MNRAS000,1–8(2015) Preprint12January2017 CompiledusingMNRASLATEXstylefilev3.0 Reconciling the diffuse Galactic γ-ray and the cosmic ray spectra Lara Nava1 (cid:63), David Benyamin1, Tsvi Piran1, and Nir J. Shaviv1,2 1RacahInstituteofPhysics,TheHebrewUniversityofJerusalem,91904,Israel 2SchoolofNaturalSciences,InstituteforAdvancedStudy,Princeton08540,NJ,USA AcceptedXXX.ReceivedYYY;inoriginalformZZZ 7 1 ABSTRACT 0 MostofthediffuseGalacticGeVγ-rayemissionisproducedviacollisionsofcosmicray(CR) 2 protonswithISMprotons.Assuchtheobservedspectraoftheγ-raysandtheCRsshouldbe stronglylinked.RecentobservationsofFermi-LATexhibitahardeningoftheγ-rayspectrum n a ataroundahundredGeV,betweentheSagittariusandCarinatangents,andafurtherharden- J ingatafewdegreesaboveandbelowtheGalacticplane.However,standardCRpropagation 0 modelsthatassumeatimeindependentsourcedistributionandalocationindependentdiffu- 1 sioncannotgiverisetoaspatiallydependentCR(andhenceγ-ray)spectralslopes.Herewe consideradynamicspiralarmmodelinwhichthedistributionofCRsourcesisconcentrated ] inthe(dynamic)spiralarms,andwestudytheeffectsofthismodelontheπ0-decayproduced E γ-rayspectra.Withinthismodel,neartheGalacticarmstheobservedγ-rayspectralslopeis H nottriviallyrelatedtotheCRinjectionspectrumandenergydependenceofthediffusionco- . efficient.WefinduniquesignaturesthatagreewiththeFermi-LATobservations.Thismodel h also provides a physical explanation for the difference between the local CR spectral slope p andtheCRslopeinferredfromtheaverageγ-rayspectrum. - o r Keywords: diffusion–cosmicrays–ISM:general–Galaxy:general–gammarays:ISM t s a [ 1 1 INTRODUCTION theGalacticarms)andassuchsimplemodificationsofthesource v orthediffusioninsidethearmsandoutsideofthemareinsufficient 6 ObservationsoftheGeVγ-rayskyrevealsignificantinformation toexplaintheobservations. 4 concerning Galactic cosmic rays (CR) at somewhat higher ener- Withtheaboveinmind,weconsiderwithinthiscontextthe 7 gies. The π0 produced γ-rays can be used to determine the CR “dynamic spiral arm" model that alleviates the assumption of an 2 interactionwiththeinterstellarmedium(ISM)atvariouslocations 0 in the Galaxy. The γ-ray sky can therefore be used as a tool to azimuthally symmetric source distribution and more realistically 1. studyCRphysics,andinparticular,CRaccelerationandpropaga- assumes that a large fraction of the CR sources are in the vicin- ityofarms(Shaviv2002,2003;Gaggeroetal.2013;Werneretal. 0 tion.Fermiobservations(Seligetal.2015),whichimprovedearlier 2015).ThismodelissuccessfulinexplainingthevariableCRflux 7 COSB(Rogersetal.1988;Bloemen1989)andEGRETobserva- asreconstructedfromIronMeteorites(Shaviv2002,2003),itnat- 1 tions(Fatoohietal.1996),revealedsmallbutnoticeabledifferences : intheγ-rayspectralindexalongbothdifferentGalacticlongitudes urallyexplainsthesocalledPamelaanomalyinwhichthepositron v toelectronratioincreasesabove10GeV(Shavivetal.2009;Gag- i andlatitudes,particularlysowhenthelinesofsightaretangential X tothespiralarms.Weexploreheretheimplicationsoftheseobser- gero et al. 2013), and more recently it also explains the apparent differenceincolumndensityinferredfromthesub-IrontoIronand r vationsonmodelsofCRpropagationintheGalaxy. a BorontoCarbonmeasurements(Benyaminetal.2016). Spatialvariationinthespectracannotbeexplainedawayby One interesting aspect of the spiral arm model is that it re- variationsintheintensityofCRsorvariationsofthedensityofthe quires a smaller halo. This is because its path length distribution target ISM protons. The observations of a different CR spectrum ismissingshortpaths.Asaconsequence,thesamehalosizepro- atdifferentlocationsimplyeitherthatdifferentsources,locatedat duceslesssecondariessincetheCRstendtospendlesstimenear differentregionsoftheGalaxy,havedifferentintrinsicspectraor theplane,wherethedensityishigh.Inordertoreproducetheob- thatCRpropagation(inparticularthediffusioncoefficient)hasa served amount of secondaries the model then requires halo sizes differentenergydependenceatdifferentregions.Thustheseobser- that are typically a few hundred pc high (Benyamin et al. 2014, vationsruleoutimmediatelythe“standard"axisymmetricGalactic 2016). The smaller halo and 10Be age constraints imply that the CRmodel,oratleastimplythatitrequirestheincorporationofnew diffusioncoefficientisalsomuchsmallerthanthecanonicalrange. CRphysics.Asweshowlater,thenatureoftheobservedangular Boththeseeffectsaresupportedwithrecentdirectmeasurements dependenceisquitecomplicated(itisasymmetricwithrespectto of the CR density in the vicinity of high velocity clouds located outsidetheGalacticplane,revealingthatinsomeregionstheden- (cid:63) E-mail:[email protected] sityfallsmuchfasterthanpredictedbystandardmodels,andthatit (cid:13)c 2015TheAuthors 2 Navaetal. haslargehorizontalvariations(Tibaldoetal.2015).Itwouldalso behaviourishardtoexplaininthestandardaxisymmetricCRdiffu- explain the indirect inference of the CR density as a function of sionmodels.IftheCRinjectionspectrumanddiffusioncoefficient distance from the Galactic plane using paleoclimate data (Shaviv isthesameeverywhere,thereshouldbenovariationsintheCRand etal.2014). ensuingγ-rayspectraatall,exceptforthenormalization.However, However,withoutanythingelse,astaticspiralarmmodeldoes alsostraightforwardextensionschangingthecharacteristicofei- not introduce any additional time-scale such that the CR spectral thertheinjectionspectraorenergydependenceofthediffusionco- form(butnotnormalization)shouldstillbelocationindependent. efficientinsidethespiralarmscannotexplainthisbehaviourasit However, Benyamin et al. (2014) considered that the location of would give rise to harder spectra in the direction of the arm tan- theCRsourcesisprogressivelymovingwiththespiralarms.They gents,notbetweenthem. haveshownthatadvectionoftheISMrelativetothearmintroduces a new effect (and time-scale) at low energies and it naturally ex- plainstheriseinthesecondarytoprimaryratiobelow1GeV/nuc. 3 THEMODEL WecompareherethepredictionsofthismodelwiththeFermiGeV γ-rayspectralindex.Oneoftheinterestingpointsthatwillbeborne The CR distribution is inferred from the Monte Carlo simulation outfromthiscomparisonisanexplanationtowhatappearsasan developed by Benyamin et al. (2014). While the details of the inconsistencybetweenthelocalCRspectrumandthespectrumin- modelcanbefoundinBenyaminetal.(2014),Shaviv(2003)and ferredfromtheaverageγ-rayspectralindex.Thiswillarisefrom Shavivetal.(2009),wesummarizeherethemainfeaturesofour theeffectthatthearmdynamicshasontheCRspectrum,introduc- model,focusingonthoseingredientsthatarerelevantforthestudy inganupstream/downstreamasymmetryaroundthearms. presentedinthiswork.CRsofenergiesuptothekneeareassumed Webeginbybrieflydescribingtheall-skyFermi/LATspectral to be accelerated at SNR shocks. Both core collapse and type Ia indexmap§2,comparingthemtostandardCRpropagationmodel SNe are considered, with the latter assumed to comprise 20% of predictions.Wethendiscussin§3thedynamicspiralarmCRprop- the whole SN population. We assume here that Type Ia SNe and agationmodelweuse.Wecontinuein§4withadescriptionofthe 10% of the core collapse SNe are distributed in a homogeneous modelresultsandacomparisonwiththeobservations(§5).Wecon- disc, and take their radial and vertical distributions from Ferrière cludewithadiscussionin§6. (2001). The rest of core collapse SNe are instead located in the arms—since the progenitors of core collapse SNe live less than 30Myr,theyexplodenotfarfromtheirbirthsites,whicharepri- marilythespiralarmsoftheGalaxy(e.g.,seeLacey&Duric2001). 2 OBSERVATIONS Forthespiralstructurewefollowthegeometryofasuperpositionof AlthoughsomerecentmeasurementsoftheinferredCRspectrain afour-armedsetandatwo-armedset,withtherationalanddetails thedirectionsoppositetheGalacticcentreareconsistentwiththe describedinBenyaminetal.(2014).Thisisbasedoncumulative standardmodel(Abdoetal.2010),thereareotherindicationstothe evidencebornefromdifferentempiricalresults(Amaral&Lepine contrary. COS B measurements of the γ-ray spectra around 300- 1997;Dameetal.2001;Shaviv2003;Naoz&Shaviv2007). 700MeV(correspondingtoprotonenergiesoftypically7-20GeV) The CR spatial distribution from the axisymmetric compo- revealedthattheCRspectralindexinthedirectionoftheGalactic nentsdoesnotdependontherotationoftheunderlyinginterstellar armsisharderby0.4±0.2thanthatinotherdirections(Rogersetal. medium.Thespiralarmsbreaktheaxialsymmetry.Furthermore, 1988;Bloemen1989).ThiswascorroboratedbyEGRET(Fatoohi whenconsideringthepropagationfromthespiralarms,therotation etal.1996).Similarly,theelectronsynchrotronspectrumat22-30 ofthearmsandtherotationoftheISMshouldbeconsidered.This GHzproducedbyCRelectronsataround30GeVisharderinthe introducesanadditionalpropagationeffect,namely,“advection"of directionofthearms(Bennett2012). the interstellar medium relative to the spiral arms. At energies of Recently, Selig et al. (2015) analyzed the 6.5yr all-sky data uptoafewGeV/nuc.advectioncancompetewithdiffusionanda from the Fermi/LAT in the range of energies between 0.6 and breakintheCRspectraisthereforeexpectedinthismodel.Italso 307.2GeV. They derived an all-sky spectral index map for the naturally explains the apparent rise at low energies in the Boron diffuse anisotropic component, giving us the opportunity to test toCarbonratio(Benyaminetal.2014).Theinterplaybetweenthe the prediction of the dynamic armed model against