 6 methoddevelopedbyMertenetal.(2009),estimatesofthelens- T ing potentialare obtainedlocally in all cells of a gridcovering 4 the region considered on the sky, and therefore, the observa- 2 tionsofweakgravitationallensinggiveinformationonthelocal galaxydensity. 0 102 103 R[kpc] 3.3.Reconstructingthelensingpotential Fig.3.TemperatureprofileobtainedfromtheR-Lreconstructed The reconstructed projected potential ψ is the projection along emissivityprofileviaEq.[6]withγ=1.19±0.04,comparedto the line of sight of the gravitationalpotentialφ. In our formal- temperature profiles obtained using different techniques. Dark ism,thegravitationalpotentialisexpressedintermsoftherecon- blue:profilederivedfromcombinedX-rayandthermal-SZmea- structedemissivityby(seeKonradetal.2013,forthederivation) surements(PlanckCollaborationetal.2013)usingtheidealgas assumption (Eckertetal. 2013); light blue: spectral fitting of 2(γ−1) XMM observations (Snowdenetal. 2008); pink: spectral fit- φ(r)∝ jx(r)η , η= 3+γ . (7) tingofSuzakuobservations(Kawaharadaetal.2010);red:mean value and errors on the reconstructed profile for γ = 1.19; Thethree-dimensionalgravitationalpotentialreconstructedthis gray: mean value and errors on the reconstructed profile for wayisthensimplyprojectedalongthelineofsight.Inthisequa- γ=1.19±0.04.Themeanandtheerrorbarswereobtainedwith tion,weusethebolometricemissivity(j )andnottheemissivity x a Monte Carlo method based on the R-L deprojection.The re- restrictedtotheenergyband[0.4;2]keV.Torecoverthebolomet- constructedtemperatureprofilehasbeennormalizedtothedata ricemissivityfromtheenergy-restrictedemissivity(seeFig.1), points from Eckertetal. (2013) within a spherical shell delim- weusedthetemperatureprofile(seeFig.3)andthethin-plasma itedbytheradiiintherange[183;2515]kpc. code APEC (Smithetal. 2001, fixing the metallicity to 0.3) to computetheratiobetweenthebolometricfluxandtherestricted flux for each radius. This factor was then used to recover the In the R-L method, the error propagation and the fluctua- bolometricemissivityfromtherestrictedemissivity. tionsduetothe deprojectionofthe instrumentalnoiseare con- The lensing potentialis recoveredfrom observationsof the trolledbyaregularizationterm(Lucy1994).Thechoiceofthis distortedimagesofdistantbackgroundgalaxies.Thedistortion regularization term is adapted to the data themselves and van- (shear and magnification) of these images is related to linear ishes as the deprojection converges. Furthermore, simulations combinations of second derivatives of the lensing potential of show that large-scale features are reproduced quickly, while a foregroundcluster. This distortion is due to the gravitational small-scale structures are recovered slowly (Reblinsky 2000; tidalfieldofadeeppotentialwellbetweentheobserverandthe Puchwein&Bartelmann 2006). Therefore, the R-L method al- backgroundgalaxies.Inthecaseofweak-lensingmeasurements, lowscontrollingthefluctuationsthatarisefromdeprojectingthe thedistortionofindividualgalaxiesistooweaktobeobserved, instrumentalnoise(Lucy1994). but the distortion averaged over sufficiently many neighboring Animportantdifferencebetweenthetwomethodsisthatthe galaxies is used to estimate the gravitational tidal field of the O-Pmethodisnonlocalinthesenseintroducedabove:torecon- foregroundgalaxycluster.Inalargeenoughsample,therandom structthethree-dimensionalshellatagivenradius,theresultsof intrinsic orientation of the background galaxies is expected to the deprojectionof all shells at larger radiiare needed, and re- averageout,and the ellipticity inducedby lensing canbe mea- gionscorrespondingto differentprojectedradiiare mixed.The sured.Thelensingpotentialdatausedherewererecoveredwith R-Ldeprojectionmethod,however,islocalinthesensethatthe SaWLensinanonparametricwayfromweak-lensingdata. two-dimensionalprofileisindependentlydeprojectedalongeach In Fig. 4, we show the reconstructed, two-dimensional po- lineofsight(see,e.g.,Reblinsky2000;Puchwein&Bartelmann