observations. advectionanddiffusionalsobreaksthesymmetryaroundthespiral The map of the γ-ray spectral index δ, estimated in the range arms.Whilediffusionoperatesineitherdirectionbothaheadand 0.85 − 6.79GeV is shown in Fig. 8 (lower panel) for latitudes beyond the spiral arm, advection is only downstream. The break |b| < 7◦.Thespectralindexδ isonaverageharderinthecentral in the CR spectrum will manifest itself as a break in the photon region(−90◦ < l < 40◦),whereitalsodisplaysaclearvariation spectrumproducedininteractionsbetweenCRsandtheISM.The asafunctionofthelatitude.Atsmalllatitudes|b| < 1◦,δ hasan sourcedistributionistheninhomogeneous,non-axisymmetricand intermediatedvalueδ ∼ −2.5,whileatlargerlatitudesaharden- timedependent. ingtovaluesδ (cid:38) −2.4isobserved.Largerlongitudesareinstead WecarryoutMonteCarlosimulationsfollowingthefullprop- characterizedbyasofterspectrumwithoutapronouncedlatitudi- agationofalargenumberofCR“bundles".Theirinitiallocation naldependence,withanindexδ(cid:46)−2.6.Thus,theoverallspectral in the Galaxy is randomly chosen according to the source distri- slopemapappearstohaveahard“oval".Twoexamplesofγ-ray butiondescribedabove.Wefollowthebundlesfromtheirforma- spectra (integrated over two different regions of the interest) are tionuntiltheyleavetheGalaxy,takingintoaccountenergylosses showninFig.7(dashedlines,fromSeligetal.2015). (mainlyintheformofCoulombandionizationcooling).Thediffu- Although the hard oval can be described as asymmetry be- sioncoefficientasafunctionofrigidityRisdescribedbyasingle tweeninsideandoutsidetheGalaxy,amorenaturalinterpretation power-law,D = D (R/R )s,withs = 0.4,R = 3GeV/nuc, 0 0 0 given the longitudinal asymmetry is that it is associated with the D = 1.2×1027cm2/sandahalosizeZ = 250pc.Weassume 0 h spiralarms.Thatis,thespectralslopeappearstobeharderbetween thattheinjectionprotonspectrumasafunctionofthemomentum thearmtangents(Carinaat∼−76◦andSagittariusat∼50◦).This pisdescribedbyapower-lawdN /dp ∝ pα.Fortheindexα, inj MNRAS000,1–8(2015) Galacticγ-rayandCRspectra 3 Figure1.AtopviewmapoftheMilkyWay(atZ = 0)showingthespectralindexoftheCRprotonspectrum,inferredfromsimulations,intherange 10−100GeV(left-handpanel)andintherange100−3000GeV(right-handpanel),asobtainedinthesmallhalomodel.TheSunislocatedatX=8.5kpc andY =0(starsymbol).Notetheharder(softer)spectraaroundthespiralarmsthatarisefromadvectionoftheCRthere. weconsidertwodifferentvalues.First,weinvestigatethestandard (8.5kpc,0,0),asindicatedbytheopenstarsymbol.Asexpected, hypothesis α = −2.3, leading to an average CR spectral slope thespectrumisharderintheupstreamsideofthearms,andsofterin (after diffusion) equal to α−s = −2.7. With these values, the thedownstreamside.ThisisbecauselowerenergiesCRsaremore Boron to Carbon and Beryllium isotopes ratios (Benyamin et al. strongly affected by the advection of the ISM through the arms. 2014) and sub-Iron to Iron ratios (Benyamin et al. 2016) are re- Thevariationofthespectralindexacrosseacharmismoreevident covered.Then,duetomotivationsthatwillbeclearlater,wewill inthelowerenergyrangeof10-100GeV(left-handpanel)andbe- considerthecaseofaslightlyharderCRinjectionspectrum,with comeslessevidentathigherenergies(right-handpanel),wherethe α=−2.25.Wealsoconsiderasecondmodel,withdynamicarms, relative effect of the advection, as compared to diffusion, is less butmuchlargerdiffusioncoefficient(D =1028cm2/s)andahalo important. 0 sizeofZh = 2kpc,whichbetterresembles“standard"CRpropa- Fig.2(left-handpanel)showsthehistogramoftheCRspec- gationmodels. tralindexvaluesintheplaneZ =0,estimatedintheenergyrange The final CR distribution is recorded on a grid that spans a 10GeV-3TeV. As expected, the distribution is peaked at a value volumeof30kpc×30kpc×2Zh.Itiscomposedof(0.1kpc)2× ∼ −2.7(openhistogram).Wenotehowever,thattheslopeatthe (0.01kpc)sizedcells(0.1kpcintheX andY directionsand0.01 location of the Earth is somewhat steeper (∼ −2.75), due to the kpcintheZ direction).Ineachcell,thespectrumat43different factthat,inthissimulation,theEarthliesclosertothedownstream energybinsiscalculated,from0.5GeVupto500TeV.Toestimate sideofthearm.Namely,thelocalCRspectrumisnotrepresentative thelocalISMdensity,weconsiderallthedifferentcomponentsof oftheaverageCRGalacticspectrumforthischoiceofparameters. thegas(neutral,ionizedandmolecular)anddescribetheirdensity A slightly different location of the Earth (or, a slightly different distribution in the Galaxy according to the parametrization given choiceoftheparametersdescribingthedynamicsand/ormorphol- in Ferrière (2001). The local π0 production and the resulting γ- ogyoftheGalaxy)wouldallowustorecoveravalueequalto−2.7. ray emission are then computed in each cell, from the local CR However,wenotethattheresultsforγ-rayspectrapresentasimilar spectrumandISMdensity,followingKamaeetal.(2006).Oncethe feature—theyaretoosoftascomparedtoobservations.Wecom- γ-rayspectrumiscomputedineachcellofthesimulationbox,we putetheγ-rayspectralindexintheenergyrange0.8−7GeVat caninvestigate,inourdynamicspiralarmmodel,howthespectral different Galactic coordinates (l, b) and, for each position in the slope ispredicted tochange across aspiral arm.Finally, in order sky,weestimatedthedifferencebetweenthespectralslopeofsim- to compare simulations with observations, we integrate the γ-ray ulatedandobservedγ-rayspectra(twoexamplesofobservedand emission along different lines of sight (l.o.s.) and derive the sky simulated γ-ray spectra can be found in Fig. 7, dashed and solid mapofthespectralphotonindex. lines, respectively). For the observed spectra, the slope has been computedinthesameenergyrange,fromSeligetal.(2015).The resultsareshowninFig.2,right-handpanel.Theopenhistogram showsthedistributionofthedifferencebetweenthesimulatedand 4 RESULTS observed slopes. We limit this investigation to the region of the Beforediscussingtheresultsofoursimulations,webeginwitha mapatsmalllatitudes,−5◦ <b<5◦.Theaveragevalueisaround qualitativedescriptionoftheexpectedfeatures.Fig.1showstheCR −0.08,indicatingthatthesimulatedγ-rayspectraareonaverage spectralindexspatialdistributionaspredictedbyoursimulations, softerthanwhatinferredfromobservations.Tosolvetheinconsis- performed with α = −2.3. The Sun is located at (X,Y,Z) = tency between observations and both the simulated CR spectrum MNRAS000,1–8(2015) 4 Navaetal. atEarthandtheγ-rayspectra,weconsideramodelwithaharder opposite direction is considered (i.e., the one represented by the injection spectrum α. The shaded histograms in Fig. 2 show that dot-dashedlineinFig.3). inthiscasepredictionsoftheCRslopearoundthelocationofthe The spectra derived from integration along those l.o.s. that Earth (left-hand panel) and of the map of γ-ray radiation (right- mostlyintersectthecentreofthearmareshownintheupperand handpanel)areinbetteragreementwithobservationalconstraints. lower panels of Fig. 4 (green curves). The upper (lower) panel Forthisreason,fromnowonwepresentanddiscussindetailonly refers to the l.o.s. represented by the dashed (dot-dashed) line in theresultsobtainedwithα=−2.25.Fig.2(left-handpanel)also Fig. 3, and corresponds to a Galactic longitude l (cid:39) 50◦ (l (cid:39) showsthatthepredictedCRspectrumatthelocationoftheEarth −104◦)andlatitudeb = 0◦.AlsodepictedinFig.4arethespec- (thickverticalline)isnotrepresentativeoftheaverageCRspectral traonbothsidesofthearm(redandbluecurves).Thelongitudes slope (peak of the distribution). While in these examples the dif- andthespectralslopes(intherange1-10GeV)arereportedineach ferencebetweenthelocalandaveragespectralslopesisonly0.05, panel, while the latitude is always b = 0◦ in all these examples. largerdifferencescanbeobtainedbyslightlychangingthelocation Spectraarenormalisedsothattheyoverlapatlowenergies. ofthearmascomparedtotheEarth.Inthissense,themodelisnot FromthecomparisonbetweenFigs.3and4itisevidentthat predictive,andthereisdegeneracyamongthesimulationparame- when integration along the l.o.s. is performed, the difference be- ters.Althoughacompletestudyoftheparameterspaceisbeyond tween the spectral slopes at the two different sides of the arm is thescopeofthispaper,weoutlinethattheproposedmodelgives stronglyreduced.Thisisduetothefactthatforb = 0◦,theemis- anaturalexplanationfortheincreasingevidencethatthelocalCR sioncomingfrommoredistantregionsofthediscisalsoplayinga spectrummightnotberepresentativeoftheaverageGalacticone roleinshapingthespectra. (Ackermannetal.2012;Neronov&Malyshev2015). Wenowextendthestudyofthespectralindextoallthedif- Thespatialdistributionofγ-rayspectraisexpectedtofollow ferentdirectionsofthesky,andbuildthespectralmapsindiffer- ent energy ranges. The results are shown in Fig. 5 in the range apatternsimilartotheonecharacterizingprotonspectra.Asacon- sequence,alsotheγ-rayemissionintegratedalongdifferentl.o.s. 1-10GeV(upperpanel)and10-300GeV(bottompanel),forlati- tudes|b|<7◦.Thegeneraltrendissimilarinbothenergyranges, will show variations in its spectral shape, depending whether the althoughthevariationinthespectralindexismuchsmalleratthe l.o.s. intersects harder or softer regions. In order to quantify how thespectrumoftheγ-rayradiationfromπ0decaychangesacrossa higherenergies(∆δ∼0.1).WiththehelpofFig.3,wecanunder- spiralarm,weinferthespectralindexδbymodellingthesimulated standtheoriginofthelargevariationinthelowenergymap(upper photonspectrawith apower-lawfunction:dN/dE ∝ Eδ.Since