tentialassumingapolytropicindexγ=1.19±0.04.Thisprofile 2006),suchthatthedeprojectedfunctionisindependentlyeval- iscomparedwiththelensingpotentialobtainedfromweaklens- uatedateachimagepointandthatthisalgorithmcanbeapplied ing.Atradii&500kpcourreconstructedpotentialprofileagrees to data sets with incomplete coverage. However, the relations wellwiththereconstructedlensingprofilewithintheerrorbars, between different projected radii are controlled by the symme- eventhoughthepotentialreconstructedfromtheX-rayemission tryassumptions,andtheinformationcontainedindifferentlines appearstobeslightlylesscurved.Thediscrepancyatsmallradii ofsightmaybemixed,evenifthedeprojectionprocedureislo- andtheslightcurvaturechangeatlargerradiimaybecausedby cal.Forinstance,assumingsphericalsymmetry,theinformation the lackof resolutionin the weak-lensingmeasurementandby collectedatsameprojectedradiusismixedforanylineofsight. theotherassumptionsmade(sphericity,polytropicandequilib- Nevertheless,asfortheO-Pmethod,itispossibletogeneral- riumassumptions).Thesepointsarediscussedinmoredetailin izetheR-Ldeprojectionmethodtointrinsicallyspheroiralclus- thenextsection. ter bodies (see, e.g, Reblinsky 2000; Puchwein&Bartelmann As we have mentionedin the introduction,studyingthe in- 2006). In this formalism, the intrinsic shape of the projected tracluster gas may help us understandthe dark-matterdistribu- 5 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements lensingis flatter thanthe one reconstructedfromthe X-rayob- servations.Thisflatteningcanbeproducedbythelargeresolu- reconstructed for γ=1.19 +/- 0.04 tionlimitpresentintheweak-lensingmeasurements(∼100kpc, recovered from lensing see,e.g., Bartelmann2003,forareview),whichcansmooththe 0.01 data so that the lensing potential recovered from weak-lensing al measurementsappearsflatter than the potentialrecoveredfrom nti e X-ray observations. This discrepancy is expected to vanish if ot P morepotentialobservablesaretakenintoaccount.Forinstance, g sin acombinedstrong-andweak-lensingreconstructionisexpected n e to yield a better match in the region close to the cluster center L becausethestronglensingissensitivetothisregion. At small radii (R . 500kpc), however, the two pro- 0.001 jected potentials differ. Such a discrepancy in the cen- 102 103 tral region of the cluster was also found by Pengetal. s[kpc] (2009), Andersson&Madejski (2004), Morandietal. (2011), Fig.4. Projected gravitationalpotential reconstructedusing the Miralda-Escude&Babul (1995), Łokasetal. (2006), and method described in Konradetal. (2013) compared to the po- Serenoetal. (2013), as mentioned in the introduction. This tential recoveredfrom weak gravitationallensing as a function could be explained by a modification of the balance between of the projectedradius s. The projectedpotentialreconstructed the physical processes in the inner part of the cluster. It may from the X-ray emission has been obtained assuming a poly- indicatethatsomeoftheassumptionsmadeshouldnotbeused tropicindexγ=1.19±0.04(seethetextfordetails).Thepoten- inthecentralpartofthecluster. tial recovered by lensing is shown in blue; the mean projected Forinstance,thepolytropicassumptionwithconstantpoly- potentialobtainedfromX-rayobservationswithγ=1.19±0.04 tropic index may not be valid in the central part of cool-core isshowninred,theuncertaintiesofthelatterareshowningray. clustersbecausetheradiativecoolingnearthecenterrendersthe The mean and errors have been obtained using a Monte Carlo coolingtime shorterthanthe Hubbletime (e.g., Fabian1994). method to randomize the algorithm described in Konradetal. Coolingaltersthepolytropicequationbyloweringthetempera- (2013).Thereconstructedlensingpotentialhasbeennormalized tureof the gas,which impliesthatthe temperatureprofiledoes tothelensingdatawithinacircularshellregiondelimitedbythe not increase toward the center as the gas density does, but in- radiiintherange[92;1734]kpc. stead decreases. Therefore, the assumption of a constant poly- tropic index is not expected to be correct at the cluster cen- tre.However,theassumptionthatthegasfollowsthepolytropic tion in the cluster becausethe ICM fills the dark-matterpoten- equationseemstobevalidinAbell1689,withafittedpolytropic tialwell.AsaresultofthelocalityoftheR-Ldeprojection,our indexofγ=1.19±0.04(Fig.3). methodopensawayforclusterpotentialstocomplementthein- Ontheotherhand,theassumptionofhydrostaticequilibrium formation provided by lensing and joins two entirely different islikelyvalidinthecentralregionsofcool-coreclustersbecause observablesonthegroundsofthegravitationalpotential,which of the deep gravitational potential (see, for instance, Fig. 2 of providesanewtoolforconstrainingthephysicalstateofthegas Lauetal.2009).Thismaynotbethecaseinnon-cool-coreclus- locally. ters.AshasbeenshownbyMahdavietal.(2013),forinstance, departure from the equilibrium assumption is expected in un- relaxed clusters. The authors compared the lensing mass with 4. Discussion themassobtainedunderhydrostaticequilibriumassumptionsfor We used the R-L deprojection method to recover the three- a sample of clusters at R . R500 (∼ 1.34Mpc in the case of dimensional gas distribution in Abell 1689 from its X-ray sur- Abell1689)andconcludedthatthedeparturefromtheequilib- face brightness. We then converted this gas distribution into a riumassumptionisdifferentbetweenrelaxedandmergingclus- three-dimensional gravitational potential that we subsequently ters:whileforcool-coreclusters,almostnobiasisobservedbe- projected for comparison with the lensing potential. Using the tween the lensing and the hydrostatic mass, a bias of 15-20% R-L deprojectionmethodis advantageousbecauseit allowsin- is present for non-cool-core clusters. Abell 1689 is known to dependentlydeprojectingtheX-rayobservablesalongeachline experience a merging event aligned with the line of sight, and of sight as well as treating data sets with incompletecoverage. therefore, the gas is not expected to be in hydrostatic equilib- This therefore allows excluding regions where the equilibrium rium near the cluster center (see also, e.g., Nelsonetal. 2012; assumptionsmaynothold.As a result,a substantialamountof Morandietal.2011).Thismaycontributetothediscrepancyat informationbecomesavailable by the direct comparisonof the smallradiiobservedinFig.4. lensingpotentialwiththeprojectedpotentialreconstructedfrom Furthermore,anydeparturefromsphericalsymmetrycould X-rayemission(Fig.4). biastheestimateoftheclustermass,andifwherethemajoraxis For example, the agreementbetween the two reconstructed of the cluster is preferentially aligned with the line of sight, it potentialsatradiifrom500−2000 kpcindicatesthattheassump- shouldleadtoanoverestimationofthelensingmasswithrespect tions underlying the derivation of the projected potential from to the X-ray mass. This is consistent with the conclusions of X-rayobservations,namely hydrostaticequilibrium,polytropic Lee&Suto(2003,2004),whoshowedthatthedarkmatterpro- stratification, and the ideal-gas equation of state [Eqs. (1)-(4)] fileinnonsphericalclustersisalwaysmoresensitivetotriaxiality arenotsubstantiallyviolatedintheclusterAbell1689withinthis than the gas distribution from X-ray measurements. This weak radialrange.Nevertheless,we canobservea slightdiscrepancy dependenceoftheX-raymeasurementsontheclustershapewas between the potentials curvature: the potential recovered from also observed in Buote&Humphrey (2012a,b), where the au- 6 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements thorscomputedthebiasesintheobservablesobtainedbyapply- withtheprofilesfromRichardson-Lucydeprojection.Figures1- ingasphericalO-Pdeprojectionmethodonclusterswithsignif- 3showthebremsstrahlungemissivity,electrondensity,andtem- icanttriaxiality.Theyconcludedthatsphericalaveragingbiases perature profiles obtained using the two deprojection methods. theobservablesbyasmallfactor(<1%)withrespecttoatriax- Allprofilesareconsistentwithintheerrorbars. ialdeprojection. Figure 4 shows the projected gravitational potential recon- Therefore,thenonsphericityoftheclustercouldexplainthe structed from X-ray data following the procedure described in discrepancy at small radii between the X-ray and lensing pro- Konradetal.