panel,Fig.5)asafunctionoflongitudeandlatitudeasfollows: weexpectadifferentbehaviouratlowandhighenergies,thespec- • |b| < 2◦ corresponds to l.o.s. that cross the arm, but are tralindexisestimatedintwodifferentenergyranges:1-10GeVand dominated by the disc component. For this reason the spectral 10-300GeV.Webeginbyanalyzingthesmallhalomodel(witha indexhasanintermediatevaluerangingbetween−2.5and−2.6. halosizethatreproducestheBorontoCarbonratiointhedynamic In particular, as can be understood from Fig. 3, at longitudes spiralarmmodel). −100◦ <l <50◦,δ ∼−2.5,becausethehardestpartofthearm Fig. 3 shows the map of the photon spectral index δ in the iscrossed,whileatl >50◦andl <−100◦thesoftestpartofthe plane of the disc (Z = 0) in the low and high energy ranges armiscrossed,andδ∼−2.65; (left and right-hand panel, respectively). The Sun is located at (X,Y,Z) = (8.5kpc,0,0), as indicated by the open star sym- • |b| > 2◦ attheselatitudes,contrarytothepreviouscase,the bol.Wefindthatthespectrumisharderintheupstreamsideofthe intersectionbetweenthel.o.s.andthedisccomponentisreduced, arms,andsofterinthedownstreamside.Thisshouldbeexpected and the contribution from the arm is dominating the emission, becauselowerenergiesaremorestronglyaffectedbytheadvection irrespectiveofthelongitude,anditdeterminesthespectralshape. oftheISMthroughthearms.Asaconsequence,lowerenergyCRs The variation as a function of the longitude is determined by are more abundant downstream, making the spectrum softer, and whichsideofthearmisthel.o.s.crossing.Thisexplainswhythe lessabundantupstream,makingthespectrumthereharder.More- spectrumisharder at−100◦ < l < 50◦,with anindexcloseto over, the variation of the spectral index across each arm is more δ ∼ −2.4, while for larger values of |l| the spectrum is softer evident in the lower energy range of 1-10GeV (where we find (δ(cid:46)−2.65). −3.0 < δ < −2.2)andbecomeslessevidentathigherenergies (−2.9 < δ < −2.5),wheretherelativeeffectoftheadvection,as Movingtowardsprogressivelyhigherlatitudes,thespectrum comparedtodiffusion,islessimportant. tendstowardssoftervalues,atalllongitudes.Theregionscharac- Notethatmodelsincludingthespiralarmsbutneglectingtheir terizedbythemostextreme(softandhard)spectralindicesarein motion (Shaviv 2003; Shaviv et al. 2009; Gaggero et al. 2013) factmissedbythel.o.s.andanintermediatespectralindexisrecov- would instead predict the same spectrum across the Galaxy, with ered. noarmsignatures. Summarizing, two main features are predicted by our Thevariationofthespectralindexacrossthearmsaffectsthe small halo, dynamic spiral arm model. Spectra are hard at γ-ray spectrum detected at Earth. The effect is more pronounced small/intermediateGalacticlongitudes(correspondingtothecen- nearthedirectionsofthearmtangents.Considerforexamplethe tral part of the map), since these longitudes correspond to l.o.s. closest arm and the arm tangents identified by the dashed line in crossingthesideofthearmoppositetothedirectionofthemotion Fig.3(left-handpanel).Intherange1-10GeV,theγ-rayspectrum (redinFig.3).Onbothsidesofthiscentralhardregion,wherelat- measuredatEarthisexpectedtohaveaspectralindexaroundδ ∼ itudesarehigher,spectraaresoft,sincetheselatitudescorrespond −2.5, as can be guessed from Fig. 3. A slightly different l.o.s., tol.o.s.thatcrosstheothersideofthearm(blueinFig.3).Thesec- pointingnowtoeithersideofthearmwouldcorrespondinsteadto ondpredictionisthatthistrendisparticularlyevidentatlatitudes a softer or harder spectrum, depending on which side of the arm 2◦ < b < 4◦,wherethecontributionfromthearmisdominating we are looking at. The same effect is expected when the almost theemission,andisreducedbothatverysmall(b < 2◦)latitudes MNRAS000,1–8(2015) Galacticγ-rayandCRspectra 5 Figure2.Left-handpanel:thedistributionofthesimulatedCRspectralindex,estimatedintherange10−3000GeV,intheplaneZ=0.Theopenhistogram showstheresultsassumingainjectionspectralindexα = −2.3,whiletheshadedhistogramisobtainedforaharderinjectionindex,α = −2.25.Inboth cases,thediffusioncoefficientisproportionaltoE0.4.TheverticalblueandgreylinesdepicttheobservedspectrumontheEarth,respectively.Right-hand panel:thedistributionofthedifferencebetweentheγ-rayspectralindexintheplaneoftheskyobtainedfromsimulationsandfromobservations.Asmall latituderegionhasbeenselected:−5◦<b<5◦.ThetwodifferenthistogramsrespectivelyrefertothetwodifferentchoicesforCRinjectionspectralindex. Figure3.AtopviewmapoftheMilkyWay(atZ=0)showingthephotonindexoftheγ-rayspectrumfromπ0decay,asmeasuredintherange1−10GeV (left-handpanel)andintherange10−300GeV(right-handpanel),asobtainedinthesmallhalomodel.TheSunislocatedatX=8.5kpcandY =0(star