(2013).Thisfigureshowsthattheprojectedpoten- jectedpotentialprofilesforAbell1689,butinterestingly,itdoes tial obtained directly from X-ray observations agrees with the notseemtostronglyaffectthereconstructionofthepotentialin lensingpotentialobtainedfromweak-lensingmeasurements. theregion500−2000 kpc. Therefore,for sufficiently precise data sets, the R-L depro- jection method is expected to help us constrain the validity of the assumed equilibriumassumptionsatall projectedradii. We At large radii (R & R ), simulations tend to show that the 500 obtained these results using a spherical symmetry assumption. equilibrium assumptionsare not valid any more due to mixing However,apossiblebiascomingfromthisassumptioncanalso oftheICMwiththeinfallingmaterialfromthelarge-scalestruc- contributetothediscrepancybetweentheX-rayandlensingpo- ture(see, e.g,Reiprichetal. 2013,fora review).Thedeviation tentials at small radii (Fig. 4). To remove the degeneracy be- fromthehydrostaticequilibriumcanbeduetoresidualgasmo- tweenthedifferentexplanations(breakdownofhydrostaticequi- tions or incomplete thermalization of the ICM (Mahdavietal. libriumorprojectioneffects),wearenowworkingongeneraliz- 2013).Suchphenomenaareexpectedintheoutskirtsofclusters, ingthisdeprojectionmethodusingatriaxialkernel. where matter is accreted and substructures such as clumps are more likely to be found(Nagai&Lau 2011; Vazzaetal. 2013; Zhuravlevaetal.2013),sothatourreconstructionmethodisnot Weprovidedageneralproofofconceptofpotentialreconstruc- expected to be valid at radii larger than R (∼ 1.339Mpc, for tion combining X-ray data with weak-lensing measurements. 500 Abell 1689). However, as the lensing data used in our study The next step now consists of combining all observables pro- do not extend to much larger radii than R , we cannot test videdbygalaxyclusters:strongandweakgravitationallensing, 500 thisstatement.Whenweextrapolatedthelensingdatapointsto X-ray surface-brightness and temperature, galaxy kinematics, larger radii, we did not find significant differences between X- andthethermalSunyaev-Zel’dovicheffectintoajointconstruc- rayandlensinginformationinthisradialrange. tionofoneconsistentmodelforthe projectedclusterpotential. Thiscombinationwillprovideasubstantialamountofinforma- tionandwillhelpustoquantifythevalidityoftheassumptions Some systematic effects arise from the different assumptions made. If the assumptions are valid, the combination of all ob- we made in treating the X-ray observations. In Eq. [4], we as- servables will produce the best constrained galaxy-cluster po- sumedthattheemissivityisdominatedbybremsstrahlungemis- tentials. sion.Thisapproximationrepresentsa differenceofatmost8% in the normalization compared to the normalization we would Acknowledgements. WearegratefultoJulianMertenforhismanyvaluablein- obtaintakingintoaccountthecontributionoftheemissionlines sightsandforthelensingdataheprovidedforthisanalysis,andtoSaraKonrad for a metallicity of 0.3. Then, the conversion from 0.4-2 keV for her contribution in developing this reconstruction method. This project tothebolometricemissivity,computedassumingatemperature was supported in part by the Baden-Wu¨rttemberg Foundation under project “InternationaleSpitzenforschungII/2”andbytheCollaborativeResearchArea profile that follows Eq. [6] with γ = 1.19, implies systematic TR-33 “The Dark Universe” as well as project BA 1369/17 of the Deutsche errorsofabout4%atmost.Thedeviationsfromaflatfieldwith ForschungsgemeinschaftandinpartbytheSwissNationalScienceFoundation. the ROSAT satellite have been computed to introduce system- aticeffectsontheorderof6%ofthebackgroundinEckertetal. (2012).Thisvaluecorrespondstothescatterintheresidual,re- References sultingfromthefitofthesurfacebrightnessprofilesofflatfields