symbol).Thedashedanddot-dashedlinesshowthetwolinesofsightthatinterceptthespiralarm. (wheretheemissionistheresultofcontributionfromboththearm diffusioncoefficient(inparticular,tofitthe“age"derivedfromthe andthedisc)andatlargelatitudes(b>4◦),wherethelocalemis- Berylliumisotoperatios).Asaconsequence,characteristicsofthe siongovernsthespectralslope. CRs in the vicinity of the Galactic arms are smeared over large Fig. 6 depicts the prediction of the large halo model, with regions,wipingawaydetails. Z =2kpc,intheenergyrange1−10GeV.Whencomparedwith h thesmallhalomodel(Fig.5,upperpanel),thesamequalitativefea- turesexist,butquantitativelytheyaredifferent.First,insteadofa 5 ACOMPARISONWITHOBSERVATIONS welldefined“oval"withahigherspectralindex,therespectiveoval issignificantlylessdefined.Second,insteadofhavingvariationsin Recently,aspectralmap(asmeasuredbyFermi)oftheanisotropic theindexoforder∼0.2,therearevariationsofonly∼0.05. component (dominated, especially at low energies, by π0 decay) The differences between the two different halo size models of the diffuse γ-ray emission has been presented by Selig et al. arenotsurprisinggiventhatthelargehalomodelrequiresalarger (2015),allowingustocompareournumericalresultswithobser- MNRAS000,1–8(2015) 6 Navaetal. Figure6.Mapofthespectralslopeintheenergyrange1-10GeVoftheπ0- producedγ-rayradiationobtainedfromthelargehalosimulation(Zh = 2kpc).Thecontourlevelsaredenotedbythecolourbaronthebottom,and itisthesameasinFig.5. Figure4. Simulatedγ-rayspectraatEarthfromπ0decayobtainedafter integrationalongthel.o.s. inthesmallhalomodel.Ineachpanel,three differentl.o.s.areshown:inthedirectionofthespiralarm(green),andon bothsidesofthespiralarm(redandblue),atlatitudesb=0◦.Theupper panelreferstodirectionsaroundl ∼ 50◦ (dashedlineinFig.3),while thebottompanelreferstol∼−104◦(dot-dashedlineinFig3).Foreach spectrum,thelongitudeandthespectralindex(intherange1−10GeV) arereported.Unitsonthey-axisarearbitrary,andthespectrahavebeen normalizedsothattheyoverlapatlowenergies. Figure 7. Comparison between observed and simulated γ-ray spectra in twodifferentregionsofinterest:|l| < 40◦and|b| < 1.5◦(upperpanel), and −150◦ < l < −120◦ and |b| < 3◦ (lower panel). Observations (takenfromSeligetal.2015)areshownwithadashedline.Theshaded areasrepresenttheuncertainties,includingstatisticalandsystematicerrors. Thespectrumderivedfromoursimulationinthesameregionoftheskyis insteadshownwithasolidline.Normalizationsarearbitrary. Figure5.Mapsofthespectralslopeintheenergyrange1-10GeV(top) vations.Theiranalysisisperformedinnineenergybins,from0.6 and10-300GeV(bottom)oftheπ0-producedγ-rayradiation,inthesmall to307.2GeV.First,wecomparetheirmeasuredγ-rayspectraesti- halomodel.Thecontourlevelsaredenotedbythecolourbarontheright, matedintwodifferentregionsoftheskywithoursimulations.The anditisthesameforbothmaps. resultsareshowninFig.7:datafromSeligetal.(2015)areshown asadashedline.Uncertaintiesarerepresentedwithashadedarea. The spectrum derived from our simulation is instead shown with a solid line. The upper and bottom panels refer to two different regionsofthesky.Normalizationsandunitsonthey-axisarear- bitrary.Aninconsistencybetweenthesimulatedspectrumandthe observedoneintheouterregionisevidentatenergies> 10GeV, MNRAS000,1–8(2015) Galacticγ-rayandCRspectra 7 wherethedatashowasteepeningofthespectralslope.Thissteep- eningfoundbySeligetal.(2015)isinconsistentwithresultsfrom Ackermannetal.(2012)andtheauthorsidentifytheoriginofthis inconstancywiththelowsignaltonoiseratiointhehighestenergy bins. Weusethefluxesprovidedinthefirstfourenergybins1(cor- responding to the energy range 0.85-6.79GeV) and estimate the spectralindexbyfittingthedatawithasimplepower-lawfunction, consistentlywiththemethodadoptedtoderivetheslopeofthesim- ulatedspectra. The Fermi spectral map at |b| < 7◦ in the range 0.85- 6.79GeV is depicted in the lower panel of Fig. 8. We focus on thisrangeofenergiesandlatitudesbecauseitiswherethediffuse emissionofGalacticoriginisexpectedtobedominatedbyπ0de- cay,andthecomparisonbetweenoursimulationsandobservations isthereforejustified.Inordertoperformapropercomparison,we estimatethespectralindexofoursimulatedspectrainthesameen- Figure8.Mapsofthespectralslopeoftheπ0-producedγ-rayradiationin ergyrange.Thesimulatedmapforthesmallhalomodelisshowed theenergyrange0.85-6.79GeV.Theupperpaneldepictstheresultsfrom intheupperpanelofFig.8. thesmallhalosimulation,whilethebottompanelistheFermimapadapted Firstofall,wenotethattherangeofδvaluesinthesimulated fromSeligetal.(2015).Thesamecolorbarisusedforboththesimulated andobservedspectraissimilar:−2.65 < δ < −2.35.Moreover, andtheobservedmaps. thetwomapsareverysimilar,i.e.,δvariesasafunctionsofband laccordingtoasimilarpattern.Allthefeaturespresentinthesim- 6 DISCUSSIONANDSUMMARY ulatedmapanddiscussedintheprevioussectionarevisiblealsoin the map derived from Fermi data, albeit with some measurement A spiral arm source distribution was first incorporated into a CR noise.Thisallowsusnotonlytoassessthevalidityofournumer- diffusion model to explain the apparent time variation in the CR ical results, but also to provide an interpretation for the observed historyasreconstructedwithIronMeteorites(Shaviv2003).Asa spectralmappresentedbySeligetal.(2015),atleastinthisrange “sideeffect"itwasfoundtoexplainthePamelaanomalyinwhich oflatitudes. thepositronfractionappearstoincreaseaboveabout10GeV(Sha- ByinspectingtheFermimapintheregion−90◦ <|l|<40◦, vivetal.2009;Gaggeroetal.2013).Thesemodels,however,do wenotethatthespectraareonaverageharderthanthespectraon notintroduceanyadditionaltime-scalefortheprotonpopulation, bothsidesofthecentralregion.Moreover,inthiscentralpartofthe becauseofwhichtheπ0 producedγ-raysshouldexhibitthesame map,avariationofthespectralindexwiththelatitudeisvisible. power-law index in every direction, unless new physics is intro- At|b| < 1◦ thespectralindexhasanintermediatevalue,and duced. it becomes harder at around |b| ≈ 2◦ −3◦. We have interpreted SuchnewphysicswasintroducedbyBenyaminetal.(2014) this variation of δ as due to the transition from l.o.s. where the whorealizedthatifoneconsidersthedynamicsofthespiralarms, contributionfromthediscisrelevant,tol.o.s.wheretheclosestarm namely,thattheISMmovesrelativetothearms,theCRsundergo isdominatingtheemission.Atevenhigherlatitudesthespectrum advectionrelativetotheCRsources(inadditiontodiffusion).This becomessofter,consistentlywiththefactthatthecontributionfrom advection naturally predicted a rise in the Boron to Carbon ratio thesideofthearmbecomesnegligibleagain. at energies below 1 GeV/nuc., as observed. However, several ad- Alsotheregionatlargerlongitudes|l|>40◦exhibitsaverage ditionalconsequencesensuedfromthisanalysis.First,becauseof propertiesverysimilartothosefoundinthesimulatedspectra.The thedifferentpathlengthdistribution,itwasfoundthatinorderto spectrumissignificantlysofter,whichweinterpretedasduetothe correctlyrecovertheoverallamountofsecondariesproduced,one fact that these l.o.s. mainly intersect the downstream side of the musttakeasmallerhaloandasmallerdiffusioncoefficient.Sec- arm. ond,itwasfoundtoconsistentlyexplainthesub-IrontoIroniso- Whilethesmallhalosimulationreproducesthemainfeatures topes,whichinstandardmodelsrequireaninconsistentlydifferent intheFermiindexmaps,thisisnotthecasewiththelargehalosim- averagecolumndensity(Benyaminetal.2016). ulation,theresultsofwhicharedepictedinFig.6.Specifically,the The next natural step was to simulate the γ-ray production largehalomodelhassignificantlylessdefinedfeaturescompared through π0 decay, and compare with observations. This is more withboththesmallhalosimulationandtheactualFermiobserva- robust than other γ-ray components that require the distribution tions.Inotherwords,thelatterstronglypointtowardsasmallhalo. of electrons and the magnetic field as well, and therefore left for Wehavealsocomparedtheobservationswiththespectralmap future analysis. In particular, given that standard models predict derivedwithα = −2.3.Inthiscase,apatternsimilartotheone afixedpower-lawindex,bystudyingdirectionalvariationsofthe showninFig.2isrecovered,but(asanticipatedin§4)thevalues power-lawindexwecanconcentrateondifferencesfromthestan- are shifted towards softer spectral indices, and do not match the dardmodel. observedrangeofvaluesobservedbyFermi. In the analysis, we have found that the dynamic spiral arm modelexhibitsinterestingcharacteristics.First,thereisaveryclear upstream/downstream asymmetry, such that the upstream side of spiralarmsisharder.Inaddition,theGalacticplaneregioninwards (towards the Galactic centre) of the two opposite arm tangents is harder than the plane outside the tangents. Note that because the 1 https://www.mpa-garching.mpg.de/ift/fermi/ arm tangents are not symmetric around the Galactic centre, this MNRAS000,1–8(2015) 8 Navaetal. asymmetryisnotexpectedtobesymmetriceither.TheFermidata ACKNOWLEDGEMENTS exhibit this signature–the spectral slope at the plane towards the LNwaspartiallysupportedbyaMarieCurieIntra-EuropeanFel- centreoftheGalaxyisharderthanintheotherdirections.More- lowshipoftheEuropeanCommunity’s7thFrameworkProgramme over, the data appear to exhibit an asymmetry about the Galactic (PIEF-GA-2013-627715).TPwaspartiallysupportedbyAdvERC centreexpectedfromtheasymmetricarmtangents,thoughnotun- grantTREX.NJSgratefullyacknowledgesthesupportoftheIBM equivocallygiventhedataquality. EinsteinFellowshipoftheInstituteforAdvancedStudy,andIsrael The second interesting signature, apparent in both the small Science Foundation (grant no. 1423/15). This research was also halosimulationandtheFermiobservations,istheverticaldepen- supported by the I-CORE Program of the Planning and Budget- dence.Whenobservingbetweenthearmtangentsthenthespectral ingCommitteeandtheIsraelScienceFoundation(center1829/12). indexincreasesfromtheplaneuptoanaltitudeofabout1.5◦,and Theauthorsacknowledgetheuseoftheopenaccessmaterialpre- thendecreasesfurtherawayfromtheplane.Thisseeminglyoddbe- sentedbySeligetal.