Andersson,K.E.,&Madejski,G.M.2004,ApJ,607,190 withaconstantvalue.Finally,weestimatedtheeffectofthelim- Allen,S.W.1998,MNRAS,296,392 ited ROSAT PSF on the reconstructed profile by simulating a Ameglio,S.,Borgani,S.,Pierpaoli,E.,&Dolag,K.2007,MNRAS,382,397 betamodelwithparametersconsistentwiththoseofAbell1689 Bartelmann,M.2003,MatterandEnergyinClustersofGalaxies,301,255 and by convolving it with the PSF of ROSAT. While the con- Broadhurst,T.,Takada,M.,Umetsu,K.,etal.2005,ApJ,619,L143 Buote,D.A.2000,ApJ,539,172 volved profile is significantly flatter than the simulated profile Buote,D.A.,&Humphrey,P.J.2012,MNRAS,420,1693 inside∼300kpc(by∼18%),beyondthisradiustheeffectofthe Buote,D.A.,&Humphrey,P.J.2012,MNRAS,421,1399 PSF is weak,andwe estimatedit to be atthe levelof∼ 3%of Capelo,P.R.,Coppi,P.S.,&Natarajan,P.2012,MNRAS,422,686 theobservedsignal.Ingeneral,theseinstrumentaleffectsarenot Cavagnolo,K.W.,Donahue,M.,Voit,G.M.,&Sun,M.2009,VizieROnline DataCatalog,218,20012 expected to change our conclusionsqualitatively. Furthermore, Eckert,D.,Molendi,S.,Gastaldello,F.,&Rossetti,M.2011,A&A,529,A133 acombinationofotherclusterobservables(suchasSZsignalor Eckert,D.,Vazza,F.,Ettori,S.,etal.2012,A&A,541,A57 galaxy kinematics) is expectedto constrain the effects of these Eckert,D.,Molendi,S.,Vazza,F.,Ettori,S.,&Paltani,S.2013,A&A,551,A22. systematicsandtohelpusbuildaconsistentmodelforthepro- Ettori, S., & Molendi, S. 2011, Memorie della Societa Astronomica Italiana jectedgravitationalpotential. Supplementi,17,47 Ettori,S.,Donnarumma,A.,Pointecouteau,E.,etal.2013,SpaceSci.Rev.,177, 119 Fabian,A.C.,Hu,E.M.,Cowie,L.L.,&Grindlay,J.1981,ApJ,248,47 5. Conclusion Fabian,A.C.1994,ARA&A,32,277 Fadda,D.,Elbaz,D.,Duc,P.-A.,etal.2000,A&A,361,827 We applieda newlydevelopedmethod(Konradetal. 2013) for Kawaharada,M.,Okabe,N.,Umetsu,K.,etal.2010,ApJ,714,423 Komatsu,E.,Smith,K.M.,Dunkley,J.,etal.2011,ApJS,192,18 reconstructingthe projected gravitationalpotentialof the well- Konrad,S.,Majer,C.L.,Meyer,S.,Sarli,E.,&Bartelmann, M.2013,A&A, knowngalaxyclusterAbell1689.WecomparedtheX-raypro- 553,A118 files obtained using the onion-peeling deprojection technique Kriss,G.A.,Cioffi,D.F.,&Canizares,C.R.1983,ApJ,272,439 7 C.Tcherninetal.:GravitationalpotentialofAbell1689fromX-raymeasurements Lau,E.T.,Kravtsov,A.V.,&Nagai,D.2009,ApJ,705,1129 Lee,J.,&Suto,Y.2003,ApJ,585,151 Lee,J.,&Suto,Y.2004,ApJ,601,599 Łokas,E.L.,Prada,F.,Wojtak,R.,Moles,M.,&Gottlo¨ber,S.2006,MNRAS, 366,L26 Lucy,L.B.1974,AJ,79,745 Lucy,L.B.1994,A&A,289,983 Mahdavi,A.,Hoekstra,H.,Babul,A.,etal.2013,ApJ,767,116 Majer, C. L., Meyer, S., Konrad, S., Sarli, E., & Bartelmann, M. 2013, arXiv:1304.6522 McLaughlin,D.E.1999,AJ,117,2398 Merten,J.,Cacciato,M.,Meneghetti,M.,Mignone,C.,&Bartelmann,M.2009, A&A,500,681 Miralda-Escude,J.,&Babul,A.1995,ApJ,449,18 Morandi,A.,Limousin,M.,Rephaeli,Y.,etal.2011,MNRAS,416,2567 Nagai,D.,&Lau,E.T.2011,ApJ,731,L10 Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1997,ApJ,490,493 Nelson,K.,Rudd,D.H.,Shaw,L.,&Nagai,D.2012,ApJ,751,121 Peng,E.-H.,Andersson,K.,Bautz, M.W.,&Garmire,G.P.2009,ApJ,701, 1283 Peterson,J.R.,&Fabian,A.C.2006,Phys.Rep.,427,1 PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2013,A&A,550,A131 Puchwein,E.,&Bartelmann,M.2006,A&A,455,791 Reblinsky,K.2000,A&A,364,377. Reiprich,T.H.,Basu,K.,Ettori,S.,etal.2013,SpaceSci.Rev.,177,195 Sarli,E.,Meyer,S.,Meneghetti,M.,etal.2013,arXiv:1304.7681 Sereno,M.,Ettori,S.,Umetsu,K.,&Baldi,A.2013,MNRAS,428,2241 Snowden,S.L.,McCammon,D.,Burrows,D.N.,&Mendenhall, J.A.1994, ApJ,424,714 Snowden,S.L.,Mushotzky,R.F.,Kuntz,K.D.,&Davis,D.S.2008,A&A, 478,615 Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,&Raymond,J.C.2001,ApJ, 556,L91 Tozzi,P.,&Norman,C.2001,ApJ,546,63 Vazza,F.,Eckert,D.,Simionescu,A.,Bru¨ggen,M.,&Ettori,S.2013,MNRAS, 429,799 Vikhlinin,A.,Forman,W.,&Jones,C.1999,ApJ,525,47 Xue,S.-J.,&Wu,X.-P.2002,ApJ,576,152 Zhuravleva,I.,Churazov,E.,Kravtsov,A.,etal.2013,MNRAS,428,3274 8