(2015)ontheapplicationoftheD3POinfer- haviourisduetothefactthatattheGalacticplane,thel.o.s.crosses encealgorithmtotheγ-rayskyseenbytheFermi-LAT. theharderupstreamsideofthearmbutthesignificantcontribution fromtheGalacticdiscfurtherinsidetheGalaxyflattensthespec- trum.Ontheotherhand,atasomewhathigherangle,theGalactic REFERENCES discismostlyabsentsincethel.o.s.passesaboveit,andthecon- tributionfromthehardarmdominatesthespectralshape.Ateven AbdoA.A.,etal.,2010,ApJ,710,133 higherlatitudes,thel.o.s.alreadypassesabovethearmandthelo- AckermannM.,etal.,2012,ApJ,750,3 AmaralL.H.,LepineJ.R.D.,1997,MNRAS,286,885 calsoftercontributionislefttodominate.Sincetheaforementioned BennettC.L.e.a.,2012,preprint, (arXiv:1212.5225) featuresaresignificantlyattenuatedinthelargehalomodelthatre- BenyaminD.,NakarE.,PiranT.,ShavivN.J.,2014,ApJ,782,34 quiresalargerdiffusioncoefficient,wecanconcludethattheFermi Benyamin D., Nakar E., Piran T., Shaviv N. J., 2016, preprint, indexmapsaresurprisinglyconsistentwiththesmallhalosimula- (arXiv:1601.03072) tion,butnotthelargehalo. BloemenH.,1989,ARA&A,27,469 Itshouldbeemphasizedthatunlikeothermodelsthathaveto DameT.M.,HartmannD.,ThaddeusP.,2001,ApJ,547,792 FatoohiL.J.,GillerM.,WdowczykJ.,WolfendaleA.W.,ZhangL.,1996, addadditionaladhocassumptionstoobtainspectralchanges(e.g., A&AS,120,407 onthediffusioncharacteristicsinsideandoutsidearms,oracontri- FerrièreK.M.,2001,ReviewsofModernPhysics,73,1031 butionfromdarkmatter),thedynamicsofthearmsisanunavoid- GaggeroD.,MaccioneL.,DiBernardoG.,EvoliC.,GrassoD.,2013,Phys- ablecomponentthatshouldnecessarilybeincluded.Weknowthat icalReviewLetters,111,021102 theCRsourcesareinthearmsandthattheISMisadvectedthrough KamaeT.,KarlssonN.,MizunoT.,AbeT.,KoiT.,2006,ApJ,647,692 them. LaceyC.K.,DuricN.,2001,ApJ,560,719 NaozS.,ShavivN.J.,2007,NewAstron.,12,410 Anotherinterestingpointisthatbecausethismodelpredicts NeronovA.,MalyshevD.,2015,preprint, (arXiv:1505.07601) thattheCRspectrumvariesacrosstheGalaxy,thelocalCRspec- RogersM.J.,SadzinskaM.,SzabelskiJ.,vanderWaltD.J.,Wolfendale trummeasuredattheEarthandtheaverageCRspectruminferred A.W.,1988,JournalofPhysicsGNuclearPhysics,14,1147 fromtheaverageoftheγ-rayspectraarenotnecessarilythesame. SeligM.,VaccaV.,OppermannN.,EnßlinT.A.,2015,A&A,581,A126 This is consistent with (and provides an explanation for) the ap- ShavivN.J.,2002,Phys.Rev.Lett.,89,051102 parentinconsistencybetweenthelocalandaveragespectralslopes. ShavivN.J.,2003,NewAstron.,8,39 The difference we need to introduce in our model is of 0.05, but ShavivN.J.,NakarE.,PiranT.,2009,PhysicalReviewLetters,103,111302 larger differences can also be explained by slightly changing the ShavivN.J.,ProkophA.,VeizerJ.,2014,ScientificReports,4,6150 locationofthearmwithrespecttotheEarthinthesimulation. SuM.,SlatyerT.R.,FinkbeinerD.P.,2010,ApJ,724,1044 TibaldoL.,etal.,2015,ApJ,807,161 Oneshouldalsomentionseveralcaveatsinthemodel.First, Werner M., Kissmann R., Strong A. W., Reimer O., 2015, Astroparticle theISMdensityisthesameinthespiralarmsandoutsideofthem. Physics,64,18 Thisisanaiveapproximation,theeffectofwhichisnotsupposed to change the slopes in the XY map, however, it will emphasize ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. the γ-rays emission coming from the arms, and therefore should somewhat increase the predicted spectral slope contrasts. On the otherhand,themodeldoesnotconsiderpossiblevariationsofthe diffusioncoefficient(e.g.,becauseofthemagneticfieldandISM turbulencecharacteristics)thatcouldgivedifferentspectralslopes inthearmsandoutside. AnotherinterestingpointtoconsideristheeffectoftheFermi bubbles (Su et al. 2010). It is clear that at a high enough Galac- ticlatitudeitwilldominatethespectrum(Seligetal.2015).This wasnotconsideredhere,butisshouldstartdominatingthespectral indexatsomelatitudeabovetheplane. Nevertheless, even with the caveats considered, the general agreement between the theoretical predictions and observations suggeststhattheCRssourcesareindeedconcentratedtowardsthe arms(asexpectedfromSNR),andthatthehalosizeanddiffusion coefficientaresmallerthanthecanonicalvaluesarisinginstandard azimuthallysymmetricmodels. MNRAS000,1–8(2015)